Skip to main content
. 2022 Feb 14;38(8):2287–2296. doi: 10.1093/bioinformatics/btac080

Table 2.

Classification performance of XGBoost, DNN, and MOMA in ROSMAP NL and AD classifications, TCGA 34 classes classification, and TCGA early- and late-stage classification

XGBoost
XGBoost
DNN
DNN
MOMA
GE
DM
GE
DM
GEa
DMa
Task and datasets ACC F1 AUC MCC ACC F1 AUC MCC ACC F1 AUC MCC ACC F1 AUC MCC ACC F1 AUC MCC ACC F1 AUC MCC
ROSMAP NL/AD 0.686 0.723 0.757 0.363 0.596 0.664 0.632 0.168 0.653 0.740 0.764 0.284 0.589 0.581 0.616 0.180 0.737 0.740 0.812 0.488 0.720 0.753 0.807 0.432
TCGA 34 classes 0.953 0.951 0.998 0.951 0.950 0.949 0.998 0.948 0.878 0.848 0.988 0.874 0.875 0.837 0.985 0.870 0.948 0.945 0.996 0.946 0.954 0.952 0.996 0.952
TCGA early- and late-stage ACC 0.633 0.455 0.681 0.191 0.672 0.435 0.673 0.241 0.618 0.386 0.671 0.157 0.578 0.305 0.710 0.024 0.723 0.654 0.725 0.429 0.710 0.611 0.720 0.393
BLCA 0.756 0.832 0.772 0.410 0.685 0.785 0.688 0.221 0.675 0.806 0.636 0.000 0.699 0.800 0.712 0.223 0.705 0.771 0.736 0.352 0.663 0.716 0.747 0.335
BRCA 0.718 0.179 0.630 0.101 0.716 0.154 0.584 0.094 0.701 0.188 0.573 0.088 0.705 0.232 0.602 0.117 0.692 0.288 0.616 0.134 0.651 0.331 0.618 0.125
COAD 0.634 0.539 0.664 0.247 0.605 0.499 0.627 0.185 0.579 0.513 0.626 0.178 0.609 0.367 0.644 0.179 0.630 0.624 0.703 0.310 0.667 0.605 0.726 0.322
ESCA 0.547 0.369 0.508 0.033 0.548 0.319 0.457 0.013 0.479 0.347 0.472 0.000 0.566 0.218 0.542 0.000 0.509 0.467 0.526 0.026 0.510 0.417 0.441 −0.001
HNSC 0.780 0.874 0.607 0.131 0.605 0.499 0.627 0.185 0.778 0.875 0.542 0.000 0.778 0.875 0.501 0.000 0.728 0.832 0.631 0.079 0.648 0.727 0.643 0.196
KICH 0.631 0.280 0.617 0.088 0.646 0.253 0.567 0.062 0.692 0.067 0.522 0.000 0.554 0.201 0.450 0.018 0.631 0.357 0.556 0.141 0.708 0.286 0.617 0.176
KIRC 0.719 0.647 0.781 0.421 0.735 0.662 0.798 0.453 0.719 0.641 0.772 0.476 0.735 0.584 0.752 0.429 0.754 0.717 0.836 0.507 0.754 0.714 0.830 0.510
KIRP 0.845 0.638 0.845 0.573 0.833 0.592 0.848 0.523 0.817 0.463 0.819 0.430 0.805 0.447 0.789 0.400 0.813 0.637 0.842 0.522 0.849 0.684 0.858 0.602
LIHC 0.725 0.226 0.593 0.120 0.696 0.127 0.644 −0.004 0.733 0.088 0.547 0.034 0.733 0.236 0.665 0.134 0.699 0.366 0.680 0.188 0.730 0.314 0.688 0.190
LUAD 0.779 0.056 0.605 0.020 0.792 0.130 0.643 0.132 0.794 0.000 0.612 0.000 0.794 0.000 0.509 0.000 0.711 0.241 0.595 0.092 0.761 0.177 0.612 0.092
LUSC 0.834 0.029 0.564 0.020 0.831 0.084 0.460 0.085 0.703 0.057 0.567 0.000 0.837 0.000 0.533 0.057 0.698 0.190 0.506 0.023 0.695 0.224 0.500 0.044
MESO 0.758 0.837 0.682 0.401 0.610 0.740 0.511 −0.027 0.701 0.822 0.622 0.033 0.690 0.816 0.421 −0.032 0.643 0.773 0.572 −0.064 0.609 0.719 0.607 0.019
READ 0.571 0.624 0.519 0.138 0.536 0.560 0.582 0.063 0.523 0.620 0.605 −0.007 0.501 0.415 0.521 0.000 0.410 0.473 0.461 −0.203 0.465 0.516 0.479 −0.121
SKCM 0.622 0.160 0.457 −0.059 0.623 0.237 0.590 0.027 .614 0.092 0.528 0.000 0.684 0.000 0.382 −0.030 0.654 0.292 0.490 0.101 0.644 0.153 0.446 0.001
STAD 0.550 0.582 0.592 0.096 0.569 0.617 0.595 0.132 0.581 0.579 0.626 0.173 0.500 0.301 0.541 0.035 0.594 0.637 0.627 0.183 0.594 0.587 0.643 0.198
THCA 0.719 0.460 0.718 0.307 0.731 0.487 0.732 0.343 0.705 0.350 0.694 0.262 0.735 0.434 0.708 0.322 0.687 0.595 0.761 0.378 0.727 0.618 0.769 0.418
UVM 0.378 0.358 0.404 −0.252 0.480 0.454 0.509 −0.038 0.506 0.592 0.608 0.013 0.493 0.267 0.469 0.000 0.533 0.501 0.587 0.060 0.545 0.417 0.580 0.115

Note: The performance of the methods was evaluated for gene expression (GE) and DNA methylation (DM) datasets. Bold texts indicate the best performance in each metric, ACC, F1-score, AUC and MCC.

a

The dataset used for the performance measurement (a task data set) is specified.