Skip to main content
. 2022 Feb 14;38(8):2287–2296. doi: 10.1093/bioinformatics/btac080

Table 3.

Classification performance of MORONET, MOFA+SVM, SMSPL, P-NET and MOMA in ROSMAP NL and AD classification, TCGA 34 classes classification and TCGA early- and late-stage classification

MORONET
MOFA+SVM
SMSPL
P-NET
Ensem-MOMA
Task and datasets ACC F1 AUC MCC AP ACC F1 AUC MCC AP ACC F1 AUCa MCC AP ACC F1 AUC MCC AP ACC F1 AUC MCC AP
ROSMAP NL/AD 0.612 0.647 0.648 0.222 0.661 0.663 0.699 0.769 0.320 0.826 0.689 0.732 0.678 0.368 0.757 0.663 0.708 0.777 0.313 0.843 0.732 0.750 0.815 0.466 0.861
TCGA 34 classes 0.945 0.943 0.997 0.943 0.971 0.869 0.865 0.994 0.863 0.914 0.891 0.874 0.902 0.886 0.805 0.725 0.757 0.996 0.739 0.948 0.958 0.957 0.996 0.957 0.980
TCGA early- and late-stage ACC 0.712 0.508 0.747 0.351 0.663 0.553 0.084 0.670 −0.087 0.541 0.592 0.413 0.557 0.115 0.458 0.659 0.465 0.777 0.228 0.706 0.723 0.663 0.730 0.438 0.596
BLCA 0.682 0.755 0.669 0.305 0.772 0.712 0.803 0.713 0.291 0.821 0.717 0.804 0.638 0.305 0.840 0.685 0.775 0.715 0.253 0.842 0.712 0.787 0.742 0.342 0.852
BRCA 0.654 0.246 0.567 0.056 0.319 0.728 0.000 0.525 0.000 0.310 0.663 0.265 0.548 0.082 0.299 0.708 0.366 0.611 0.193 0.408 0.634 0.405 0.620 0.168 0.419
COAD 0.623 0.580 0.633 0.244 0.568 0.649 0.575 0.681 0.279 0.615 0.645 0.613 0.645 0.292 0.584 0.656 0.605 0.738 0.302 0.700 0.641 0.660 0.713 0.335 0.665
ESCA 0.534 0.255 0.477 −0.032 0.454 0.567 0.188 0.434 0.018 0.411 0.585 0.395 0.547 0.110 0.416 0.554 0.393 0.488 0.055 0.462 0.484 0.459 0.489 −0.007 0.467
HNSC 0.748 0.852 0.555 0.028 0.819 0.733 0.838 0.617 0.051 0.857 0.757 0.853 0.562 0.142 0.819 0.753 0.856 0.609 0.060 0.855 0.726 0.834 0.632 0.035 0.859
KICH 0.646 0.397 0.567 0.195 0.488 0.708 0.080 0.461 0.087 0.451 0.662 0.214 0.533 0.068 0.371 0.708 0.080 0.561 0.087 0.529 0.662 0.337 0.583 0.152 0.534
KIRC 0.689 0.565 0.732 0.350 0.656 0.735 0.657 0.766 0.450 0.696 0.751 0.691 0.740 0.492 0.722 0.744 0.690 0.797 0.473 0.716 0.751 0.714 0.832 0.503 0.768
KIRP 0.764 0.515 0.784 0.388 0.578 0.801 0.426 0.853 0.378 0.733 0.846 0.648 0.758 0.572 0.666 0.809 0.574 0.853 0.463 0.738 0.837 0.682 0.850 0.584 0.763
LIHC 0.699 0.352 0.571 0.175 0.384 0.707 0.164 0.646 0.065 0.384 0.681 0.191 0.522 0.018 0.317 0.684 0.298 0.657 0.106 0.381 0.684 0.452 0.685 0.239 0.418
LUAD 0.765 0.127 0.481 0.050 0.252 0.794 0.000 0.629 0.000 0.330 0.740 0.135 0.506 0.011 0.240 0.774 0.150 0.609 0.091 0.324 0.714 0.287 0.598 0.119 0.320
LUSC 0.814 0.050 0.477 0.008 0.214 0.837 0.000 0.577 0.000 0.238 0.784 0.083 0.497 −0.021 0.192 0.812 0.025 0.405 −0.036 0.188 0.715 0.212 0.504 0.048 0.236
MESO 0.608 0.715 0.584 0.004 0.790 0.690 0.816 0.481 −0.032 0.731 0.622 0.736 0.521 0.036 0.750 0.642 0.768 0.562 −0.056 0.792 0.666 0.790 0.621 0.044 0.813
READ 0.534 0.633 0.486 0.062 0.562 0.443 0.448 0.614 −0.121 0.673 0.594 0.578 0.598 0.210 0.574 0.522 0.593 0.488 0.024 0.592 0.523 0.592 0.473 0.046 0.606
SKCM 0.602 0.194 0.565 −0.015 0.445 0.694 0.000 0.625 0.000 0.487 0.592 0.150 0.463 −0.095 0.262 0.603 0.057 0.433 −0.138 0.335 0.644 0.260 0.456 0.070 0.391
STAD 0.550 0.502 0.577 0.127 0.601 0.564 0.610 0.570 0.120 0.601 0.597 0.626 0.595 0.192 0.642 0.611 0.650 0.629 0.217 0.647 0.586 0.630 0.636 0.166 0.656
THCA 0.669 0.469 0.690 0.237 0.535 0.701 0.337 0.698 0.222 0.582 0.693 0.546 0.667 0.329 0.579 0.723 0.515 0.745 0.338 0.648 0.703 0.602 0.765 0.385 0.701
UVM 0.457 0.477 0.521 −0.072 0.572 0.544 0.603 0.387 0.087 0.503 0.533 0.492 0.536 0.076 0.514 0.563 0.453 0.531 0.140 0.620 0.596 0.561 0.577 0.205 0.628

Note: Bold texts indicate the best performance in each metric, accuracy, F1-score, AUC, MCC and AP.

a

In SMSPL, predictor is categorical. AUC is computed by categorical values.