Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Mar 23:2023.03.20.533576. [Version 1] doi: 10.1101/2023.03.20.533576

Ultra-flexible endovascular probes for brain recording through micron-scale vasculature

Anqi Zhang, Emiri T Mandeville, Lijun Xu, Creed M Stary, Eng H Lo, Charles M Lieber
PMCID: PMC10055285  PMID: 36993229

Abstract

Implantable neuroelectronic interfaces have enabled significant advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. To address these limitations, we have developed an ultra-small and flexible endovascular neural probe that can be implanted into small 100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. The structure and mechanical properties of the flexible probes were designed to meet the key constraints for implantation into tortuous blood vessels inaccessible with existing techniques. In vivo electrophysiology recording of local field potentials and single-unit spikes has been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES