Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Mar 18:2023.03.18.533266. [Version 1] doi: 10.1101/2023.03.18.533266

Universal open MHC-I molecules for rapid peptide loading and enhanced complex stability across HLA allotypes

Yi Sun, Michael C Young, Claire H Woodward, Julia N Danon, Hau Truong, Sagar Gupta, Trenton J Winters, George Burslem, Nikolaos G Sgourakis
PMCID: PMC10055308  PMID: 36993702

Abstract

The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (β 2 microglobulin, β 2 m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/β 2 m interface, to generate conformationally stable, open MHC-I molecules. Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type, when loaded with low- to intermediate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in β 2 m interacting sites of the peptide binding groove to long-range effects on the α 2-1 helix and α 3 domain. The interchain disulfide bond stabilizes empty MHC-I molecules in a peptide-receptive, open conformation to promote peptide exchange across multiple human leucocyte antigen (HLA) allotypes, covering representatives from five HLA-A, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structural design, combined with conditional β-peptide ligands, provides a universal platform for generating ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires in the context of highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules.

Significance Statement

We outline a structure-guided approach for generating conformationally stable, open MHC-I molecules with enhanced ligand exchange kinetics spanning five HLA-A, all HLA-B supertypes, and oligomorphic HLA-Ib allotypes. We present direct evidence of positive allosteric cooperativity between peptide binding and β 2 m association with the heavy chain by solution NMR and HDX-MS spectroscopy. We demonstrate that covalently linked β 2 m serves as a conformational chaperone to stabilize empty MHC-I molecules in a peptide-receptive state, by inducing an open conformation and preventing intrinsically unstable heterodimers from irreversible aggregation. Our study provides structural and biophysical insights into the conformational properties of MHC-I ternary complexes, which can be further applied to improve the design of ultra-stable, universal ligand exchange systems in a pan-HLA allelic setting.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES