Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1988 Mar;47(3):232–240. doi: 10.1136/ard.47.3.232

Morphology of surface synoviocytes in situ at normal and raised joint pressure, studied by scanning electron microscopy.

J N McDonald 1, J R Levick 1
PMCID: PMC1003490  PMID: 3355260

Abstract

The synovial surface in rabbit knees was examined by scanning electron microscopy (SEM) to define normal surface contour, cell shape, and interstitial exposure. Comparison was made between specimens excised before immersion fixation (I), fixed in situ by vascular perfusion (V) before excision, or fixed in situ under an effusion pressure of 5-25 cmH2O (E). The deeply convoluted appearance of rabbit areolar-muscular synovium fixed after excision (I) was found to be an artefact; areolar-muscular synovium fixed in situ (V) was much smoother. The well documented cobblestone contour of immersion fixed adipose synovium was present after fixation in situ, but may be exaggerated by the SEM preparative process. At higher magnification the synoviocytes showed evidence of considerable surface activity (smooth granules, larger cauliflower-like excrescences, thin lamelliform filopodia). Cell shape was variable but many synoviocytes extended long cytoplasmic processes along the surface, producing fibroblastoid and even stellate outlines. At an intra-articular pressure of 25 cmH2O (E) the cytoplasmic processes were elongated and branched, creating a highly dendritic outline. Also, the exposure of interstitium increased markedly at the higher pressure. It is concluded that extension of lengthy cytoplasmic processes is a feature of normal healthy synoviocytes, and that an increase in interstitial area with joint pressure contributes to the increased hydraulic permeability of synovium at raised pressure.

Full text

PDF
232

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker D. G., Dayer J. M., Roelke M., Schumacher H. R., Krane S. M. Rheumatoid synovial cell morphologic changes induced by a mononuclear cell factor in culture. Arthritis Rheum. 1983 Jan;26(1):8–14. doi: 10.1002/art.1780260102. [DOI] [PubMed] [Google Scholar]
  2. Barratt M. E., Fell H. B., Coombs R. R., Glauert A. M. The pig synovium, II. Some properties of isolated intimal cells. J Anat. 1977 Feb;123(Pt 1):47–66. [PMC free article] [PubMed] [Google Scholar]
  3. Cameron H. U., Macnab I. Scanning electron microscopic studies of the hip joint capsule and synovial membrane. Can J Surg. 1973 Nov;16(6):388–392. [PubMed] [Google Scholar]
  4. Date K. Scanning electron microscope studies on the synovial membrane. Arch Histol Jpn. 1979 Dec;42(5):517–531. doi: 10.1679/aohc1950.42.517. [DOI] [PubMed] [Google Scholar]
  5. Fell H. B., Glauert A. M., Barratt M. E., Green R. The pig synovium. I. The intact synovium in vivo and in organ culture. J Anat. 1976 Dec;122(Pt 3):663–680. [PMC free article] [PubMed] [Google Scholar]
  6. Fujita T., Inoue H., Kodama T. Scanning electron microscopy of the normal and rheumatoid synovial membranes. Arch Histol Jpn. 1968 Oct;29(5):511–522. doi: 10.1679/aohc1950.29.511. [DOI] [PubMed] [Google Scholar]
  7. Gadher S. J., Woolley D. E. Comparative studies of adherent rheumatoid synovial cells in primary culture: characterisation of the dendritic (stellate) cell. Rheumatol Int. 1987;7(1):13–22. doi: 10.1007/BF00267337. [DOI] [PubMed] [Google Scholar]
  8. Gaucher A., Faure G., Netter P., Pourel J., Duheille J. Apport de la microscopie électronique à balayage à l'étude de la synoviale humaine normale et pathologique. Rev Rhum Mal Osteoartic. 1976 Jan;43(1):51–60. [PubMed] [Google Scholar]
  9. Graabaek P. M. Ultrastructural evidence for two distinct types of synoviocytes in rat synovial membrane. J Ultrastruct Res. 1982 Mar;78(3):321–339. doi: 10.1016/s0022-5320(82)80006-3. [DOI] [PubMed] [Google Scholar]
  10. Gryfe A., Gardner D. L., Woodward D. H. Scanning electron microscopy of normal and inflamed synovial tissue from a rheumatoid patient. Lancet. 1969 Jul 19;2(7612):156–157. doi: 10.1016/s0140-6736(69)92460-x. [DOI] [PubMed] [Google Scholar]
  11. Heino J., Viander M., Peltonen J., Kouri T. Adherent cells from rheumatoid synovia: identity of HLA-DR positive stellate cells. Ann Rheum Dis. 1987 Feb;46(2):114–120. doi: 10.1136/ard.46.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hendler P. L., Lavoie P. E., Werb Z., Chan J., Seaman W. E. Human synovial dendritic cells. Direct observation of transition to fibroblasts. J Rheumatol. 1985 Aug;12(4):660–664. [PubMed] [Google Scholar]
  13. Highton T. C. A scanning electron microscopic study of synovial joints. J R Coll Physicians Lond. 1971 Oct;6(1):25–32. [PMC free article] [PubMed] [Google Scholar]
  14. Inoue H., Takasugi H., Akahori O. Surface study of tenosynovium in hens and humans by electron microscopy. Hand. 1976 Oct;8(3):222–227. doi: 10.1016/0072-968x(76)90005-x. [DOI] [PubMed] [Google Scholar]
  15. Knight A. D., Levick J. R. Effect of fluid pressure on the hydraulic conductance of interstitium and fenestrated endothelium in the rabbit knee. J Physiol. 1985 Mar;360:311–332. doi: 10.1113/jphysiol.1985.sp015619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knight A. D., Levick J. R. Morphometry of the ultrastructure of the blood-joint barrier in the rabbit knee. Q J Exp Physiol. 1984 Apr;69(2):271–288. doi: 10.1113/expphysiol.1984.sp002805. [DOI] [PubMed] [Google Scholar]
  17. Knight A. D., Levick J. R. The density and distribution of capillaries around a synovial cavity. Q J Exp Physiol. 1983 Oct;68(4):629–644. doi: 10.1113/expphysiol.1983.sp002753. [DOI] [PubMed] [Google Scholar]
  18. Pratt R. M., Yamada K. M., Olden K., Ohanian S. H., Hascall V. C. Tunicamycin-induced alterations in the synthesis of sulfated proteoglycans and cell surface morphology in the chick embryo fibroblast. Exp Cell Res. 1979 Feb;118(2):245–252. doi: 10.1016/0014-4827(79)90149-6. [DOI] [PubMed] [Google Scholar]
  19. Redler I., Zimny M. L. Scanning electron microscopy of normal and abnormal articular cartilage and synovium. J Bone Joint Surg Am. 1970 Oct;52(7):1395–1404. [PubMed] [Google Scholar]
  20. Winchester R. J., Burmester G. R. Demonstration of Ia antigens on certain dendritic cells and on a novel elongate cell found in human synovial tissue. Scand J Immunol. 1981 Oct;14(4):439–444. doi: 10.1111/j.1365-3083.1981.tb00585.x. [DOI] [PubMed] [Google Scholar]
  21. Woodward D. H., Gryfe A., Gardner D. L. Comparative study by scanning electron microscopy of synovial surfaces of 4 mammalian species. Experientia. 1969 Dec 15;25(12):1301–1303. doi: 10.1007/BF01897513. [DOI] [PubMed] [Google Scholar]
  22. Woolley D. E., Brinckerhoff C. E., Mainardi C. L., Vater C. A., Evanson J. M., Harris E. D., Jr Collagenase production by rheumatoid synovial cells: morphological and immunohistochemical studies of the dendritic cell. Ann Rheum Dis. 1979 Jun;38(3):262–270. doi: 10.1136/ard.38.3.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wysocki G. P., Brinkhous K. M. Scanning electron microscopy of synovial membranes. Arch Pathol. 1972 Feb;93(2):172–177. [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES