Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1988 Aug;47(8):684–691. doi: 10.1136/ard.47.8.684

Cathepsin B as a marker of the dedifferentiated chondrocyte phenotype.

A Baici 1, A Lang 1, D Hörler 1, M Knöpfel 1
PMCID: PMC1006723  PMID: 3415368

Abstract

Rabbit articular cartilage does not secrete cathepsin B in organ culture. By established methods for modulating the chondrocyte phenotype in vitro, however, the synthesis, intracellular storage, and secretion of cathepsin B were followed up over a period of two months. With chondrocytes grown in monolayer cultures both the intracellular pool of the enzyme and its secretion were very small initially, but increased progressively to a factor of 110 after eight weeks. The secretion of cathepsin B was strongly depressed after transferring the cells from monolayer to collagen gel cultures. In contrast, collagenase was secreted in almost the same amounts during the whole period in both monolayer and collagen gel cultures. The cells cultured in collagen gels secreted more collagenase than those grown in monolayers. The reversible switch of cathepsin B secretion suggests that this enzyme, unlike collagenase, is a marker of the dedifferentiated chondrocyte phenotype. Cathepsin B was localised within cultured chondrocytes using antibodies raised against rabbit liver cathepsin B and shared with it many catalytic properties. Its Mr, however, was higher (34,000 compared with 27,000) and showed an unusual resistance to denaturation at neutral-alkaline pH, which may confer on this enzyme an important role in the degradation of cartilage matrix.

Full text

PDF
684

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. Y. The degradation of cartilage matrix by an intracellular protease. Biochem J. 1964 Dec;93(3):611–618. doi: 10.1042/bj0930611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baici A., Gyger-Marazzi M., Sträuli P. Extracellular cysteine proteinase and collagenase activities as a consequence of tumor-host interaction in the rabbit V2 carcinoma. Invasion Metastasis. 1984;4(1):13–27. [PubMed] [Google Scholar]
  3. Baici A., Knöpfel M. Cysteine proteinases produced by cultured rabbit V2 carcinoma cells and rabbit skin fibroblasts. Int J Cancer. 1986 Nov 15;38(5):753–761. doi: 10.1002/ijc.2910380520. [DOI] [PubMed] [Google Scholar]
  4. Baici A., Knöpfel M., Keist R. Tumor-host interactions in the rabbit V2 carcinoma: stimulation of cathepsin B in host fibroblasts by a tumor-derived cytokine. Invasion Metastasis. 1988;8(3):143–158. [PubMed] [Google Scholar]
  5. Barrett A. J. Human cathepsin B1. Purification and some properties of the enzyme. Biochem J. 1973 Apr;131(4):809–822. doi: 10.1042/bj1310809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blaker W. D. Computer program for the parametric and nonparametric comparison of several groups to a control. Comput Biol Med. 1987;17(1):37–44. doi: 10.1016/0010-4825(87)90032-1. [DOI] [PubMed] [Google Scholar]
  7. Coon H. G. Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66–73. doi: 10.1073/pnas.55.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dolbeare F., Vanderlaan M. A fluorescent assay of proteinases in cultured mammalian cells. J Histochem Cytochem. 1979 Nov;27(11):1493–1495. doi: 10.1177/27.11.512330. [DOI] [PubMed] [Google Scholar]
  9. Evêquoz V., Schnyder J., Trechsel U., Baggiolini M., Fleisch H. Influence of macrophage products on the release of plasminogen activator, collagenase, beta-glucuronidase and prostaglandin E2 by articular chondrocytes. Biochem J. 1984 Apr 15;219(2):667–677. doi: 10.1042/bj2190667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gay S., Müller P. K., Lemmen C., Remberger K., Matzen K., Kühn K. Immunohistological study on collagen in cartilage-bone metamorphosis and degenerative osteoarthrosis. Klin Wochenschr. 1976 Oct 15;54(20):969–976. doi: 10.1007/BF01468947. [DOI] [PubMed] [Google Scholar]
  11. Graf M., Baici A., Sträuli P. Histochemical localization of cathepsin B at the invasion front of the rabbit V2 carcinoma. Lab Invest. 1981 Dec;45(6):587–596. [PubMed] [Google Scholar]
  12. Hamerman D., Klagsbrun M. Osteoarthritis. Emerging evidence for cell interactions in the breakdown and remodeling of cartilage. Am J Med. 1985 Mar;78(3):495–499. doi: 10.1016/0002-9343(85)90344-4. [DOI] [PubMed] [Google Scholar]
  13. Hanewinkel H., Glössl J., Kresse H. Biosynthesis of cathepsin B in cultured normal and I-cell fibroblasts. J Biol Chem. 1987 Sep 5;262(25):12351–12355. [PubMed] [Google Scholar]
  14. Holtzer H., Abbott J., Lash J., Holtzer S. THE LOSS OF PHENOTYPIC TRAITS BY DIFFERENTIATED CELLS IN VITRO, I. DEDIFFERENTIATION OF CARTILAGE CELLS. Proc Natl Acad Sci U S A. 1960 Dec;46(12):1533–1542. doi: 10.1073/pnas.46.12.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horwitz A. L., Dorfman A. The growth of cartilage cells in soft agar and liquid suspension. J Cell Biol. 1970 May;45(2):434–438. doi: 10.1083/jcb.45.2.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jasin H. E., Dingle J. T. Human mononuclear cell factors mediate cartilage matrix degradation through chondrocyte activation. J Clin Invest. 1981 Sep;68(3):571–581. doi: 10.1172/JCI110290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Layman D. L., Sokoloff L., Miller E. J. Collagen synthesis by articular in monolayer culture. Exp Cell Res. 1972 Jul;73(1):107–112. doi: 10.1016/0014-4827(72)90107-3. [DOI] [PubMed] [Google Scholar]
  18. Mayne R., Vail M. S., Mayne P. M., Miller E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A. 1976 May;73(5):1674–1678. doi: 10.1073/pnas.73.5.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mort J. S., Recklies A. D. Interrelationship of active and latent secreted human cathepsin B precursors. Biochem J. 1986 Jan 1;233(1):57–63. doi: 10.1042/bj2330057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mort J. S., Recklies A. D., Poole A. R. Characterization of a thiol proteinase secreted by malignant human breast tumours. Biochim Biophys Acta. 1980 Jul 10;614(1):134–143. doi: 10.1016/0005-2744(80)90174-6. [DOI] [PubMed] [Google Scholar]
  21. Nevo Z., Dorfman A. Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2069–2072. doi: 10.1073/pnas.69.8.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nimni M., Deshmukh K. Differences in collagen metabolism between normal and osteoarthritic human articular cartilage. Science. 1973 Aug 24;181(4101):751–752. doi: 10.1126/science.181.4101.751. [DOI] [PubMed] [Google Scholar]
  23. Saklatvala J. Interleukin 1: purification and biochemical aspects of its action on cartilage. J Rheumatol. 1987 May;14(Spec No):52–54. [PubMed] [Google Scholar]
  24. Sloane B. F., Honn K. V. Cysteine proteinases and metastasis. Cancer Metastasis Rev. 1984;3(3):249–263. doi: 10.1007/BF00048388. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES