Abstract
Multidrug-resistant (MDR) Gram-negative bacteria are responsible for the majority of healthcare-associated infections and pose a serious threat as they complicate and prolong clinical care. A novel cephalosporin-β-lactamase-inhibitor combination, ceftolozane-tazobactam (C/T) was introduced in 2014, which improved the treatment of MDR pathogens. This study aimed to evaluate the activity of C/T against Escherichia coli (n = 100), Klebsiella pneumoniae (n = 100), and Pseudomonas aeruginosa (n = 100) blood culture isolates in South Africa (SA). Isolates were sequentially selected (2010 to 2020) from the Group for Enteric, Respiratory, and Meningeal Diseases Surveillance (GERMS) programme in SA. Organism identification was performed using the matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) instrument (Microflex, Bruker Daltonics, Bremen, Germany), and antibiotic susceptibility was performed using the Sensititre instrument (Trek Diagnostic Systems, East Grinstead, UK). C/T resistance was reported in 16 E. coli, 28 K. pneumoniae and 13 P. aeruginosa isolates. Fifty percent of the C/T resistant isolates were subjected to whole-genome sequencing (WGS). According to the whole genome multilocus sequence typing (MLST) analysis, the E. coli isolates (n = 8) belonged to sequence type (ST)10, ST131, ST405, and ST410, the K. pneumoniae isolates (n = 14) belonged to ST1, ST37, ST73, ST101, ST231, ST307, ST336 and ST6065 (novel ST), and the P. aeruginosa isolates (n = 7) belonged to ST111, ST233, ST273, and ST815. The WGS data also showed that all the E. coli isolates harboured aminoglycoside (aph (3′′)-Ib, aph (6)-Id), macrolide (mdfA, mphA), and sulphonamide (sul2) antibiotic resistance genes, all the K. pneumoniae isolates harboured β-lactam (blaCTX-M-15), and sulphonamide (sul2) antibiotic resistance genes, and all the P. aeruginosa isolates harboured aminoglycoside (aph (3′)-IIb), β-lactam (PAO), fosfomycin (fosA), phenicol (catB7), quinolone (crpP), and disinfectant (qacE) antibiotic resistance genes. It is evident that E. coli, K. pneumoniae and P. aeruginosa can adapt pre-existing resistance mechanisms to resist newer β-lactam molecules and inhibitors, since these isolates were not exposed to ceftolozane-tazobactam previously.
Keywords: ceftolozane-tazobactam, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, WGS
1. Introduction
Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa are frequently isolated pathogens in the community and healthcare settings, and are the causes of infection-related morbidity and mortality [1,2]. Of concern is that these pathogens are becoming more resistant to available antibiotics [1].
A new cephalosporin-β-lactamase-inhibitor combination, ceftolozane/tazobactam (C/T) (sold under the brand name Zerbaxa, MERCK Connect, United States of America (USA)) was introduced in 2014 and has improved the treatment of carbapenem-resistant Gram-negative pathogens, especially P. aeruginosa [3,4]. Ceftazidime-avibactam (C/A), introduced in 2015 is also a combination antibiotic like C/T and consists of a broad-spectrum cephalosporin (i.e., ceftazidime) and a β-lactamase inhibitor (i.e., avibactam) [5].
C/T is a combination antibiotic that consists of a fifth-generation cephalosporin (ceftolozane) and a β-lactamase inhibitor (tazobactam) that exhibits bactericidal properties [6,7]. Ceftolozane, like other β-lactams, inhibits penicillin binding proteins (PBPs), which prevents bacterial cell wall synthesis and leads to cell death [1. Tazobactam inhibits most class A β-lactamases and some AmpC cephalosporinases (plasmid-mediated class C β-lactamases) and protects ceftolozane from hydrolysis [1,7]. C/T and C/A have been registered drugs in South Africa (SA) since 2022 [8]. Previously, these antibiotics were prescribed in SA as Section 21 drugs (i.e., before these antibiotics can be administered to patients, approval is needed from the hospital’s drug and therapeutic committee/s and the South African Health Products Regulatory Authority (SAHPRA)) [8,9]. These combination antibiotics are costly and not easily accessible in SA [9].
The use of C/T and C/A in SA is predominantly driven by the private healthcare sector [8]. The public healthcare sector in SA does not routinely offer susceptibility testing for C/T and C/A [9]. A comprehensive South African guide for new and existing antibiotics, which includes dose and administration strategies for critically ill patients has recently been published [8]. The focus on appropriate antibiotic stewardship practices is vital to maximise the efficacy and longevity of all new antibiotics that enter the healthcare sector [8].
Monitoring the susceptibility profile of these new combination antibiotics is important as increasing levels of resistance to C/T are observed, putting long-term use at risk [8].
This study aimed to evaluate the in vitro activities of C/T against E. coli, K. pneumoniae and P. aeruginosa and to molecularly characterise selected C/T resistant isolates using whole genome sequencing (WGS).
2. Results
2.1. Demographic Characteristics of Patients
E. coli (n = 100), K. pneumoniae (n = 100), and P. aeruginosa (n = 100) blood culture isolates were collected from 2010 to 2020. The median age for patients with E. coli, K. pneumoniae and P. aeruginosa bacteraemia was 36 years, 31 years and 44 years, respectively. The demographic characteristics of the patients are described in Table 1.
Table 1.
Demographic characteristics of patients with Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa bacteraemia.
| Demographic Characteristics | E. coli | K. pneumoniae | P. aeruginosa |
|---|---|---|---|
| n = 100 | n = 100 | n = 100 | |
| Age | |||
| Median age (interquartile range (IQR)) | 36 years (21–54 years) |
31 years (130 days–51 years) |
44 years (11–58 years) |
| Sex | |||
| Female | 61 | 36 | 41 |
| Male | 37 | 60 | 55 |
| Unknown | 2 | 4 | 4 |
| Ward | |||
| Adult | 74 | 57 | 69 |
| Paediatric | 24 | 40 | 25 |
| Unknown | 2 | 3 | 6 |
| Province | |||
| Eastern Cape | 1 | - | - |
| Free State | - | 10 | 2 |
| Gauteng | 98 | 65 | 46 |
| Western Cape | - | 24 | 41 |
| KwaZulu-Natal | 1 | 1 | 10 |
| Unknown | - | - | 1 |
2.2. Phenotypic Characterisation of All Blood Culture Isolates
The antibiotic susceptibility results are shown in Table 2.
Table 2.
Antibiotic susceptibility profiles of 100 Escherichia coli, 100 Klebsiella pneumoniae and 100 Pseudomonas aeruginosa blood culture isolates.
| Amoxicillin/Clavulanate acid | Ceftazidime/Avibactam | Ceftolozane/Tazobactam | Piperacillin/Tazobactam | Cefotaxime | Ceftazidime | Aztreonam | Ertapenem | Imipenem | Meropenem | Colistin | Gentamicin | Tobramycin | Amikacin | Ciprofloxacin | Trimethoprim/Sulfamethoxazole | MDR Detected | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E. coli | S | 36 | 96 | 82 | 77 | 62 | 70 | 61 | 79 | 89 | 91 | 0 | 88 | 74 | 89 | 44 | 25 | 30 |
| I | 18 | 0 | 2 | 1 | 0 | 5 | 4 | 2 | 3 | 1 | 94 | 0 | 2 | 7 | 8 | 0 | ||
| R | 46 | 4 | 16 | 22 | 38 | 25 | 35 | 19 | 8 | 8 | 6 | 12 | 24 | 4 | 48 | 75 | ||
| K. pneumoniae | S | 33 | 100 | 66 | 51 | 35 | 36 | 36 | 97 | 99 | 100 | 0 | 41 | 39 | 99 | 43 | 34 | 61 |
| I | 1 | 0 | 6 | 13 | 0 | 2 | 0 | 2 | 1 | 0 | 94 | 0 | 10 | 1 | 5 | 0 | ||
| R | 66 | 0 | 28 | 36 | 64 | 62 | 64 | 1 | 0 | 0 | 6 | 59 | 51 | 0 | 52 | 66 | ||
| P. aeruginosa | S | 0 * | 84 | 85 | 67 | 0 * | 75 | 76 | 0 * | 65 | 71 | 0 | 78 | 78 | 86 | 73 | 0 * | 24 |
| I | 0 * | 0 | 2 | 10 | 0 * | 6 | 11 | 0 * | 8 | 9 | 68 | 3 | 2 | 2 | 1 | 0 * | ||
| R | 0 * | 16 | 13 | 23 | 0 * | 19 | 13 | 0 * | 27 | 20 | 32 | 19 | 20 | 12 | 26 | 0 * |
S = Susceptible; I = Intermediate; R = Resistant; MDR = Multidrug resistance; * = Antibiotic MIC breakpoints not covered in the 2021 Clinical Laboratory Standards Institute (CLSI) guidelines.
The six most active antibiotics against E. coli were C/A (susceptibility rate 96%), meropenem (susceptibility rate 91%), imipenem (susceptibility rate 89%), amikacin (susceptibility rate 89%), gentamicin (susceptibility rate 88%) and C/T (susceptibility rate 82%). Colistin showed intermediate resistance of 94%.
The six most active antibiotics against K. pneumoniae were CA (susceptibility rate 100%), meropenem (susceptibility rate 100%), imipenem (susceptibility rate 99%), amikacin (susceptibility rate 99%) and C/T (susceptibility rate 66%). Colistin showed intermediate resistance of 94%.
The six most active antibiotics against P. aeruginosa were amikacin (susceptibility rate 86%), C/T (susceptibility rate 85%), C/A (susceptibility rate 84%), gentamicin (susceptibility rate 78%), tobramycin (susceptibility rate 78%), and aztreonam (susceptibility rate 76%). Colistin showed intermediate resistance of 68%.
Thirty percent (30/100) of the E. coli, 61% (61/100) of the K. pneumoniae, and 24% (24/100) of the P. aeruginosa isolates were multidrug resistant (MDR).
2.3. WGS of Selected Blood Culture Isolates
Half (50%) of the C/T resistant E. coli (n = 8/17), K. pneumoniae (n = 14/28), and P. aeruginosa (n = 7/13) isolates were subjected to WGS (Table A1).
2.3.1. E. coli Isolates
The average genome size of the sequenced E. coli isolates was 5035 kb with a coverage depth of 68 × to 133 ×. The average G + C content was 50.
The E. coli isolates belonged to four different sequence types (STs) (Table 3). The E. coli isolates harboured between one to seven β-lactamase genes. In total, 138 antibiotic resistance genes were found in the sequenced E. coli isolates. All the E. coli isolates harboured the aph (3′′)-Ib, aph (6)-Id, mdfA, mphA and sul2 genes (Table 3). The majority of the isolates harboured the aac (6′)-Ib-cr, aadA5, blaCTX-M-15, blaOXA-1, drfA17 and sul1. No AmpC-genes (also known as Pseudomonas-derived cephalosporinase (PDC) genes) were detected. All the E. coli isolates harboured the IncFIB (AP001918) and IncFIA plasmids (Table 4).
Table 3.
Antibiotic resistance genes detected in the sequenced Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa blood culture isolates.
| Antibiotic Class | Organism | Antibiotic Resistance Gene | n = | ST | |
|---|---|---|---|---|---|
| Aminoglycoside | E. coli | aadA5 | 7 | 131; 405; 410 | |
| aac (3)-IIa | 1 | 10 | |||
| aac (3)-Iid | 1 | 405 | |||
| aac (6′)-Ib-cr | 7 | 10; 405; 410 | |||
| aph (3′′)-Ib; aph (6)-Id | 8 | 10; 131; 405; 410 | |||
| rmtB | 1 | 405 | |||
| K. pneumoniae | aac (3)-Iia | 13 | 37; 73; 101; 231; 307; 336; 6065 * | ||
| aac (6′)-Ib-cr | 10 | 73; 101; 231; 307; 336; 6065 * | |||
| aadA1 | 6 | 37; 73; 101; 307; 336 | |||
| aadA16 | 5 | 231; 307 | |||
| aadA2 | 1 | 6065 * | |||
| aph (3′′)-Ib | 11 | 37; 73; 101; 231; 307; 336 | |||
| aph (6)-Id | 12 | 37; 73; 101; 231; 307; 336 | |||
| aac (3)-Iid | 2 | 1; 336 | |||
| P. aeruginosa | aac (3)-Id | 2 | 233; 815 | ||
| aac (6′)-29a | 2 | 111 | |||
| aac (6′)-Ib3; aac (6′)-Ig; aac (6′)-Iic | 1 | 273 | |||
| aac (6′)-Il; aadA2 | 4 | 233; 815 | |||
| aph (3′’)-Ib | 2 | 233; 273 | |||
| aph (3′)-Iib | 7 | 111; 233; 273; 815 | |||
| aph (6)-Id | 3 | 233; 273 | |||
| β-lactam | E. coli | bla CMY-2 | 5 | 10; 410 | |
| bla CTX-M-15 | 7 | 10; 405; 410 | |||
| bla CTX-M-27 | 1 | 131 | |||
| bla NDM-5 | 1 | 405 | |||
| bla OXA-1 | 7 | 10; 405; 410 | |||
| bla OXA-181 | 4 | 410 | |||
| bla TEM-1B | 6 | 405; 410 | |||
| K. pneumoniae | bla CTX-M-15 | 14 | 37; 73; 101; 231; 307; 336; 6065 * | ||
| bla CMY-4 | 1 | 307 | |||
| bla OXA-1 | 11 | 37; 73; 101; 307; 336; 6065 * | |||
| bla OXA-9 | 4 | 37; 101; 307 | |||
| bla SCO-1 | 4 | 73; 307; 336 | |||
| blaSHV-1; blaSHV-26 | 1 | 73 | |||
| bla SHV-28 | 8 | 101; 231; 307 | |||
| bla SHV-36 | 1 | 6065 * | |||
| blaSHV-40; blaSHV-56; blaSHV-79; blaSHV-85; blaSHV-89 | 1 | 37 | |||
| blaSHV-94; blaSHV-96; blaSHV-172 | 2 | 336 | |||
| blaSHV-78; blaSHV-98;blaSHV-145; blaSHV-161; blaSHV-179; blaSHV-194; blaSHV-199 | 1 | 73 | |||
| bla SHV-106 | 8 | 101; 231; 307 | |||
| bla SHV-187 | 1 | 1 | |||
| bla TEM-1A | 1 | 101 | |||
| bla TEM-1B | 12 | 1; 37; 73; 231; 307; 336; 6065 * | |||
| bla TEM-1C | 1 | 6065 | |||
| P. aeruginosa | bla NPS | 1 | 273 | ||
| bla OXA-4 | 3 | 273 | |||
| bla OXA395 | 3 | 111; 815 | |||
| blaOXA-485; blaOXA-488 | 1 | 273 | |||
| bla OXA-486 | 3 | 273 | |||
| bla PAO | 7 | 111; 233; 273; 815 | |||
| bla VIM-2 | 6 | 111; 233; 815 | |||
| Fosfomycin | E. coli | None detected | - | - | |
| K. pneumoniae | fosA | 13 | 1; 37; 73; 101; 231; 307; 336 | ||
| P. aeruginosa | fosA | 7 | 111; 233; 273; 815 | ||
| Macrolide | E. coli | mdfA; mphA | 8 | 10; 131; 405; 410 | |
| K. pneumoniae | ereA | 2 | 73; 307 | ||
| mphA | 2 | 336; 6065 * | |||
| P. aeruginosa | None detected | - | - | ||
| Phenicol | E. coli | catB3 | 7 | 10; 405; 410 | |
| K. pneumoniae | catA1 | 1 | 336 | ||
| catA2 | 8 | 1; 101; 307; 336; 6065 * | |||
| catB3 | 11 | 37; 101; 307; 336; 6065 * | |||
| cmlA1 | 3 | 37; 73; 307 | |||
| floR | 1 | 307 | |||
| P. aeruginosa | catB7 | 7 | 111; 233; 273; 815 | ||
| cmlA1 | 3 | 233 | |||
| Quinolone | E. coli | aac (6′)-Ib-cr | 7 | 10; 405; 410 | |
| qnrS1 | 6 | 10; 405; 410 | |||
| K. pneumoniae | OqxA; OqxB | 13 | 1; 37; 73; 101; 231; 0307; 336 | ||
| aac (6′)-Ib-cr | 11 | 73; 101; 231; 307; 336; 6065 * | |||
| qnrB1; qnrS1 | 1 | 37 | |||
| qnrB6 | 4 | 231; 307 | |||
| P. aeruginosa | aac (6′)-Ib-cr | 1 | 273 | ||
| crpP | 7 | 111; 233; 273; 815 | |||
| Rifampicin | E. coli | None detected | - | - | |
| K. pneumoniae | ARR-2 | 2 | 37; 73 | ||
| ARR-3 | 4 | 231; 307 | |||
| P. aeruginosa | ARR-5 | 2 | 233 | ||
| Sulphonamide | E. coli | sul1 | 7 | 131; 405; 410 | |
| sul2 | 8 | 10; 131; 405; 410 | |||
| K. pneumoniae | sul1 | 10 | 37; 73; 101; 231; 307; 336; 6065 * | ||
| sul2 | 14 | 1; 37; 73; 101; 231; 307; 336; 6065 * | |||
| P. aeruginosa | sul1 | 6 | 111; 233; 273; 815 | ||
| Tetracycline | E. coli | tetA | 2 | 131; 405 | |
| tetB | 5 | 405; 410 | |||
| K. pneumoniae | tetA | 2 | 37; 336 | ||
| tetD | 7 | 73; 101; 307 | |||
| P. aeruginosa | tetG | 4 | 233; 273 | ||
| Trimethoprim | E. coli | dfrA14 | 5 | 10; 410 | |
| dfrA17 | 7 | 131; 405; 410 | |||
| K. pneumoniae | dfrA1 | 1 | 101 | ||
| dfrA12 | 1 | 6065 * | |||
| dfrA14 | 8 | 37; 73; 101; 307; 336 | |||
| dfrA15 | 1 | 336 | |||
| dfrA27 | 5 | 231; 307 | |||
| dfrA30 | 2 | 1; 336 | |||
| P. aeruginosa | dfrB5 | 4 | 233; 815 | ||
| Disinfectant | E. coli | sitABCD | 4 | 10; 131; 405 | |
| qacE | 7 | 131; 405; 410 | |||
| K. pneumoniae | OqxA; OqxB | 13 | 1; 37; 73; 101; 231, 307; 336 | ||
| qacE | 10 | 37; 73; 101; 231; 307; 336; 6065 * | |||
| P. aeruginosa | qacE | 7 | 111; 233; 273; 815 | ||
ST = Sequence type; * = Novel ST detected.
Table 4.
Plasmids detected in the sequenced Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa blood culture isolates.
| Organism | ST | Plasmid | Total Number of Isolates |
|---|---|---|---|
| E. coli | 10 | IncFIB (AP001918); ColRNAI; Col (MG828); IncFIA; IncX4; IncFII; IncI1 | 1 |
| 131 | IncFII (pRSB107); IncFIB (AP001918); ColRNAI; Col156; Col (MG828); IncFIA; | 1 | |
| 405 | IncFII (pAMA1167-NDM-5) *; IncFIB (AP001918); Col (MG828) *; IncFIA; p0111 *; IncFII *; IncQ1 * | 2 | |
| 410 | IncFII (pRSB107); IncB/O/K/Z; IncFII (pAMA1167-NDM-5); IncFIB (AP001918); IncFIA; Col (BS512); ColKP3; IncX4; IncX3; IncFII (pCoo) | 4 | |
| K. pneumoniae | 1 | IncFII (K); IncR; IncFIA (HI1) | 1 |
| 37 | IncFII (K); Col440I; IncFIB (K); ColRNAI; IncFII | 1 | |
| 73 | IncFII (K); Col440I; IncR; IncFIB (K); IncFIA (HI1) | 1 | |
| 101 | IncFII (K); IncR; IncFIB (K); Col440II; IncFII (pCRY) *; ColRNAI * | 2 | |
| 231 | IncFII (K); Col440I; IncR; IncFIB (K) | 1 | |
| 307 |
IncFII (K); Col440I *; IncR *; IncFib (K); IncFIB (pQil) *; IncFIA (HI1) *; ColRNAI *; Col (MG828) *; IncN *; IncA-C2 * |
5 | |
| 336 | IncFII (K); IncR; IncFIB (K); IncFIB (pQil) *; ColRNAI *; IncFIB (Mar) *; IncFII *; IncHI1B *; IncQ1 * | 2 | |
| 6065 | Col440I; IncFib (Mar); IncFII (pKPX1) | 1 | |
| P. aeruginosa | ST111 | - | 0 |
| ST233 | - | 0 | |
| ST273 | - | 0 | |
| ST815 | - | 0 |
* = Plasmids not detected in all isolates; - = No plasmid/s detected.
2.3.2. K. pneumoniae Isolates
The average genome size of the sequenced K. pneumoniae isolates was 5611 kb with a genome coverage of 32× to 125×. The average G + C content was 57.
The K. pneumoniae isolates belonged to eight different STs of which ST6065 is a novel ST (i.e., a newly assigned ST by the BIGSdb-Pasteur database) (Table 3). The K. pneumoniae isolates harboured between one to 14 β-lactamase genes. In total, 312 antibiotic resistance genes were found in the sequenced K. pneumoniae isolates. All K. pneumoniae isolates harboured the blaCTX-M-15, and sul2 genes (Table 3). The majority of the isolates harboured the aph (3′′)-Ib, aph (6)-Id, blaOXA-1, blaTEM-1B, fosA, catB3, OqxA and OqxB genes. No AmpC-genes were detected. The majority of the K. pneumoniae isolates harboured the IncFII (K) (n = 13), IncFib (K) (n = 12) and IncR (n = 11) plasmids (Table 4).
2.3.3. P. aeruginosa Isolates
The average genome size of the sequenced P. aeruginosa isolates was 6974 kb with a genome coverage of 57× to 84×. The average G + C content was 50.
The P. aeruginosa isolates belonged to four different STs (Table 3). The P. aeruginosa isolates harboured between one to seven β-lactamase genes. In total, 99 antibiotic resistance genes were found in the sequenced P. aeruginosa isolates. All P. aeruginosa isolates harboured the aph (3′)-Iib, PAO, fosA, catB7, crpP and qacE genes (Table 3). The majority of the isolates harboured the aadA2, aac (6′)-II, blaVIM-2, dfrB5 and sul2 genes. No AmpC-genes were detected. No plasmids were detected in the sequenced P. aeruginosa isolates (Table 4).
All the sequenced E. coli, K. pneumoniae and P. aeruginosa isolates were resistant to cephalosporins (cefotaxime and ceftazidime) (Table A2). All the E. coli and K. pneumoniae isolates were resistant to aztreonam except for most of the P. aeruginosa isolates, which were shown to be susceptible. All E. coli and P. aeruginosa isolates were resistant to one or more tested carbapenems. However, all the sequenced K. pneumoniae isolates were susceptible to all tested carbapenems.
3. Discussion
With the continuous rise of multidrug resistance in K. pneumoniae and P. aeruginosa, and to a lesser extent in E. coli there are only a few treatment options left for infected patients [7]. With the introduction of C/T in 2014, it has proven to be highly effective against MDR Gram-negative pathogens. The in vitro activity of C/T, against E. coli, K. pneumoniae, and P. aeruginosa isolates obtained from blood cultures from sentinel public hospitals in SA were investigated. The majority of the isolates were collected from adult patients in the Gauteng province; this province has the highest population in South Africa [10].
This study showed that the majority of the E. coli, and P. aeruginosa isolates are highly susceptible to C/T (82% to 85%). In comparison, K. pneumoniae isolates indicated decreased susceptibility towards C/T (66%). Findings from a previous study showed similar C/T susceptibility rates to E. coli, K. pneumoniae, and P. aeruginosa [7]. In contrast, higher C/T susceptibility rates in K. pneumoniae were reported in Germany and the USA [1,11]. The decreased susceptibility to C/T in the K. pneumoniae isolates reported in this study could potentially be due to increased antibiotic resistance [7]. In this study, we have detected multiple β-lactamase genes in the sequenced K. pneumoniae isolates (1 to 14 β-lactamase genes per isolate).
Interesting to note is that all the isolates were highly susceptible to C/A (84% to 100%). The tested E. coli isolates showed ≥80% susceptibility towards amikacin, imipenem and meropenem, K. pneumoniae isolates showed ≥80% susceptibility towards amikacin, ertapenem, imipenem and meropenem, and P. aeruginosa isolates showed ≥80% susceptibility towards amikacin. All E. coli (94%), K. pneumoniae (94%), and P. aeruginosa (68%) isolates showed intermediate resistance to colistin.
In this study, multidrug resistance was detected in 30% of the E. coli isolates, 61% of the K. pneumoniae isolates, and 24% of the P. aeruginosa isolates (Table 2). C/T was not effective against the majority of MDR isolates detected in this study. In contrast, other studies reported that treatment with C/T generally led to favorable clinical outcomes among patients with MDR, extensively drug-resistant (XDR) or pan drug-resistant (PDR) bloodstream infections associated with E. coli, K. pneumoniae, and P. aeruginosa [12,13,14,15].
WGS is a powerful tool that can be used to characterise the genetic diversity of bacterial populations and can also be used for the prediction of bacterial antibiotic resistance profiles [16]. However, the prediction of susceptibility or resistance to antibiotics based only on the presence or absence of previously known genes is still under investigation and discordances are reported in the literature [16]. Half of the C/T resistant isolates were subjected to sequencing for genomic characterisation. AmpC (PDC) and blaGES hyper-production are factors linked to C/T resistance [3,4,17,18,19,20]. However, the blaGES and AmpC genes were not detected in our isolate collection that was subjected to WGS. Other antibiotic resistant genes reported in C/T resistant isolates are the blaCTX-M, and blaSHV genes [18]. The blaCTX-M-15 gene was detected in the majority of the E. coli isolates, and in all the K. pneumoniae isolates. The blaSHV genes were only detected in K. pneumoniae isolates. The precise resistance mechanisms leading to C/T resistance could not be determined. Further studies are required to assess the expression and functionality of the detected genes in the studied isolate population to predict the phenotype consequences of the C/T resistant genotype.
Limitations of the study: (i) C/T was only evaluated for blood cultures, (ii) isolates and data originated from sentinel public hospitals in SA, (iii) small sample size, and (iv) not all the C/T resistant isolates could be sequenced due to limited funding.
4. Materials and Methods
4.1. Study Setting
A total of 100 E. coli, 100 K. pneumoniae, and 100 P. aeruginosa blood culture isolates were chronologically selected from storage (−70 °C). A three-week exclusion period was applied to avoid duplicate isolates of the same organism from the same patient.
The isolates were initially collected for the Group for Enteric, Respiratory, and Meningeal Diseases Surveillance (GERMS) program in SA (2010 to 2020), which receives clinical isolates from sentinel sites in the Free State, Gauteng, KwaZulu-Natal, Eastern- and Western Cape provinces. Demographic and clinical information of patients was collected by surveillance officers through medical record reviews and/or patient interviews using standard case report forms (CRFs). All GERMS-SA isolates were initially processed and stored as followed: the bacterial cultures were grown on blood or chocolate agar plates (Diagnostic Media Products (DMP), National Health Laboratory Service (NHLS), Johannesburg, SA) for no more than 18–27 h. The agar plates were carefully inspected for any contaminating bacterial or fungal colonies. Using a sterile disposable Pasteur pipette, 1 mL of TSB + 10% glycerol (DMP, NHLS, Johannesburg, SA) was dispensed into cryovials. Using a sterile swab or loop, a heavy sweep of growth was taken and emulsified in the cryovial containing the TSB + 10% glycerol. The cryovials were tightly sealed and placed in allocated cryoboxes and immediately stored at −70 °C.
4.2. Phenotypic Characterisation
All organisms were processed by the Centre for Healthcare-associated infections, Antimicrobial Resistance and Mycoses (CHARM), National Institute for Communicable Diseases (NICD), a division of the NHLS, Johannesburg, SA. The selected GERMS-SA isolates were retrieved from −70 °C storage. A loop full of the isolate + TSB + 10% glycerol mixture was streaked and grown on blood agar plates (DMP, NHLS, Johannesburg, SA) for no more than 18 h to 24 h. The agar plates were carefully inspected for any contaminating bacterial or fungal colonies. Organism identification was confirmed using matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) (Microflex, Bruker Daltonics, Bremen, Germany). All MALDI-TOF MS score values were between 2.00 to 3.00 (high confidence identification) and fell in the consistency category A (high consistency). Antimicrobial susceptibility testing (AST) was performed using the Sensititre instrument (Trek Diagnostic Systems, East Grinstead, UK) with the commercially available Gram-negative DKMGN panel (Separation Scientific, Johannesburg, SA) which included amikacin, amoxicillin/clavulanic acid, aztreonam, cefotaxime, ceftazidime, C/A, C/T, ciprofloxacin, colistin, ertapenem, gentamicin, imipenem, meropenem, tigecycline, tobramycin, and trimethoprim/sulfamethoxazole. The AST results were interpreted using the 2021 Clinical Laboratory Standards Institute (CLSI) guidelines (no interpretation for tigecycline was provided) [21]. MDR isolates were defined as non-susceptibility to one or more antibiotic agents in three or more antimicrobial classes [22]. XDR isolates were defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e., bacterial isolates remain susceptible to only one or two categories), and PDR isolates were defined as non-susceptible to all agents in all antimicrobial categories [22].
4.3. Molecular Characterisation
Half (50%) of the C/T resistant isolates were randomly selected for WGS (i.e., 8 E. coli, 14 K. pneumoniae, and 7 P. aeruginosa isolates). The genomic DNA (gDNA) of the selected isolates was extracted with the QIAamp mini kit (Qiagen, Hilden, Germany) with the inclusion of lysozyme (10 mg/mL; Sigma-Aldrich, MS, USA) to ensure sufficient lysis. The quantity of the extracted gDNA was determined on Qubit 4.0 (Thermo Scientific, Waltham, MA, USA). Multiplexed paired-end libraries were prepared using the Nextera DNA Prep kit, followed by sequencing (2 × 150 bp) on a NextSeq 550 instrument (Illumina, Inc., San Diego, CA, USA) with 100× coverage at the NICD Sequencing Core Facility, Johannesburg, SA. Raw paired-end reads were analysed using the Jekesa pipeline (v1.0; https://github.com/stanikae/jekesa (accessed on 27 January 2022)).
Briefly, Trim Galore! (v0.6.2; https://github.com/FelixKrueger/TrimGalore (accessed on 27 January 2022)) was used to filter the paired-end reads (Q > 30 and length > 50 bp) [23]. De novo assembly was performed using SKESA v2.3.0 (https://github.com/ncbi/SKESA/releases (accessed on 27 January 2022)) and the assembled contigs were polished using Shovill (v1.1.0; https://github.com/tseemann/shovill (accessed on 27 January 2022)) [24,25]. Assembly metrics were calculated using QUAST (v5.0.2; http://quast.sourceforge.net/quast (accessed on 27 January 2022)) [26]. The assembled genome files were submitted to the National Center for Biotechnology Information GenBank and are available under BioProject number: PRJNA819852.
The multilocus sequence typing (MLST) profiles were determined using the MLST tool (version 2.16.4; https://github.com/tseemann/mlst (accessed on 20 September 2022)) [27]. Antimicrobial resistance (AMR) gene search was performed using ABRicate (version 1.0.1; https://github.com/tseemann/ABRicate (accessed on 20 September 2022)), against the Comprehensive Antibiotic Resistance Database (CARD), CARD-prevalence, Virulence Factor Database (VFDB) and ResFinder—Center for Genomic Epidemiology (CGE) database, with a gene alignment coverage cut-off of ≥95% and blastn sequence similarity of ≥95% [28,29,30,31,32,33].
4.4. Statistical Analysis
Microsoft Excel (version 2016) was used for data entry and basic statistical analysis (medians, interquartile ranges and percentiles). Additional data analyses were carried out using STATA statistical software package (version 14; StataCorp LP, USA).
5. Conclusions
Antibiotic resistance is a global health threat that limits the optimal care of patients infected with healthcare-associated pathogens. The increasing antibiotic resistance should be closely monitored. Since these isolates were not exposed to C/T previously, it is evident that E. coli, K. pneumoniae, and P. aeruginosa can adapt pre-existing resistance mechanisms, such as the production of catalytic enzymes (i.e., ESBLs and carbapenemases), altered PBPs, reduction in outer membrane channels resulting in decreased porin activity influx/expression, and an increase in efflux pumps to resist β-lactam molecules and inhibitors. In this study, C/T was not effective against the majority of MDR isolates.
Acknowledgments
We thank Nompumelelo Shezi, and Naseema Bulbulia for their assistance with the laboratory work. We would also like to thank the staff members of the Sequencing Core Facility (SCF) at the NICD for sequencing our isolate selection. We also thank the Institute Pasteur teams for the curation and maintenance of BIGSdb-Pasteur databases at http://bigsdb.pasteur.fr/ (accessed on 23 March 2022).
Appendix A
Table A1.
Antibiotic resistance genes and plasmids detected in the sequenced Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa blood culture isolates.
| Isolate ID | ESCCO-ML0045 | ESCCO-016 | ESCCO-10882 | ESCCO-ML0129 | ESCCO-10151 | ESCCO-10377 | ESCCO-9385 | ESCCO-9889 | KLEPN-0028 | KLEPN-0203 | KLEPN-0098 | KLEPN-0024 | KLEPN-0196 | KLEPN-0004 | KLEPN-0051 | KLEPN-0062 | KLEPN-0063 | KLEPN-0109 | KLEPN-0192 | KLEPN-0036 | KLEPN-0175 | KLEPN-0097 | PSEAE-7954 | PSEAE-7985 | PSEAE-7981 | PSEAE-8174 | PSEAE-8183 | PSEAE-7986 | PSEAE-7904 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Year | 2012 | 2020 | 2016 | 2013 | 2015 | 2015 | 2016 | 2016 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2010 | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | 2014 | |
| ST | 10 | 131 | 405 | 405 | 410 | 410 | 410 | 410 | 1 | 37 | 73 | 101 | 101 | 231 | 307 | 307 | 307 | 307 | 307 | 336 | 336 | 6065 | 111 | 111 | 233 | 233 | 233 | 273 | 815 | |
| Province | GA | GA | GA | GA | GA | GA | GA | GA | WC | KZ | WC | GA | GA | WC | GA | GA | GA | GA | GA | WC | GA | GA | GA | WC | GA | GA | WC | GA | GA | |
| Ward | A | A | A | A | A | A | A | A | P | P | A | A | A | A | P | A | P | A | P | P | P | P | A | A | A | P | A | P | U | |
| Antibiotic resistance genes | aadA1 | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | N | N | Y | N | N | N | N | Y | N | N | N | N | N | N | N | N |
| aadA2 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | Y | Y | Y | N | Y | |
| aadA5 | N | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| aadA16 | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | Y | Y | N | N | N | N | N | N | N | N | N | N | |
| aac (3)-IIa | Y | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | |
| aac (3)-Id | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | Y | |
| aac (3)-IId | N | N | N | Y | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | |
| aac (6′)-Ib-cr | Y | N | Y | Y | Y | Y | Y | Y | N | N | Y | N | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | |
| aac (6′)-29a | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | |
| aac (6′)-Ib3 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | |
| aac (6′)-Ig | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | |
| aac (6′)-Il | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | Y | |
| aac (6′)-IIc | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | |
| aph (3′′)-Ib | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | N | N | N | N | N | N | N | N | |
| aph (3′)-IIb | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | |
| aph (3′′)-Ib | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | |
| aph (6)-Id | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | Y | N | Y | Y | N | |
| rmtB | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| bla CMY-2 | Y | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| bla CMY-4 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | |
| bla CTX-M-15 | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | |
| blaCTX-M-27 | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaNDM-5 | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaNPS | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | |
| blaOXA-1 | Y | N | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | Y | N | N | N | N | N | N | N | |
| blaOXA-4 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | N | |
| blaOXA-9 | N | N | N | N | N | N | N | N | N | Y | N | Y | Y | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaOXA-181 | N | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaOXA-395 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | Y | |
| blaOXA-485 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | |
| blaOXA-486 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | N | |
| blaOXA-488 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | |
| blaPAO | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | |
| blaSCO-1 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | Y | N | Y | N | N | Y | N | N | N | N | N | N | N | N | |
| blaSHV-1 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-26 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-28 | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-36 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | |
| blaSHV-40 | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-56 | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-78 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-79 | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-85 | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-89 | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-94 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | N | |
| blaSHV-96 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | N | |
| blaSHV-98 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-106 | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-145 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-161 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-172 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | N | |
| blaSHV-179 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-187 | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-194 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaSHV-199 | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaTEM-1A | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| blaTEM-1B | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | |
| blaTEM-1C | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | |
| blaVIM-2 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | N | Y | |
| fosA | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | |
| ereA | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| mphA | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | |
| mdfA | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| catA1 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | |
| catA2 | N | N | N | N | N | N | N | N | Y | N | N | Y | Y | N | Y | Y | N | Y | N | Y | N | Y | N | N | N | N | N | N | N | |
| catB3 | Y | N | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | N | Y | Y | Y | Y | N | N | N | N | N | N | N | |
| catB7 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | |
| cmlA1 | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | Y | N | N | N | N | N | N | N | N | Y | Y | Y | N | N | |
| crpP | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | |
| floR | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | |
| OqxA | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | |
| OqxB | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | |
| qnrB1 | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| qnrB6 | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | Y | N | N | N | N | N | N | N | N | N | N | N | |
| qnrS1 | Y | N | N | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | |
| ARR-2 | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| ARR-3 | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | Y | Y | N | N | N | N | N | N | N | N | N | N | |
| ARR-5 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | Y | N | N | |
| sul1 | N | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | N | Y | Y | Y | Y | N | Y | Y | N | Y | Y | Y | Y | Y | Y | N | Y | Y | |
| sul2 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | |
| tetA | N | Y | Y | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | |
| tetB | N | N | N | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| tetD | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | |
| tetG | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | N | |
| dfrA1 | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| dfrA12 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | |
| dfrA14 | Y | N | N | N | Y | Y | Y | Y | N | Y | Y | Y | Y | N | N | N | Y | N | Y | Y | Y | N | N | N | N | N | N | N | N | |
| dfrA15 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | |
| dfrA17 | N | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| dfrA27 | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | Y | Y | N | N | N | N | N | N | N | N | N | N | |
| dfrA30 | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | |
| dfrB5 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | Y | N | Y | |
| OqxA | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | |
| OqxB | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | |
| qacE | N | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | N | Y | Y | Y | Y | N | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | |
| Plasmids | Col(BS512) | N | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N |
| Col(MG828) | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | Y | N | N | N | N | N | N | N | N | N | N | |
| Col156 | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| Col440I | N | N | N | N | N | N | N | N | N | Y | Y | N | N | Y | N | Y | N | N | N | N | N | Y | N | N | N | N | N | N | N | |
| Col440II | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| ColKP3 | N | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| ColRNAI | Y | Y | N | N | N | N | N | N | N | Y | N | N | Y | N | N | N | Y | N | Y | Y | N | N | N | N | N | N | N | N | N | |
| IncA/C2 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | |
| IncB/O/K/Z | N | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncFIA | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncFIA (HI1) | N | N | N | N | N | N | N | N | Y | N | Y | N | N | N | Y | Y | N | Y | N | N | N | N | N | N | N | N | N | N | N | |
| IncFIB (AP001918) | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncFIB (K) | N | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | |
| IncFIB (Mar) | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | Y | N | N | N | N | N | N | N | |
| IncFIB (pQil) | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | |
| IncFII | Y | N | Y | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | |
| IncFII (K) | N | N | N | N | N | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | |
| IncFII (pAMA1167-NDM-5) | N | N | N | Y | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncFII (pCoo) | N | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncFII (pCRY) | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncFII (pKPX1) | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | |
| IncFII (pRSB107) | N | Y | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncHI1B | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | |
| Incl1 | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncN | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | |
| IncQ1 | N | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | Y | N | N | N | N | N | N | N | N | N | |
| IncR | N | N | N | N | N | N | N | N | Y | N | Y | Y | Y | Y | Y | Y | N | Y | N | Y | Y | N | N | N | N | N | N | N | N | |
| IncX3 | N | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| IncX4 | Y | N | N | N | Y | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
| p0111 | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | |
Green colour/N = No; Red colour/Y = Yes; GA = Gauteng; KZ = KwaZulu Natal; WC = Western Cape; A = Adult ward; P = Paediatric ward; U = Unknown ward.
Table A2.
Antibiotic susceptibility profiles of 8 Escherichia coli, 14 Klebsiella pneumoniae, and 7 Pseudomonas aeruginosa blood culture isolates selected for WGS.
| Amoxicillin/Clavulanate Acid n = (%) |
Ceftazidime/Avibactam n = (%) |
Ceftolozane/Tazobactam n = (%) |
Piperacillin/Tazobactam n = (%) |
Cefotaxime n = (%) |
Ceftazidime n = (%) |
Aztreonam n = (%) |
Ertapenem n = (%) |
Imipenem n = (%) |
Meropenem n = (%) |
Colistin n = (%) |
Gentamicin n = (%) |
Tobramycin n = (%) |
Amikacin n = (%) |
Ciprofloxacin n = (%) |
Trimethoprim/Sulfamethoxazole n = (%) |
||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| E. coli (n = 8) | S | 1 (13) |
6 (75) |
0 (0) |
1 (13) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
3 (38) |
3 (38) |
0 (0) |
4 (50) |
0 (0) |
3 (38) | 0 (0) |
0 (0) |
| I | 0 (0) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
1 (13) |
0 (0) |
7 (77) |
0 (0) |
0 (0) |
2 (25) |
0 (0) |
0 (0) |
|
| R | 7 (88) |
2 (25) |
8 (100) |
7 (88) |
8 (100) |
8 (100) |
8 (100) |
8 (100) |
4 (50) |
5 (63) |
1 (13) |
4 (50) |
8 (100) |
3 (38) |
8 (100) |
8 (100) |
|
| K. pneumoniae (n = 14) | S | 0 (0) |
14 (100) | 0 (0) |
1 (7) |
0 (0) |
0 (0) |
0 (0) |
14 (100) | 14 (100) | 14 (100) | 0 (0) |
0 (0) |
1 (7) |
14 (100) | 2 (14) |
0 (0) |
| I | 0 (0) |
0 (0) |
0 (0) |
1 (7) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
0 (0) |
13 (93) | 0 (0) |
2 (14) |
0 (0) |
1 (7) |
0 (0) |
|
| R | 14 (100) | 0 (0) |
14 (100) | 12 (86) | 14 (100) | 14 (100) | 14 (100) | 0 (0) |
0 (0) |
0 (0) |
1 (7) |
14 (100) | 11 (79) |
0 (0) |
11 (79) |
14 (100) |
|
| P. aeruginosa (n = 7) | S | 0 * (0) |
0 (0) |
0 (0) |
0 (0) |
0 * (0) |
0 (0) |
6 (84) |
0 * (0) |
0 (0) |
0 (0) |
0 (0) |
1 (14) |
0 (0) |
0 (0) |
0 (0) |
0 * (0) |
| I | 0 * (0) |
0 (0) |
0 (0) |
1 (14) |
0 * (0) |
0 (0) |
1 (14) |
0 * (0) |
0 (0) |
0 (0) |
4 (57) |
1 (14) |
0 (0) |
0 (0) |
0 (0) |
0 * (0) |
|
| R | 0 * (0) |
7 (100) |
7 (100) |
6 (86) |
0 * (0) |
7 (100) |
0 (0) |
0 * (0) |
7 (100) |
7 (100) |
3 (43) |
5 (71) |
7 (100) |
7 (100) |
7 (100) |
0 * (0) |
S = Susceptible; I = Intermediate; R = Resistant; * = Antibiotic MIC breakpoints not covered in the 2021 Clinical Laboratory Standards Institute (CLSI) guidelines.
Author Contributions
Conceptualisation, O.P. and A.S.-M.; methodology, M.L. and A.S.-M.; software, M.L.; validation, M.L. and A.S.-M.; formal analysis, M.L.; investigation, M.L.; resources, O.P.; data curation, M.L.; writing—original draft preparation, A.S.-M.; writing—review and editing, O.P., A.S.-M. and M.L.; visualisation, M.L.; supervision, M.L.; project administration, A.S.-M. and M.L.; funding acquisition, A.S.-M. All authors have read and agreed to the published version of the manuscript.
Institutional Review Board Statement
The study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee of the University of the Witwatersrand (Protocol No.: M190430 and M10464; date of approval: 2019).
Informed Consent Statement
Patient consent was waivered since patient care was not influenced at any stage.
Data Availability Statement
The datasets presented in this study can be found in the article or in the Appendix A.
Conflicts of Interest
The authors declare no conflict of interest.
Funding Statement
This work was funded by the National Health Laboratory Service Research Trust (GRANT00494739).
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
- 1.Sutherland C.A., Nicolau D.P. Susceptibility Profile of Ceftolozane/Tazobactam and Other Parenteral Antimicrobials against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa from US Hospitals. Clin. Ther. 2015;37:1564–1571. doi: 10.1016/j.clinthera.2015.05.501. [DOI] [PubMed] [Google Scholar]
- 2.Sievert D.M., Ricks P., Edwards J.R., Schneider A., Patel J., Srinivasan A., Kallen A., Limbago B., Fridkin S., National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect. Control. Hosp. Epidemiol. 2013;34:1–14. doi: 10.1086/668770. [DOI] [PubMed] [Google Scholar]
- 3.Wright H., Bonomo R., Paterson D. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017;23:704–712. doi: 10.1016/j.cmi.2017.09.001. [DOI] [PubMed] [Google Scholar]
- 4.Gill C.M., Aktaþ E., Alfouzan W., Bourassa L., Brink A., Burnham C.-A.D., Canton R., Carmeli Y., Falcone M., Kiffer C., et al. The ERACE-PA Global Surveillance Program: Ceftolozane/tazobactam and Ceftazidime/avibactam in vitro Activity against a Global Collection of Carbapenem-resistant Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2021;40:2533–2541. doi: 10.1007/s10096-021-04308-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Lin L.-Y., Debabov D., Chang W., Stone G., Riccobene T. Antimicrobial Activity of Ceftazidime-Avibactam and Comparators against Pathogens Harboring OXA-48 and AmpC Alone or in Combination with Other β-Lactamases Collected from Phase 3 Clinical Trials and an International Surveillance Program. Antimicrob. Agents Chemother. 2022;66:e0198521. doi: 10.1128/aac.01985-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Sorbera M., Chung E., Ho C.W., Marzella N. Ceftolozane/Tazobactam: A new option in the treatment of complicated gram-negative infections. P T A Peer-Rev. J. Formul. Manag. 2014;39:825–832. [PMC free article] [PubMed] [Google Scholar]
- 7.Bahabri N.M., Al-Alawi M.M., Qutub M.O., Tashkandi W.A., AlTurki R., Janah S.S., Ali H.E., Almutairi A.F., Khalil S. In-vitro activity of ceftolozane/tazobactam against recent clinical bacterial isolates from two Saudi Arabian hospitals. J. Infect. Public Health. 2022;15:486–490. doi: 10.1016/j.jiph.2022.02.009. [DOI] [PubMed] [Google Scholar]
- 8.Brink A.J., Coetzee J., Richards G.A., Feldman C., Lowman W., Tootla H.D., Miller M.G., Niehaus A.J., Wasserman S., Perovic O., et al. Best practices: Appropriate use of the new β-lactam/β-lactamase inhibitor combinations, ceftazidime-avibactam and ceftolozane-tazobactam in South Africa. S. Afr. J. Infect. Dis. 2022;37:10. doi: 10.4102/sajid.v37i1.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Tootla H.D., Copelyn J., Botha A., Brink A.J., Eley B. Using ceftazidime-avibactam for persistent carbapenem-resistant Serratia marcescens infection highlights antimicrobial stewardship challenges with new beta-lactam-inhibitor combination antibiotics. S. Afr. Med. J. 2021;111:729–731. doi: 10.7196/SAMJ.2021.v111i8.15762. [DOI] [PubMed] [Google Scholar]
- 10.Perovic O., Germs-Sa F., Ismail H., Quan V., Bamford C., Nana T., Chibabhai V., Bhola P., Ramjathan P., Swe-Han K.S., et al. Carbapenem-resistant Enterobacteriaceae in patients with bacteraemia at tertiary hospitals in South Africa, 2015 to 2018. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:1287–1294. doi: 10.1007/s10096-020-03845-4. [DOI] [PubMed] [Google Scholar]
- 11.Seifert H., Körber-Irrgang B., Kresken M., Göbel U., Swidsinski S., Rath P.-M., Steinmann J., MacKenzie C., Mutters R., Peters G., et al. In-vitro activity of ceftolozane/tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae isolates recovered from hospitalized patients in Germany. Int. J. Antimicrob. Agents. 2018;51:227–234. doi: 10.1016/j.ijantimicag.2017.06.024. [DOI] [PubMed] [Google Scholar]
- 12.Khankhel Z.S., Dillon R.J., Thosar M., Bruno C., Puzniak L. Ceftolozane/tazobactam for the treatment of bacteremia: A systematic literature review (SLR) Ann. Clin. Microbiol. Antimicrob. 2022;21:42. doi: 10.1186/s12941-022-00528-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Sousa Dominguez A., Pérez-Rodríguez M.T., Nodar A., Martinez-Lamas L., Perez-Landeiro A., Crespo Casal M. Successful treatment of MDR Pseudomonas aeruginosa skin and soft-tissue infection with ceftolozane/tazobactam. J. Antimicrob. Chemother. 2017;72:1262–1263. doi: 10.1093/jac/dkw526. [DOI] [PubMed] [Google Scholar]
- 14.Farrell D.J., Flamm R.K., Sader H.S., Jones R.N. Antimicrobial Activity of Ceftolozane-Tazobactam Tested against Enterobacteriaceae and Pseudomonas aeruginosa with Various Resistance Patterns Isolated in U.S. Hospitals (2011–2012) Antimicrob. Agents Chemother. 2013;57:6305–6310. doi: 10.1128/AAC.01802-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Xipell M., Paredes S., Fresco L., Bodro M., Marco F., Martínez J., Soriano A. Clinical experience with ceftolozane/tazobactam in patients with serious infections due to resistant Pseudomonas aeruginosa. J. Glob. Antimicrob. Resist. 2018;13:165–170. doi: 10.1016/j.jgar.2018.01.010. [DOI] [PubMed] [Google Scholar]
- 16.Hernández-García M., García-Fernández S., García-Castillo M., Bou G., Cercenado E., Delgado-Valverde M., Mulet X., Pitart C., Rodríguez-Lozano J., Tormo N., et al. WGS characterization of MDR Enterobacterales with different ceftolozane/tazobactam susceptibility profiles during the SUPERIOR surveillance study in Spain. JAC-Antimicrobial Resist. 2020;2:dlaa084. doi: 10.1093/jacamr/dlaa084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Haidar G., Philips N.J., Shields R.K., Snyder D., Cheng S., Potoski B.A., Doi Y., Hao B., Press E.G., Cooper V., et al. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Clin. Infect. Dis. 2017;65:110–120. doi: 10.1093/cid/cix182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Paterson D.L., Bassetti M., Motyl M., Johnson M.G., Castanheira M., Jensen E.H., Huntington J.A., Yu B., Wolf D.J., Bruno C.J. Ceftolozane/tazobactam for hospital-acquired/ventilator-associated bacterial pneumonia due to ESBL-producing Enterobacterales: A subgroup analysis of the ASPECT-NP clinical trial. J. Antimicrob. Chemother. 2022;77:2522–2531. doi: 10.1093/jac/dkac184. [DOI] [PubMed] [Google Scholar]
- 19.Ruedas-López A., Alonso-García I., Lasarte-Monterrubio C., Guijarro-Sánchez P., Gato E., Vázquez-Ucha J.C., Vallejo J.A., Fraile-Ribot P.A., Fernández-Pérez B., Velasco D., et al. Selection of AmpC β-Lactamase Variants and Metallo-β-Lactamases Leading to Ceftolozane/Tazobactam and Ceftazidime/Avibactam Resistance during Treatment of MDR/XDR Pseudomonas aeruginosa Infections. Antimicrob. Agents Chemother. 2022;66:e0206721. doi: 10.1128/aac.02067-21. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Gill C.M., Nicolau D.P., Aktas E., Alfouzan W., Bourassa L., Brink A., Burnham C.-A.D., Canton R., Carmeli Y., Falcone M., et al. Phenotypic and genotypic profile of ceftolozane/tazobactam-non-susceptible, carbapenem-resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2022;78:252–256. doi: 10.1093/jac/dkac385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.CLSI . Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2021. CLSI Supplement M100. [Google Scholar]
- 22.Magiorakos A.-P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x. [DOI] [PubMed] [Google Scholar]
- 23.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. [DOI] [Google Scholar]
- 24.Souvorov A., Agarwala R., Lipman D.J. SKESA: Strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018;19:153. doi: 10.1186/s13059-018-1540-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Souvorov A., Agarwala R. SAUTE: Sequence assembly using target enrichment. BMC Bioinform. 2021;22:375. doi: 10.1186/s12859-021-04174-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Gurevich A., Saveliev V., Vyahhi N., Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Jolley K.A., Maiden M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010;11:595. doi: 10.1186/1471-2105-11-595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Bortolaia V., Kaas R.S., Ruppe E., Roberts M.C., Schwarz S., Cattoir V., Philippon A., Allesoe R.L., Rebelo A.R., Florensa A.F., et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020;75:3491–3500. doi: 10.1093/jac/dkaa345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.-L.V., Cheng A.A., Liu S., et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Jia B., Raphenya A.R., Alcock B., Waglechner N., Guo P., Tsang K.K., Lago B.A., Dave B.M., Pereira S., Sharma A.N., et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45:D566–D573. doi: 10.1093/nar/gkw1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Liu B., Zheng D., Jin Q., Chen L., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2018;47:D687–D692. doi: 10.1093/nar/gky1080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Chen L., Yang J., Yu J., Yao Z., Sun L., Shen Y., Jin Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005;33:D325–D328. doi: 10.1093/nar/gki008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Florensa A.F., Kaas R.S., Clausen P.T.L.C., Aytan-Aktug D., Aarestrup F.M. ResFinder—An open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 2022;8:000748. doi: 10.1099/mgen.0.000748. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
The datasets presented in this study can be found in the article or in the Appendix A.
