Skip to main content
Heliyon logoLink to Heliyon
. 2023 Mar 21;9(4):e14771. doi: 10.1016/j.heliyon.2023.e14771

Mixture modeling of hospital charge in Zimbabwe

Nyasha Mangava a, Saralees Nadarajah b,
PMCID: PMC10073896  PMID: 37035386

Abstract

Objective

Zimbabwe is one of the poorest countries in the world, just emerging from a broken health care system. The objective is to figure out variables affecting hospital charge for Zimbabwe.

Material and methods

The variables used are sex, smoking status, number of children, region, age and body mass index. The first six of these are factors and the remaining are covariates. A mixture model was fitted to describe the dependence of hospital charge on these variables.

Results

A mixture model with five components each having a reversed Gumbel distribution was found to give an adequate fit. Both the covariates and all but one of the factors were found to be significant. Estimates of value at risk of hospital charge are given for all combinations of the factors.

Conclusions

The results suggest that the hospital charge could be higher for females, higher for smokers, higher if the patient had more children and higher if the patient is older. Further, estimates of value at risk given suggest, for example, that a 90 year old female not smoking and having no children and an average body mass index will have a hospital charge less than Z$49851 with probability 0.999.

Keywords: Estimation, Expectation maximization algorithm, Value at risk

1. Introduction

Zimbabwe is one of a few countries in the world with Gross National Income per capita below US$2,000. Zimbabwe's economy declined by 5% in 2000, 8% in 2001, 12% in 2002 and 18% in 2003 [1]. From 1999 to 2009, Zimbabwe saw the lowest ever economic growth with an annual Gross Domestic Product (GDP) decrease of 6.1% [2]. In the late 2000s, Zimbabwe's health care system was more or less collapsed [3], [4]. The life expectancy was 44 for men and 43 for women. In recent times, the economy of Zimbabwe has improved – according to the World bank, “the economy rebounded in 2021 driven by recovery of agriculture and industry and relative stabilization of prices and exchange rates. GDP is estimated to have grown by 5.8% in 2021 after contracting by 6.2% in 2020. An exceptionally good agriculture season, coupled with slowing inflation and higher remittances boosted domestic demand” [5]. The government has sought to provide better health care service to the public with international help. In this respect, the public needs to know and need to be informed of the cost of health care.

The hospital charge will be dependent on factors like length of stay, disease type, severity, and interventions offered. But the patients will have no idea about these factors until after they visit the hospital. It will be useful if an estimate of the average hospital charge can be made based on factors known to the patient like sex, age, region, smoking status, number of children and body mass index. For example, this can help the patient and his/her family to seek funds to cover the hospital charge especially in a poor country like Zimbabwe.

The aim of this paper is to provide statistical modeling of hospital charge in Zimbabwe. There have been no papers on modeling of hospital charge for Zimbabwe or any other part of Africa. However, there are papers using hospital charge as a variable to discriminate groups of patients having different diseases. We mention [6], [7], [8], [9]. There are also papers performing cost analysis of certain diseases, see, for example, [10], [11], [12].

The aim of this paper is to determine how hospital charge depends on various social factors. The data on hospital charge (in Zimbabwe dollars) for the year 2020 were obtained from the Ministry of Health in Harare. The data also contained the following:

  • Sex of the patient: Male or Female;

  • Age of the patient (18-64);

  • Region the patient comes from: Harare, Bulawayo, Masvingo and Gweru (the four largest cities in Zimbabwe);

  • Smoking status of the patient: yes or no;

  • Number of children the patient has (0-5);

  • Body mass index of the patient (15.96-53.13).

Age and body mass index are covariates. Sex, region, smoking status and the number of children are factors. The results of this paper could be useful to both the public and the government of Zimbabwe.

A histogram of hospital charge is shown in Fig. 1. Some summary statistics are minimum =1122, first quartile =4740, median =9382, mean =13270, third quartile =16640, maximum =63770, variance =146652372, skewness =1.51418 and kurtosis =4.595821.

Figure 1.

Figure 1

Histogram of the hospital charge.

We see that the histogram is multimodal. The multimodality may have arisen from social factors like sex, region and smoking status of the patient. No one statistical distribution can capture the multimodality in Fig. 1 adequately. So, we use mixtures of distributions to model hospital charge and its dependence on the social factors.

The mixture distributions applied in the paper may seem simple compared to recent advances in mixture modeling. But the paper tackles an important problem facing one of the poorest countries in the world. Hence, we have chosen to use models as simple as possible. There is no need apply advanced state of the art mixture models.

All methods in this paper were carried out in accordance with relevant guidelines and regulations. All experimental protocols with respect to the data were approved by an ethics committee of the Ministry of Health in Harare. Informed consent for the data was obtained from the patients verbally. The data are not publicly available. But they can be obtained from the corresponding author. The analysis reported in this paper is exclusively based on the data records obtained from the Ministry of Health.

The contents of this paper are organized as follows. Section 2 performs some exploratory analysis to identify features in the data and states mixture models used for hospital charge. Section 3 describes fitting of the models as well as results and discussion. Finally, some conclusions are reported in Section 4.

2. Data and models

2.1. Exploratory data analysis

The relationship of hospital charge versus age, body mass index, sex, number of children, smoking status and region is shown in Fig. 2.

Figure 2.

Figure 2

Scatter plot of hospital charge versus age (top left) and body mass index (top right); box plot of hospital charge versus sex (middle left), number of children (middle right), smoking status (bottom left) and region (bottom right).

We can observe the following from Fig. 2. The hospital charge generally increases with respect to age. The hospital charge generally increases with respect to body mass index too when it up to 35. Thereafter the pattern is not clear as there are not so many patients having greater body mass index than 35. The variability of the hospital charge is larger for men. The variability is largest when the number of children is 2 and smallest when the number of children is 5. The hospital charge is larger and more variable when the patient is a smoker. The variability of the hospital charge is largest when the region is Masvingo and smallest when the region is Gweru.

The correlation between age and body mass index is 0.190. The correlation between hospital charge and age is 0.299. The correlation between hospital charge and body mass index is 0.198. None of these correlations appear significant.

2.2. Models

Because of the features noted in Fig. 1, we take the probability density function of the hospital charge as

f(x;Θ)=i=1Kwifi(x;Θi), (1)

where K is a positive integer denoting the number of densities used in the mixture, wi are non-negative weights summing to 1, fi(x;Θi) are valid probability density functions and Θ=(Θ1,,ΘK,w1,,wK1). Note that the weights themselves are treated as part of the parameters. Estimation of parameters is described later on.

We chose fi(x;Θi), i=1,,K to belong to the same parametric family. It was taken to be one of the following fifty two distributions: Box-Cox Cole and Green's distribution [13]; Box-Cox power exponential distribution [14]; Box-Cox t distribution [15]; composite gamma-generalized Pareto distribution [16]; exponential distribution; ex-Gaussian distribution; exponential generalized beta type 2 distribution; gamma distribution; generalized beta type 2 distribution; generalized gamma distribution; generalized inverse Gaussian distribution [17]; generalized lambda distribution [18]; generalized t distribution; Gompertz distribution; Gumbel distribution; inverse gamma distribution; inverse Gaussian distribution; Johnson's SU distribution [19]; logistic distribution; log-logistic distribution; logit-normal distribution; log-normal distribution; Box-Cox log-normal distribution [20]; normal exponential t distribution; normal distribution; normal family distribution; normal linear quadratic distribution; Pareto type 1 distribution; Pareto type 2 distribution; power exponential type 1 distribution [21]; power exponential type 2 distribution [21]; reversed generalized extreme value distribution; reversed Gumbel distribution; skew normal distribution [22]; skew power exponential distribution of type 1 [23]; skew power exponential distribution of type 2 [23]; skew power exponential distribution of type 3 [23]; skew power exponential distribution of type 4 [23]; skew slash distribution; slash distribution; sinh-arcsinh distribution of type 1 [24]; sinh-arcsinh distribution of type 2 [25]; sinh-arcsinh distribution of type 3 [25]; skew t distribution of type 1 [26]; skew t distribution of type 2 [26]; skew t distribution of type 3 [26]; skew t distribution of type 4 [26]; skew t distribution of type 5 [27]; Student's t distribution; Weibull distribution of type 1; Weibull distribution of type 2; Weibull distribution of type 3.

We fitted (1) for each of the fifty two choices for fi(x;Θi), i=1,,K. The method of maximum likelihood and the Expectation Maximization (EM) algorithm were used for the fitting. All computations were performed using the packages gamlss.mx [28] and nor1mix [29] in the R software [30]. Details of the estimation methods can be found in [28], [29] and references therein. Discrimination among the fitted models was performed using the two criteria:

  • the Akaike information criterion due to [31] defined by
    AIC=2(mK+K1)2lnL(Θˆ),
    where m denotes the length of each Θi, Θˆ denotes the maximum likelihood estimate of Θ, and lnL(Θˆ) denotes the log-likelihood value;
  • the Bayesian information criterion due to [32] defined by
    BIC=(mK+K1)lnn2lnL(Θˆ),
    where n denotes the sample size.

The smaller the values of these criteria the better the fit.

3. Results and discussion

3.1. Mixture modeling

The model given by (1) was fitted for the fifty two choices for fi(x;Θi), i=1,,K and K=2,3,,10. The values of AIC and BIC versus K are plotted in Figure 3, Figure 4 for ten selected choices. The values corresponding to the other forty two choices are available upon request.

Figure 3.

Figure 3

AIC versus K when fi(x;Θi) are the inverse gamma densities (solid red), reversed Gumbel densities (solid green), inverse Gaussian densities (solid blue), log gamma densities (solid brown), Pareto type II densities (solid black), Gompertz densities (broken red), log-logistic densities (broken green), log-normal densities (broken blue), Weibull densities (broken brown) and exponential densities (broken black).

Figure 4.

Figure 4

BIC versus K when fi(x;Θi) are the inverse gamma densities (solid red), reversed Gumbel densities (solid green), inverse Gaussian densities (solid blue), log gamma densities (solid brown), Pareto type II densities (solid black), Gompertz densities (broken red), log-logistic densities (broken green), log-normal densities (broken blue), Weibull densities (broken brown) and exponential densities (broken black).

Figure 3, Figure 4 show that AIC and BIC are smallest when K=5 and fi(x;Θi) are the reversed Gumbel densities. That is,

fi(x;Θi)=1σiexp[xμiσiexp(xμiσi)], (2)

where <x<, <μi< are the location parameters, σi>0 are the scale parameters and Θi=(μi,σi). The parameter estimates and standard errors of μi, i=1,2,,5, σi, i=1,2,,5 and wi, i=1,2,,4 (see [29] and [28] for details of the estimation method and software) are in Table 1.

Table 1.

Parameter estimates and standard errors of the mixture of reversed Gumbel densities.

Parameter Estimate (standard error)
μ1 10.26(0.952)
σ1 0.987(0.065)
μ2 1.847(0.799)
σ2 −0.647(0.034)
μ3 38.88(3.407)
σ3 1.528(0.122)
μ4 21.84(1.967)
σ4 1.336(0.174)
μ5 4.707(1.584)
σ5 0.524(0.056)
w1 0.349(0.089)
w2 0.139(0.084)
w3 0.109(0.067)
w4 0.111(0.079)

The fitted probability density function of the hospital charge given by

f(x)=i=14wiˆσiˆexp[xμiˆσiˆexp(xμiˆσiˆ)]+1w1ˆw4ˆσ5ˆexp[xμ5ˆσ5ˆexp(xμ5ˆσ5ˆ)] (3)

is shown in Fig. 5. The corresponding probability and quantile plots are shown in Fig. 6. These figures show that the fitted distribution adequately describes the data.

Figure 5.

Figure 5

Histogram of the hospital charge and the fitted probability density function (3).

Figure 6.

Figure 6

Probability plot (left) and quantile plot (right) corresponding to (3).

3.2. Regression modeling

We now incorporate the factors (sex, region, smoking status and the number of children) and covariates (age and body mass index) into modeling to see how they affect hospital charge. We let the location parameters in (2) depend on the factors and covariates as follows:

μi=μintercept,i+μsex,iI{sex=1}+j=13μregion,i,jI{region=j}+μsmoking,iI{smoking=1}+j=15μchild,i,jI{child=j}+μage,iAge+μBMI,iBMI

for i=1,2,,5, where I{} denotes the indicator function. We begin by fitting the constant model μi=μintercept,i for i=1,2,,5. Then, we fit the term that is most significant among the factors and covariates. Thereafter, we fit the term that is most significant among the remaining factors and covariates. We continue this process until the model cannot be improved further. In the final model, all of the factors and covariates turned out to be significant except for region. That is,

μiˆ=μintercept,iˆ+μsex,iˆI{sex=1}+μsmoking,iˆI{smoking=1}+j=15μchild,i,jˆI{child=j}+μage,iˆAge+μBMI,iˆBMI (4)

for i=1,2,,5.

The parameter estimates in (4) (see [29] and [28] for details of the estimation method and software) are in Table 2. The parameter estimates related to sex are mostly negative, meaning that the hospital charge could be higher for females. The parameter estimates related to smoking status are all positive, meaning that the hospital charge could be higher for smokers. The parameter estimates related to the number of children are mostly positive, meaning that the hospital charge could be higher if the patient had more children. The parameter estimates related to age are all positive, meaning that the hospital charge could be higher if the patient is older. Three of the parameter estimates related to the body mass index are negative, but all of them are close to zero. The estimates of μintercept,1, μintercept,2, μintercept,3, μintercept,4, μintercept,5, μsex,1, μsex,2, μsex,4, μsex,5, μchild,1,1, μchild,1,2, μchild,2,5, μchild,3,4, μchild,3,5, μchild,5,5, μBMI,1, μBMI,4 and μBMI,5 were significantly positive. The estimates of the remaining parameters were significantly negative. The significance was tested using the likelihood ratio test ([33], page 331) and the software due to [29], [28].

Table 2.

Estimates of the parameters in (4).

Parameter Estimate Parameter Estimate
μintercept,1 −3.281 μchild,3,1 0.065
μintercept,2 −10.662 μchild,3,2 0.506
μintercept,3 −18.715 μchild,3,3 1.452
μintercept,4 −2.201 μchild,3,4 −4.861
μintercept,5 −5.840 μchild,3,5 −5.308
μsex,1 −0.361 μchild,4,1 0.514
μsex,2 −7.384 μchild,4,2 1.110
μsex,3 14.153 μchild,4,3 1.732
μsex,4 −0.447 μchild,4,4 2.155
μsex,5 −0.511 μchild,4,5 2.792
μsmoking,1 34.863 μchild,5,1 0.523
μsmoking,2 15.718 μchild,5,2 1.152
μsmoking,3 16.520 μchild,5,3 1.755
μsmoking,4 15.179 μchild,5,4 2.276
μsmoking,5 13.514 μchild,5,5 −0.584
μchild,1,1 −0.681 μage,1 0.270
μchild,1,2 −0.072 μage,2 0.247
μchild,1,3 0.749 μage,3 0.270
μchild,1,4 1.279 μage,4 0.218
μchild,1,5 1.549 μage,5 0.310
μchild,2,1 2.293 μBMI,1 −0.002
μchild,2,2 3.813 μBMI,2 0.662
μchild,2,3 1.063 μBMI,3 0.491
μchild,2,4 2.513 μBMI,4 −0.012
μchild,2,5 −0.813 μBMI,5 −0.009

According to the fitted probability density function in (3), the first four moments of hospital charge are

E(hospital charge)=i=14wiˆ(μiˆ+γσiˆ)+(1w1ˆw4ˆ)(μ5ˆ+γσ5ˆ), (5)
E(hospital charge2)=i=14wiˆ[μiˆ2+2γμiˆσiˆ+(π26+γ2)σiˆ2]+(1w1ˆw4ˆ)[μ5ˆ2+2γμ5ˆσ5ˆ+(π26+γ2)σ5ˆ2], (6)
E(hospital charge3)=i=14wiˆ[μiˆ3+3γμiˆ2σiˆ+3(π26+γ2)μiˆσiˆ2+(2η(3)+π2γ2+γ3)σiˆ3]+(1w1ˆw4ˆ)[μ5ˆ3+3γμ5ˆ2σ5ˆ+3(π26+γ2)μ5ˆσ5ˆ2+(2η(3)+π2γ2+γ3)σ5ˆ3] (7)

and

E(hospital charge4)=i=14wiˆ[μiˆ4+4γμiˆ3σiˆ+6(π26+γ2)μiˆ2σiˆ2]+i=14wiˆ[4(2η(3)+π2γ2+γ3)μiˆσiˆ3+(3π420+8η(3)γ+π2γ2+γ4)σiˆ4]+(1w1ˆw4ˆ)[μ5ˆ4+4γμ5ˆ3σ5ˆ+6(π26+γ2)μ5ˆ2σ5ˆ2]+(1w1ˆw4ˆ)[4(2η(3)+π2γ2+γ3)μ5ˆσ5ˆ3+(3π420+8η(3)γ+π2γ2+γ4)σ5ˆ4], (8)

where γ denotes Euler's constant and η() denotes Riemann's zeta function. (5)-(8) together can be used to calculate the variance, skewness and kurtosis of hospital charge. Fig. 7 plots the expected hospital charge versus age, body mass index, sex, number of children and smoking status. Fig. 8 plots the variance of hospital charge versus age, body mass index, sex, number of children and smoking status. Fig. 9 plots the skewness of hospital charge versus age, body mass index, sex, number of children and smoking status. Fig. 10 plots the kurtosis of hospital charge versus age, body mass index, sex, number of children and smoking status.

Figure 7.

Figure 7

Expected hospital charge versus age for all combinations of the levels of sex, number of children, smoking status and when body mass index takes its average value (top left); expected hospital charge versus body mass index for all combinations of the levels of sex, number of children, smoking status and when age takes its average value (top right); expected hospital charge versus sex for all combinations of the levels of number of children, smoking status and when age and body mass index take their average values (middle left); expected hospital charge versus number of children for all combinations of the levels of sex, smoking status and when age and body mass index take their average values (middle right); expected hospital charge versus smoking status for all combinations of the levels of sex, number of children and when age and body mass index take their average values (bottom).

Figure 8.

Figure 8

Variance of hospital charge versus age for all combinations of the levels of sex, number of children, smoking status and when body mass index takes its average value (top left); variance of hospital charge versus body mass index for all combinations of the levels of sex, number of children, smoking status and when age takes its average value (top right); variance of hospital charge versus sex for all combinations of the levels of number of children, smoking status and when age and body mass index take their average values (middle left); variance of hospital charge versus number of children for all combinations of the levels of sex, smoking status and when age and body mass index take their average values (middle right); variance of hospital charge versus smoking status for all combinations of the levels of sex, number of children and when age and body mass index take their average values (bottom).

Figure 9.

Figure 9

Skewness of hospital charge versus age for all combinations of the levels of sex, number of children, smoking status and when body mass index takes its average value (top left); skewness of hospital charge versus body mass index for all combinations of the levels of sex, number of children, smoking status and when age takes its average value (top right); skewness of hospital charge versus sex for all combinations of the levels of number of children, smoking status and when age and body mass index take their average values (middle left); skewness of hospital charge versus number of children for all combinations of the levels of sex, smoking status and when age and body mass index take their average values (middle right); skewness of hospital charge versus smoking status for all combinations of the levels of sex, number of children and when age and body mass index take their average values (bottom).

Figure 10.

Figure 10

Kurtosis of hospital charge versus age for all combinations of the levels of sex, number of children, smoking status and when body mass index takes its average value (top left); kurtosis of hospital charge versus body mass index for all combinations of the levels of sex, number of children, smoking status and when age takes its average value (top right); kurtosis of hospital charge versus sex for all combinations of the levels of number of children, smoking status and when age and body mass index take their average values (middle left); kurtosis of hospital charge versus number of children for all combinations of the levels of sex, smoking status and when age and body mass index take their average values (middle right); kurtosis of hospital charge versus smoking status for all combinations of the levels of sex, number of children and when age and body mass index take their average values (bottom).

Fig. 7 shows that the expected hospital charge increases with increasing age. The expected hospital charge also increases with increasing body mass index. The expected hospital charge is slightly higher for females. The expected hospital charge increases with the number of children except when the number of children is five. The expected hospital charge is higher for smokers. There are two clusters of lines in the first four plots in Fig. 7. The lower cluster corresponds to non-smokers while the upper cluster corresponds to smokers.

Fig. 8 shows that the variance of hospital charge either increases with increasing age or initially decreases before increasing with increasing age. The minimum variance appears to occur around the age of 40. The variance of hospital charge also increases with increasing body mass index. The variance of hospital charge does not appear to change much with respect to sex or the number of children. The variance of hospital charge is higher for smokers. There are two clusters of lines in the second, third and fourth plots in Fig. 8. The lower cluster corresponds to non-smokers while the upper cluster corresponds to smokers.

Fig. 9 shows that the skewness of hospital charge either decreases with increasing body mass index or initially increases before decreasing with increasing body mass index. The maximum skewness appears to occur around the body mass index of 20. The skewness of hospital charge is smaller for smokers. The skewness of hospital charge does not appear to change much with respect to age, sex or the number of children. There are two clusters of lines in the first four plots in Fig. 9. The lower cluster corresponds to smokers while the upper cluster corresponds to non-smokers.

Fig. 10 shows that the kurtosis of hospital charge either increases with increasing body mass index or initially increases before decreasing with increasing body mass index. The maximum kurtosis appears to occur around the body mass index of 30. The kurtosis of hospital charge is smaller for smokers. The kurtosis of hospital charge does not appear to change much with respect to age, sex or the number of children. There are two clusters of lines in the first four plots in Fig. 10. The lower cluster corresponds to smokers while the upper cluster corresponds to non-smokers.

The probability and quantile plots corresponding to (4) are shown in Fig. 11, compare with Fig. 6. These plots show that the fitted regression adequately describes the data.

Figure 11.

Figure 11

Probability plot (left) and quantile plot (right) corresponding to (4).

3.3. Risk estimation

We now give risk estimates associated with the hospital charge. The most popular risk measure is the value at risk [34]. The value at risk with probability p corresponding to (3) is the root of

i=14wiˆexp[exp(VaRˆpμiˆσiˆ)]+(1w1ˆw4ˆ)exp[exp(VaRˆpμ5ˆσ5ˆ)]=p. (9)

(9) was solved using the uniroot function in R. The estimates of value at risk versus age, body mass index, sex, number of children and smoking status are shown in Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27 of Appendix A.

The numbers in Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27 can be useful for the public and the government of Zimbabwe. For example, a 90 year old female not smoking and having no children and an average body mass index will have a hospital charge less than Z$49851 with probability 0.999. A 90 year old male smoking and having five children and an average body mass index will have a hospital charge less than Z$65843 with probability 0.999. A female not smoking with a body mass index of 90 and having no children and an average age will have a hospital charge less than Z$54553 with probability 0.999. A male smoking with a body mass index of 90 and having five children and an average age will have a hospital charge less than Z$69656 with probability 0.999. A female not smoking and having no children, an average age and an average body mass index will have a hospital charge less than Z$35804 with probability 0.999. A male smoking and having five children, an average age and an average body mass index will have a hospital charge less than Z$50907 with probability 0.999.

4. Conclusions

We have provided the first statistical modeling of hospital charge for any country in Africa. The modeling was based on the fitting of over fifty mixture distributions each with the number of components ranging from two to ten. A five component mixture of the reversed Gumbel distribution turned out to give the best fit. The effect of factors (sex, smoking status, number of children and region) and covariates (age and body mass index) was examined by parameterizing this distribution appropriately. Age, body mass index, sex, smoking status and number of children turned out to be significant. Estimates of the value at risk of the hospital charge were given for all combinations of sex, smoking status and number of children and for certain ranges of age and body mass index. The results of this paper (especially estimates of value at risk) can be useful for the public and the government of Zimbabwe.

A future work is to perform similar analysis for other poorest countries in the world, including Burundi, Somalia, Mozambique, Madagascar, Sierra Leone, Afghanistan, Eritrea, Central African Republic, Liberia and Niger. In Section 3, we fitted mixtures of distributions belonging to the same parametric family. Another future work is to consider fitting mixtures of distributions belonging to different parametric families. Also Section 3 does not take into account the heterogeneity over regions. There are more advanced mixture modeling under the existence of cluster information (see, for example, [35], [36]). These advanced mixture methods would extend the scope of the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

CRediT authorship contribution statement

Nyasha Mangava, Saralees Nadarajah: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Declaration of Competing Interest

The authors declare no competing interests.

Acknowledgements

The authors would like to thank the editor and the two referees for careful reading and comments which greatly improved the paper.

Contributor Information

Nyasha Mangava, Email: nyashamangava8@gmail.com.

Saralees Nadarajah, Email: saraleesan.nadarajah@howard.edu.

Appendix A. Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26, Table 27

Table 3.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a female, has no children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 12070 15619 21810 29939 34826 35943 41982 50111
20 12624 16172 22363 30492 35301 36471 42535 50664
22 13177 16725 22917 31045 35777 37002 43088 51217
24 13730 17278 23470 31598 36253 37536 43642 51770
26 14283 17831 24023 32151 36729 38074 44195 52323
28 14836 18385 24576 32704 37206 38613 44748 52876
30 15389 18938 25129 33257 37683 39155 45301 53429
32 15942 19491 25682 33811 38161 39699 45854 53982
34 16496 20044 26235 34364 38639 40245 46407 54536
36 17049 20597 26789 34917 39117 40792 46960 55089
38 17602 21150 27342 35470 39596 41340 47513 55642
40 18155 21703 27895 36023 40075 41890 48067 56195
42 18708 22256 28448 36576 40556 42440 48620 56748
44 19261 22810 29001 37129 41036 42990 49173 57301
46 19814 23363 29554 37682 41517 43542 49726 57854
48 20367 23916 30107 38236 41999 44093 50279 58408
50 20921 24469 30660 38789 42482 44645 50832 58961
52 21474 25022 31214 39342 42965 45197 51385 59514
54 22027 25575 31767 39895 43449 45750 51939 60067
56 22580 26128 32320 40448 43934 46302 52492 60620
58 23133 26682 32873 41001 44420 46855 53045 61173
60 23686 27235 33426 41554 44907 47408 53598 61726
62 24239 27788 33979 42108 45395 47961 54151 62279
64 24792 28341 34532 42661 45884 48514 54704 62833
66 25346 28894 35085 43214 46375 49067 55257 63386
68 25899 29447 35639 43767 46867 49620 55810 63939
70 26452 30000 36192 44320 47360 50173 56364 64492
72 27005 30553 36745 44873 47854 50726 56917 65045
74 27558 31107 37298 45426 48351 51279 57470 65598
76 28111 31660 37851 45980 48849 51832 58023 66151
78 28664 32213 38404 46533 49349 52385 58576 66704
80 29218 32766 38957 47086 49852 52938 59129 67258
82 29771 33319 39511 47639 50356 53491 59682 67811
84 30324 33872 40064 48192 50864 54044 60236 68364
86 30877 34425 40617 48745 51373 54597 60789 68917
88 31430 34978 41170 49298 51886 55150 61342 69470
90 31983 35532 41723 49851 52402 55704 61895 70023

Table 4.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a female, has one child and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 14336 17884 24076 32204 35630 38058 44248 52376
20 14889 18438 24629 32757 36117 38611 44801 52929
22 15442 18991 25182 33310 36605 39164 45354 53482
24 15995 19544 25735 33864 37094 39716 45907 54035
26 16548 20097 26288 34417 37584 40269 46460 54589
28 17102 20650 26841 34970 38076 40822 47013 55142
30 17655 21203 27395 35523 38569 41375 47566 55695
32 18208 21756 27948 36076 39063 41928 48120 56248
34 18761 22309 28501 36629 39560 42482 48673 56801
36 19314 22863 29054 37182 40058 43035 49226 57354
38 19867 23416 29607 37735 40558 43588 49779 57907
40 20420 23969 30160 38289 41060 44141 50332 58460
42 20974 24522 30713 38842 41564 44694 50885 59014
44 21527 25075 31267 39395 42071 45247 51438 59567
46 22080 25628 31820 39948 42581 45800 51992 60120
48 22633 26181 32373 40501 43093 46353 52545 60673
50 23186 26734 32926 41054 43608 46906 53098 61226
52 23739 27288 33479 41607 44127 47460 53651 61779
54 24292 27841 34032 42161 44648 48013 54204 62332
56 24845 28394 34585 42714 45173 48566 54757 62886
58 25399 28947 35138 43267 45701 49119 55310 63439
60 25952 29500 35692 43820 46232 49672 55863 63992
62 26505 30053 36245 44373 46766 50225 56417 64545
64 27058 30606 36798 44926 47303 50778 56970 65098
66 27611 31160 37351 45479 47842 51331 57523 65651
68 28164 31713 37904 46032 48384 51885 58076 66204
70 28717 32266 38457 46586 48927 52438 58629 66757
72 29271 32819 39010 47139 49473 52991 59182 67311
74 29824 33372 39564 47692 50020 53544 59735 67864
76 30377 33925 40117 48245 50568 54097 60288 68417
78 30930 34478 40670 48798 51117 54650 60842 68970
80 31483 35031 41223 49351 51667 55203 61395 69523
82 32036 35585 41776 49904 52217 55756 61948 70076
84 32589 36138 42329 50458 52768 56310 62501 70629
86 33142 36691 42882 51011 53320 56863 63054 71182
88 33696 37244 43435 51564 53872 57416 63607 71736
90 34249 37797 43989 52117 54424 57969 64160 72289

Table 5.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a female, has two children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 14600 18149 24340 32468 36103 38324 44512 52640
20 15153 18702 24893 33022 36587 38876 45065 53193
22 15706 19255 25446 33575 37072 39429 45618 53747
24 16260 19808 25999 34128 37558 39982 46171 54300
26 16813 20361 26553 34681 38044 40534 46724 54853
28 17366 20914 27106 35234 38532 41087 47278 55406
30 17919 21467 27659 35787 39021 41640 47831 55959
32 18472 22021 28212 36340 39511 42193 48384 56512
34 19025 22574 28765 36893 40003 42746 48937 57065
36 19578 23127 29318 37447 40496 43299 49490 57618
38 20132 23680 29871 38000 40990 43852 50043 58172
40 20685 24233 30425 38553 41486 44405 50596 58725
42 21238 24786 30978 39106 41984 44958 51150 59278
44 21791 25339 31531 39659 42484 45511 51703 59831
46 22344 25892 32084 40212 42986 46064 52256 60384
48 22897 26446 32637 40765 43491 46618 52809 60937
50 23450 26999 33190 41319 43997 47171 53362 61490
52 24003 27552 33743 41872 44507 47724 53915 62043
54 24557 28105 34296 42425 45019 48277 54468 62597
56 25110 28658 34850 42978 45534 48830 55021 63150
58 25663 29211 35403 43531 46052 49383 55575 63703
60 26216 29764 35956 44084 46574 49936 56128 64256
62 26769 30318 36509 44637 47098 50489 56681 64809
64 27322 30871 37062 45190 47626 51043 57234 65362
66 27875 31424 37615 45744 48157 51596 57787 65915
68 28429 31977 38168 46297 48691 52149 58340 66469
70 28982 32530 38721 46850 49227 52702 58893 67022
72 29535 33083 39275 47403 49766 53255 59446 67575
74 30088 33636 39828 47956 50308 53808 60000 68128
76 30641 34189 40381 48509 50852 54361 60553 68681
78 31194 34743 40934 49062 51397 54914 61106 69234
80 31747 35296 41487 49616 51944 55468 61659 69787
82 32300 35849 42040 50169 52492 56021 62212 70340
84 32854 36402 42593 50722 53041 56574 62765 70894
86 33407 36955 43147 51275 53591 57127 63318 71447
88 33960 37508 43700 51828 54141 57680 63872 72000
90 34513 38061 44253 52381 54692 58233 64425 72553

Table 6.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a female, has three children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 12960 16508 22700 30828 36378 37166 42872 51000
20 13513 17062 23253 31381 36851 37669 43425 51553
22 14066 17615 23806 31934 37324 38174 43978 52106
24 14619 18168 24359 32488 37798 38682 44531 52659
26 15173 18721 24912 33041 38272 39192 45084 53213
28 15726 19274 25466 33594 38745 39706 45637 53766
30 16279 19827 26019 34147 39220 40223 46191 54319
32 16832 20380 26572 34700 39694 40743 46744 54872
34 17385 20933 27125 35253 40169 41267 47297 55425
36 17938 21487 27678 35806 40644 41794 47850 55978
38 18491 22040 28231 36360 41120 42324 48403 56531
40 19044 22593 28784 36913 41595 42857 48956 57084
42 19598 23146 29337 37466 42072 43394 49509 57638
44 20151 23699 29891 38019 42548 43932 50062 58191
46 20704 24252 30444 38572 43025 44474 50616 58744
48 21257 24805 30997 39125 43503 45017 51169 59297
50 21810 25359 31550 39678 43980 45562 51722 59850
52 22363 25912 32103 40231 44459 46109 52275 60403
54 22916 26465 32656 40785 44937 46657 52828 60956
56 23470 27018 33209 41338 45417 47205 53381 61510
58 24023 27571 33762 41891 45896 47755 53934 62063
60 24576 28124 34316 42444 46377 48306 54487 62616
62 25129 28677 34869 42997 46858 48857 55041 63169
64 25682 29230 35422 43550 47340 49408 55594 63722
66 26235 29784 35975 44103 47822 49960 56147 64275
68 26788 30337 36528 44656 48305 50512 56700 64828
70 27341 30890 37081 45210 48789 51065 57253 65381
72 27895 31443 37634 45763 49274 51617 57806 65935
74 28448 31996 38188 46316 49759 52170 58359 66488
76 29001 32549 38741 46869 50246 52722 58913 67041
78 29554 33102 39294 47422 50733 53275 59466 67594
80 30107 33656 39847 47975 51222 53828 60019 68147
82 30660 34209 40400 48528 51712 54381 60572 68700
84 31213 34762 40953 49082 52203 54934 61125 69253
86 31766 35315 41506 49635 52696 55487 61678 69807
88 32320 35868 42059 50188 53190 56040 62231 70360
90 32873 36421 42613 50741 53686 56593 62784 70913

Table 7.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a female, has four children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 13293 16841 23032 31161 36967 37674 43204 51333
20 13846 17394 23586 31714 37439 38170 43757 51886
22 14399 17947 24139 32267 37912 38667 44311 52439
24 14952 18500 24692 32820 38384 39167 44864 52992
26 15505 19054 25245 33373 38857 39669 45417 53545
28 16058 19607 25798 33926 39330 40174 45970 54098
30 16611 20160 26351 34480 39804 40681 46523 54651
32 17165 20713 26904 35033 40277 41192 47076 55205
34 17718 21266 27458 35586 40751 41705 47629 55758
36 18271 21819 28011 36139 41226 42221 48182 56311
38 18824 22372 28564 36692 41700 42741 48736 56864
40 19377 22926 29117 37245 42175 43264 49289 57417
42 19930 23479 29670 37798 42650 43790 49842 57970
44 20483 24032 30223 38352 43125 44320 50395 58523
46 21036 24585 30776 38905 43601 44853 50948 59076
48 21590 25138 31329 39458 44077 45388 51501 59630
50 22143 25691 31883 40011 44554 45927 52054 60183
52 22696 26244 32436 40564 45031 46468 52608 60736
54 23249 26797 32989 41117 45508 47011 53161 61289
56 23802 27351 33542 41670 45986 47555 53714 61842
58 24355 27904 34095 42223 46464 48102 54267 62395
60 24908 28457 34648 42777 46942 48649 54820 62948
62 25462 29010 35201 43330 47422 49198 55373 63502
64 26015 29563 35754 43883 47901 49748 55926 64055
66 26568 30116 36308 44436 48382 50298 56479 64608
68 27121 30669 36861 44989 48863 50849 57033 65161
70 27674 31222 37414 45542 49344 51401 57586 65714
72 28227 31776 37967 46095 49826 51952 58139 66267
74 28780 32329 38520 46649 50309 52504 58692 66820
76 29333 32882 39073 47202 50793 53057 59245 67373
78 29887 33435 39626 47755 51278 53609 59798 67927
80 30440 33988 40180 48308 51763 54162 60351 68480
82 30993 34541 40733 48861 52249 54715 60905 69033
84 31546 35094 41286 49414 52737 55267 61458 69586
86 32099 35648 41839 49967 53225 55820 62011 70139
88 32652 36201 42392 50520 53715 56373 62564 70692
90 33205 36754 42945 51074 54206 56926 63117 71245

Table 8.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a female, has five children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 7897 11439 17630 25758 37224 37541 38614 45930
20 8449 11992 18183 26312 37690 38009 39105 46483
22 9001 12545 18736 26865 38156 38476 39597 47037
24 9553 13098 19290 27418 38622 38943 40091 47590
26 10106 13651 19843 27971 39089 39411 40587 48143
28 10658 14204 20396 28524 39555 39879 41085 48696
30 11211 14758 20949 29077 40021 40346 41586 49249
32 11764 15311 21502 29630 40488 40814 42089 49802
34 12317 15864 22055 30184 40954 41282 42594 50355
36 12870 16417 22608 30737 41420 41750 43103 50909
38 13422 16970 23161 31290 41887 42218 43615 51462
40 13975 17523 23715 31843 42353 42686 44130 52015
42 14528 18076 24268 32396 42820 43154 44648 52568
44 15081 18629 24821 32949 43287 43623 45169 53121
46 15635 19183 25374 33502 43753 44091 45694 53674
48 16188 19736 25927 34055 44220 44560 46223 54227
50 16741 20289 26480 34609 44687 45028 46754 54780
52 17294 20842 27033 35162 45154 45497 47289 55334
54 17847 21395 27587 35715 45620 45966 47827 55887
56 18400 21948 28140 36268 46087 46435 48367 56440
58 18953 22501 28693 36821 46554 46904 48909 56993
60 19506 23055 29246 37374 47021 47373 49453 57546
62 20059 23608 29799 37927 47488 47843 49999 58099
64 20612 24161 30352 38481 47956 48312 50546 58652
66 21166 24714 30905 39034 48423 48782 51095 59205
68 21719 25267 31458 39587 48890 49252 51644 59759
70 22272 25820 32012 40140 49357 49722 52194 60312
72 22825 26373 32565 40693 49825 50192 52745 60865
74 23378 26926 33118 41246 50292 50663 53296 61418
76 23931 27480 33671 41799 50760 51133 53848 61971
78 24484 28033 34224 42352 51227 51604 54400 62524
80 25037 28586 34777 42906 51695 52075 54952 63077
82 25591 29139 35330 43459 52163 52546 55505 63631
84 26144 29692 35884 44012 52631 53017 56057 64184
86 26697 30245 36437 44565 53098 53489 56610 64737
88 27250 30798 36990 45118 53566 53961 57163 65290
90 27803 31351 37543 45671 54034 54433 57716 65843

Table 9.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a male, has no children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 11182 14730 20922 29050 34341 35234 41093 49222
20 11735 15283 21475 29603 34815 35745 41647 49775
22 12288 15836 22028 30156 35289 36260 42200 50328
24 12841 16390 22581 30709 35764 36778 42753 50881
26 13394 16943 23134 31263 36238 37299 43306 51434
28 13947 17496 23687 31816 36713 37823 43859 51987
30 14501 18049 24240 32369 37188 38351 44412 52541
32 15054 18602 24794 32922 37664 38882 44965 53094
34 15607 19155 25347 33475 38140 39416 45519 53647
36 16160 19708 25900 34028 38616 39952 46072 54200
38 16713 20262 26453 34581 39093 40492 46625 54753
40 17266 20815 27006 35134 39570 41034 47178 55306
42 17819 21368 27559 35688 40047 41577 47731 55859
44 18372 21921 28112 36241 40525 42123 48284 56413
46 18926 22474 28665 36794 41003 42670 48837 56966
48 19479 23027 29219 37347 41482 43218 49390 57519
50 20032 23580 29772 37900 41962 43767 49944 58072
52 20585 24133 30325 38453 42442 44317 50497 58625
54 21138 24687 30878 39006 42922 44868 51050 59178
56 21691 25240 31431 39559 43403 45419 51603 59731
58 22244 25793 31984 40113 43885 45970 52156 60284
60 22798 26346 32537 40666 44368 46522 52709 60838
62 23351 26899 33090 41219 44851 47074 53262 61391
64 23904 27452 33644 41772 45335 47627 53816 61944
66 24457 28005 34197 42325 45820 48179 54369 62497
68 25010 28558 34750 42878 46306 48732 54922 63050
70 25563 29112 35303 43431 46793 49285 55475 63603
72 26116 29665 35856 43985 47280 49838 56028 64156
74 26669 30218 36409 44538 47769 50391 56581 64710
76 27223 30771 36962 45091 48260 50943 57134 65263
78 27776 31324 37516 45644 48751 51496 57687 65816
80 28329 31877 38069 46197 49244 52050 58241 66369
82 28882 32430 38622 46750 49739 52603 58794 66922
84 29435 32984 39175 47303 50235 53156 59347 67475
86 29988 33537 39728 47856 50733 53709 59900 68028
88 30541 34090 40281 48410 51233 54262 60453 68581
90 31095 34643 40834 48963 51735 54815 61006 69135

Table 10.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a male, has one child and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 13447 16996 23187 31315 35095 37173 43359 51487
20 14000 17549 23740 31869 35578 37725 43912 52040
22 14553 18102 24293 32422 36061 38277 44465 52594
24 15107 18655 24847 32975 36545 38830 45018 53147
26 15660 19208 25400 33528 37030 39382 45571 53700
28 16213 19761 25953 34081 37516 39935 46125 54253
30 16766 20314 26506 34634 38002 40488 46678 54806
32 17319 20868 27059 35187 38490 41040 47231 55359
34 17872 21421 27612 35741 38979 41593 47784 55912
36 18425 21974 28165 36294 39469 42146 48337 56466
38 18979 22527 28718 36847 39960 42699 48890 57019
40 19532 23080 29272 37400 40453 43252 49443 57572
42 20085 23633 29825 37953 40948 43805 49997 58125
44 20638 24186 30378 38506 41444 44359 50550 58678
46 21191 24740 30931 39059 41941 44912 51103 59231
48 21744 25293 31484 39612 42441 45465 51656 59784
50 22297 25846 32037 40166 42943 46018 52209 60337
52 22850 26399 32590 40719 43447 46571 52762 60891
54 23404 26952 33143 41272 43954 47124 53315 61444
56 23957 27505 33697 41825 44463 47677 53868 61997
58 24510 28058 34250 42378 44975 48230 54422 62550
60 25063 28611 34803 42931 45490 48783 54975 63103
62 25616 29165 35356 43484 46008 49336 55528 63656
64 26169 29718 35909 44037 46529 49890 56081 64209
66 26722 30271 36462 44591 47053 50443 56634 64762
68 27276 30824 37015 45144 47581 50996 57187 65316
70 27829 31377 37569 45697 48112 51549 57740 65869
72 28382 31930 38122 46250 48645 52102 58293 66422
74 28935 32483 38675 46803 49182 52655 58847 66975
76 29488 33037 39228 47356 49721 53208 59400 67528
78 30041 33590 39781 47909 50262 53762 59953 68081
80 30594 34143 40334 48463 50805 54315 60506 68634
82 31147 34696 40887 49016 51351 54868 61059 69188
84 31701 35249 41440 49569 51897 55421 61612 69741
86 32254 35802 41994 50122 52445 55974 62165 70294
88 32807 36355 42547 50675 52994 56527 62719 70847
90 33360 36908 43100 51228 53544 57080 63272 71400

Table 11.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a male, has two children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 13712 17260 23451 31580 35580 37444 43623 51752
20 14265 17813 24004 32133 36060 37994 44176 52305
22 14818 18366 24558 32686 36541 38546 44729 52858
24 15371 18919 25111 33239 37023 39097 45283 53411
26 15924 19472 25664 33792 37506 39649 45836 53964
28 16477 20026 26217 34345 37989 40201 46389 54517
30 17030 20579 26770 34899 38473 40753 46942 55070
32 17583 21132 27323 35452 38957 41306 47495 55623
34 18137 21685 27876 36005 39443 41859 48048 56177
36 18690 22238 28430 36558 39930 42411 48601 56730
38 19243 22791 28983 37111 40417 42964 49155 57283
40 19796 23344 29536 37664 40906 43517 49708 57836
42 20349 23898 30089 38217 41396 44070 50261 58389
44 20902 24451 30642 38770 41888 44623 50814 58942
46 21455 25004 31195 39324 42380 45176 51367 59495
48 22008 25557 31748 39877 42875 45729 51920 60049
50 22562 26110 32301 40430 43370 46282 52473 60602
52 23115 26663 32855 40983 43868 46835 53026 61155
54 23668 27216 33408 41536 44368 47388 53580 61708
56 24221 27769 33961 42089 44870 47941 54133 62261
58 24774 28323 34514 42642 45374 48495 54686 62814
60 25327 28876 35067 43196 45880 49048 55239 63367
62 25880 29429 35620 43749 46389 49601 55792 63920
64 26434 29982 36173 44302 46901 50154 56345 64474
66 26987 30535 36727 44855 47416 50707 56898 65027
68 27540 31088 37280 45408 47933 51260 57452 65580
70 28093 31641 37833 45961 48454 51813 58005 66133
72 28646 32195 38386 46514 48979 52366 58558 66686
74 29199 32748 38939 47067 49506 52920 59111 67239
76 29752 33301 39492 47621 50036 53473 59664 67792
78 30305 33854 40045 48174 50570 54026 60217 68346
80 30859 34407 40598 48727 51106 54579 60770 68899
82 31412 34960 41152 49280 51645 55132 61323 69452
84 31965 35513 41705 49833 52186 55685 61877 70005
86 32518 36066 42258 50386 52730 56238 62430 70558
88 33071 36620 42811 50939 53275 56791 62983 71111
90 33624 37173 43364 51492 53821 57345 63536 71664

Table 12.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a male, has three children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 12071 15620 21811 29940 35904 36570 41983 50111
20 12624 16173 22364 30493 36376 37062 42536 50664
22 13178 16726 22917 31046 36848 37556 43089 51218
24 13731 17279 23471 31599 37320 38052 43642 51771
26 14284 17832 24024 32152 37793 38550 44196 52324
28 14837 18385 24577 32705 38265 39050 44749 52877
30 15390 18939 25130 33258 38738 39552 45302 53430
32 15943 19492 25683 33811 39211 40057 45855 53983
34 16496 20045 26236 34365 39685 40564 46408 54536
36 17049 20598 26789 34918 40159 41075 46961 55090
38 17603 21151 27342 35471 40632 41588 47514 55643
40 18156 21704 27896 36024 41107 42105 48067 56196
42 18709 22257 28449 36577 41581 42624 48621 56749
44 19262 22810 29002 37130 42056 43148 49174 57302
46 19815 23364 29555 37683 42531 43674 49727 57855
48 20368 23917 30108 38237 43006 44204 50280 58408
50 20921 24470 30661 38790 43482 44737 50833 58961
52 21475 25023 31214 39343 43958 45273 51386 59515
54 22028 25576 31768 39896 44435 45811 51939 60068
56 22581 26129 32321 40449 44912 46352 52492 60621
58 23134 26682 32874 41002 45389 46895 53046 61174
60 23687 27236 33427 41555 45867 47440 53599 61727
62 24240 27789 33980 42108 46345 47986 54152 62280
64 24793 28342 34533 42662 46824 48534 54705 62833
66 25346 28895 35086 43215 47303 49083 55258 63387
68 25900 29448 35639 43768 47783 49633 55811 63940
70 26453 30001 36193 44321 48263 50183 56364 64493
72 27006 30554 36746 44874 48744 50734 56918 65046
74 27559 31107 37299 45427 49226 51285 57471 65599
76 28112 31661 37852 45980 49708 51837 58024 66152
78 28665 32214 38405 46533 50191 52389 58577 66705
80 29218 32767 38958 47087 50675 52942 59130 67258
82 29772 33320 39511 47640 51159 53494 59683 67812
84 30325 33873 40064 48193 51645 54047 60236 68365
86 30878 34426 40618 48746 52131 54599 60789 68918
88 31431 34979 41171 49299 52619 55152 61343 69471
90 31984 35532 41724 49852 53107 55705 61896 70024

Table 13.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a male, has four children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 12404 15952 22144 30272 36496 37106 42316 50444
20 12957 16505 22697 30825 36967 37594 42869 50997
22 13510 17059 23250 31378 37439 38083 43422 51550
24 14063 17612 23803 31932 37910 38573 43975 52103
26 14616 18165 24356 32485 38382 39065 44528 52656
28 15170 18718 24909 33038 38854 39559 45081 53210
30 15723 19271 25463 33591 39326 40054 45634 53763
32 16276 19824 26016 34144 39799 40551 46188 54316
34 16829 20377 26569 34697 40272 41051 46741 54869
36 17382 20931 27122 35250 40744 41553 47294 55422
38 17935 21484 27675 35803 41218 42057 47847 55975
40 18488 22037 28228 36357 41691 42564 48400 56528
42 19041 22590 28781 36910 42164 43074 48953 57082
44 19595 23143 29334 37463 42638 43587 49506 57635
46 20148 23696 29888 38016 43112 44103 50059 58188
48 20701 24249 30441 38569 43587 44622 50613 58741
50 21254 24802 30994 39122 44062 45145 51166 59294
52 21807 25356 31547 39675 44537 45671 51719 59847
54 22360 25909 32100 40228 45012 46200 52272 60400
56 22913 26462 32653 40782 45488 46732 52825 60953
58 23467 27015 33206 41335 45964 47267 53378 61507
60 24020 27568 33760 41888 46440 47805 53931 62060
62 24573 28121 34313 42441 46917 48346 54484 62613
64 25126 28674 34866 42994 47394 48889 55038 63166
66 25679 29228 35419 43547 47872 49433 55591 63719
68 26232 29781 35972 44100 48350 49979 56144 64272
70 26785 30334 36525 44654 48829 50527 56697 64825
72 27338 30887 37078 45207 49308 51076 57250 65379
74 27892 31440 37631 45760 49788 51625 57803 65932
76 28445 31993 38185 46313 50268 52175 58356 66485
78 28998 32546 38738 46866 50749 52726 58910 67038
80 29551 33099 39291 47419 51230 53278 59463 67591
82 30104 33653 39844 47972 51712 53829 60016 68144
84 30657 34206 40397 48525 52195 54381 60569 68697
86 31210 34759 40950 49079 52679 54934 61122 69250
88 31764 35312 41503 49632 53163 55486 61675 69804
90 32317 35865 42056 50185 53648 56039 62228 70357

Table 14.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and age when the patient is a male, has five children and an average body mass index.

Not smoker
Smoker
Age VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
18 7012 10550 16741 24870 36781 37094 38068 45042
20 7564 11103 17295 25423 37247 37560 38552 45595
22 8115 11656 17848 25976 37713 38028 39037 46148
24 8667 12209 18401 26529 38179 38495 39523 46701
26 9219 12763 18954 27082 38646 38962 40010 47254
28 9771 13316 19507 27635 39112 39429 40499 47807
30 10324 13869 20060 28189 39578 39896 40989 48360
32 10876 14422 20613 28742 40044 40364 41481 48914
34 11429 14975 21166 29295 40510 40831 41975 49467
36 11981 15528 21720 29848 40976 41299 42471 50020
38 12534 16081 22273 30401 41443 41766 42969 50573
40 13087 16634 22826 30954 41909 42234 43469 51126
42 13640 17188 23379 31507 42375 42702 43972 51679
44 14193 17741 23932 32061 42842 43170 44477 52232
46 14746 18294 24485 32614 43308 43638 44985 52785
48 15299 18847 25038 33167 43775 44106 45497 53339
50 15852 19400 25592 33720 44241 44574 46011 53892
52 16405 19953 26145 34273 44708 45042 46529 54445
54 16958 20506 26698 34826 45175 45510 47050 54998
56 17511 21060 27251 35379 45641 45979 47575 55551
58 18064 21613 27804 35932 46108 46447 48103 56104
60 18617 22166 28357 36486 46575 46916 48634 56657
62 19171 22719 28910 37039 47042 47385 49168 57211
64 19724 23272 29463 37592 47508 47853 49705 57764
66 20277 23825 30017 38145 47975 48322 50245 58317
68 20830 24378 30570 38698 48442 48792 50787 58870
70 21383 24931 31123 39251 48909 49261 51331 59423
72 21936 25485 31676 39804 49376 49730 51877 59976
74 22489 26038 32229 40357 49843 50200 52424 60529
76 23042 26591 32782 40911 50311 50670 52972 61082
78 23596 27144 33335 41464 50778 51139 53522 61636
80 24149 27697 33889 42017 51245 51609 54072 62189
82 24702 28250 34442 42570 51713 52080 54622 62742
84 25255 28803 34995 43123 52180 52550 55174 63295
86 25808 29357 35548 43676 52648 53020 55725 63848
88 26361 29910 36101 44229 53115 53491 56277 64401
90 26914 30463 36654 44783 53583 53962 56829 64954

Table 15.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a female, has no children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 12901 16450 22641 30770 39597 39975 42817 50942
17 13544 17093 23284 31412 39606 40013 43457 51584
19 14187 17736 23927 32055 39620 40067 44099 52227
21 14830 18378 24570 32698 39640 40144 44742 52870
23 15473 19021 25213 33341 39667 40258 45384 53513
25 16115 19664 25855 33984 39703 40435 46027 54155
27 16758 20307 26498 34626 39751 40726 46670 54798
29 17401 20949 27141 35269 39815 41186 47313 55441
31 18044 21592 27784 35912 39902 41776 47955 56084
33 18687 22235 28426 36555 40021 42409 48598 56727
35 19329 22878 29069 37198 40194 43050 49241 57369
37 19972 23521 29712 37840 40461 43692 49884 58012
39 20615 24163 30355 38483 40881 44335 50527 58655
41 21258 24806 30998 39126 41448 44978 51169 59298
43 21901 25449 31640 39769 42075 45621 51812 59941
45 22543 26092 32283 40411 42716 46264 52455 60583
47 23186 26734 32926 41054 43358 46906 53098 61226
49 23829 27377 33569 41697 44001 47549 53741 61869
51 24472 28020 34211 42340 44644 48192 54383 62512
53 25114 28663 34854 42983 45286 48835 55026 63154
55 25757 29306 35497 43625 45929 49477 55669 63797
57 26400 29948 36140 44268 46572 50120 56312 64440
59 27043 30591 36783 44911 47215 50763 56955 65083
61 27686 31234 37425 45554 47857 51406 57597 65726
63 28328 31877 38068 46197 48500 52049 58240 66368
65 28971 32520 38711 46839 49143 52691 58883 67011
67 29614 33162 39354 47482 49786 53334 59526 67654
69 30257 33805 39997 48125 50429 53977 60168 68297
71 30900 34448 40639 48768 51071 54620 60811 68940
73 31542 35091 41282 49411 51714 55263 61454 69582
75 32185 35734 41925 50053 52357 55905 62097 70225
77 32828 36376 42568 50696 53000 56548 62740 70868
79 33471 37019 43211 51339 53642 57191 63382 71511
81 34114 37662 43853 51982 54285 57834 64025 72153
83 34758 38305 44496 52624 54928 58477 64668 72796
85 35403 38947 45139 53267 55571 59119 65311 73439
87 36051 39590 45782 53910 56214 59762 65953 74082
89 36702 40233 46424 54553 56856 60405 66596 74725

Table 16.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a female, has one child and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 15167 18715 24907 33035 40179 40662 45079 53207
17 15810 19358 25550 33678 40203 40762 45721 53850
19 16453 20001 26192 34321 40237 40915 46364 54493
21 17095 20644 26835 34964 40281 41161 47007 55135
23 17738 21287 27478 35606 40339 41564 47650 55778
25 18381 21929 28121 36249 40417 42122 48293 56421
27 19024 22572 28764 36892 40524 42747 48935 57064
29 19666 23215 29406 37535 40676 43387 49578 57707
31 20309 23858 30049 38177 40907 44030 50221 58349
33 20952 24501 30692 38820 41272 44672 50864 58992
35 21595 25143 31335 39463 41799 45315 51507 59635
37 22238 25786 31977 40106 42415 45958 52149 60278
39 22880 26429 32620 40749 43053 46601 52792 60920
41 23523 27072 33263 41391 43695 47244 53435 61563
43 24166 27714 33906 42034 44338 47886 54078 62206
45 24809 28357 34549 42677 44981 48529 54720 62849
47 25452 29000 35191 43320 45623 49172 55363 63492
49 26094 29643 35834 43963 46266 49815 56006 64134
51 26737 30286 36477 44605 46909 50457 56649 64777
53 27380 30928 37120 45248 47552 51100 57292 65420
55 28023 31571 37763 45891 48195 51743 57934 66063
57 28665 32214 38405 46534 48837 52386 58577 66706
59 29308 32857 39048 47176 49480 53029 59220 67348
61 29951 33500 39691 47819 50123 53671 59863 67991
63 30594 34142 40334 48462 50766 54314 60506 68634
65 31237 34785 40976 49105 51408 54957 61148 69277
67 31879 35428 41619 49748 52051 55600 61791 69919
69 32522 36071 42262 50390 52694 56243 62434 70562
71 33165 36713 42905 51033 53337 56885 63077 71205
73 33808 37356 43548 51676 53980 57528 63719 71848
75 34451 37999 44190 52319 54622 58171 64362 72491
77 35093 38642 44833 52962 55265 58814 65005 73133
79 35736 39285 45476 53604 55908 59456 65648 73776
81 36379 39927 46119 54247 56551 60099 66291 74419
83 37022 40570 46762 54890 57194 60742 66933 75062
85 37665 41213 47404 55533 57836 61385 67576 75705
87 38307 41856 48047 56176 58479 62028 68219 76347
89 38950 42499 48690 56818 59122 62670 68862 76990

Table 17.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a female, has two children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 15431 18980 25171 33299 40699 41159 45343 53471
17 16074 19622 25814 33942 40721 41244 45986 54114
19 16717 20265 26457 34585 40750 41372 46628 54757
21 17360 20908 27099 35228 40789 41573 47271 55400
23 18002 21551 27742 35871 40841 41905 47914 56042
25 18645 22194 28385 36513 40911 42408 48557 56685
27 19288 22836 29028 37156 41004 43016 49200 57328
29 19931 23479 29671 37799 41135 43652 49842 57971
31 20574 24122 30313 38442 41328 44294 50485 58614
33 21216 24765 30956 39085 41630 44937 51128 59256
35 21859 25408 31599 39727 42094 45579 51771 59899
37 22502 26050 32242 40370 42685 46222 52414 60542
39 23145 26693 32885 41013 43318 46865 53056 61185
41 23787 27336 33527 41656 43960 47508 53699 61828
43 24430 27979 34170 42298 44602 48151 54342 62470
45 25073 28621 34813 42941 45245 48793 54985 63113
47 25716 29264 35456 43584 45888 49436 55628 63756
49 26359 29907 36098 44227 46530 50079 56270 64399
51 27001 30550 36741 44870 47173 50722 56913 65041
53 27644 31193 37384 45512 47816 51365 57556 65684
55 28287 31835 38027 46155 48459 52007 58199 66327
57 28930 32478 38670 46798 49102 52650 58841 66970
59 29573 33121 39312 47441 49744 53293 59484 67613
61 30215 33764 39955 48084 50387 53936 60127 68255
63 30858 34407 40598 48726 51030 54578 60770 68898
65 31501 35049 41241 49369 51673 55221 61413 69541
67 32144 35692 41884 50012 52316 55864 62055 70184
69 32786 36335 42526 50655 52958 56507 62698 70827
71 33429 36978 43169 51297 53601 57150 63341 71469
73 34072 37620 43812 51940 54244 57792 63984 72112
75 34715 38263 44455 52583 54887 58435 64627 72755
77 35358 38906 45097 53226 55529 59078 65269 73398
79 36000 39549 45740 53869 56172 59721 65912 74040
81 36643 40192 46383 54511 56815 60363 66555 74683
83 37286 40834 47026 55154 57458 61006 67198 75326
85 37929 41477 47669 55797 58101 61649 67840 75969
87 38572 42120 48311 56440 58743 62292 68483 76612
89 39215 42763 48954 57083 59386 62935 69126 77254

Table 18.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a female, has three children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 13791 17339 23531 31659 41203 41558 43730 51831
17 14434 17982 24174 32302 41208 41583 44350 52474
19 15077 18625 24816 32945 41217 41620 44989 53117
21 15719 19268 25459 33588 41230 41671 45631 53759
23 16362 19911 26102 34230 41249 41745 46274 54402
25 17005 20553 26745 34873 41275 41853 46917 55045
27 17648 21196 27388 35516 41310 42021 47559 55688
29 18291 21839 28030 36159 41357 42294 48202 56331
31 18933 22482 28673 36802 41418 42732 48845 56973
33 19576 23125 29316 37444 41502 43311 49488 57616
35 20219 23767 29959 38087 41616 43942 50131 58259
37 20862 24410 30602 38730 41781 44582 50773 58902
39 21504 25053 31244 39373 42033 45225 51416 59544
41 22147 25696 31887 40015 42432 45868 52059 60187
43 22790 26338 32530 40658 42985 46510 52702 60830
45 23433 26981 33173 41301 43608 47153 53345 61473
47 24076 27624 33815 41944 44248 47796 53987 62116
49 24718 28267 34458 42587 44890 48439 54630 62758
51 25361 28910 35101 43229 45533 49081 55273 63401
53 26004 29552 35744 43872 46176 49724 55916 64044
55 26647 30195 36387 44515 46819 50367 56558 64687
57 27290 30838 37029 45158 47461 51010 57201 65330
59 27932 31481 37672 45801 48104 51653 57844 65972
61 28575 32124 38315 46443 48747 52295 58487 66615
63 29218 32766 38958 47086 49390 52938 59130 67258
65 29861 33409 39601 47729 50033 53581 59772 67901
67 30504 34052 40243 48372 50675 54224 60415 68544
69 31146 34695 40886 49014 51318 54867 61058 69186
71 31789 35337 41529 49657 51961 55509 61701 69829
73 32432 35980 42172 50300 52604 56152 62344 70472
75 33075 36623 42814 50943 53246 56795 62986 71115
77 33719 37266 43457 51586 53889 57438 63629 71757
79 34364 37909 44100 52228 54532 58080 64272 72400
81 35010 38551 44743 52871 55175 58723 64915 73043
83 35660 39194 45386 53514 55818 59366 65557 73686
85 36316 39837 46028 54157 56460 60009 66200 74329
87 36985 40480 46671 54800 57103 60652 66843 74971
89 37671 41123 47314 55442 57746 61294 67486 75614

Table 19.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999 and body mass index when the patient is a female, has four children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 14124 17672 23863 31992 41810 42157 44090 52164
17 14766 18315 24506 32635 41813 42178 44688 52806
19 15409 18958 25149 33277 41819 42210 45322 53449
21 16052 19600 25792 33920 41830 42254 45964 54092
23 16695 20243 26435 34563 41847 42317 46607 54735
25 17338 20886 27077 35206 41870 42408 47249 55378
27 17980 21529 27720 35849 41901 42546 47892 56020
29 18623 22172 28363 36491 41942 42767 48535 56663
31 19266 22814 29006 37134 41997 43130 49178 57306
33 19909 23457 29649 37777 42070 43660 49820 57949
35 20552 24100 30291 38420 42169 44277 50463 58592
37 21194 24743 30934 39062 42309 44915 51106 59234
39 21837 25386 31577 39705 42518 45557 51749 59877
41 22480 26028 32220 40348 42847 46200 52392 60520
43 23123 26671 32863 40991 43342 46843 53034 61163
45 23765 27314 33505 41634 43946 47486 53677 61805
47 24408 27957 34148 42276 44581 48129 54320 62448
49 25051 28599 34791 42919 45223 48771 54963 63091
51 25694 29242 35434 43562 45866 49414 55605 63734
53 26337 29885 36076 44205 46508 50057 56248 64377
55 26979 30528 36719 44848 47151 50700 56891 65019
57 27622 31171 37362 45490 47794 51342 57534 65662
59 28265 31813 38005 46133 48437 51985 58177 66305
61 28908 32456 38648 46776 49080 52628 58819 66948
63 29551 33099 39290 47419 49722 53271 59462 67591
65 30193 33742 39933 48061 50365 53914 60105 68233
67 30836 34385 40576 48704 51008 54556 60748 68876
69 31479 35027 41219 49347 51651 55199 61391 69519
71 32122 35670 41862 49990 52294 55842 62033 70162
73 32765 36313 42504 50633 52936 56485 62676 70804
75 33408 36956 43147 51275 53579 57128 63319 71447
77 34051 37598 43790 51918 54222 57770 63962 72090
79 34694 38241 44433 52561 54865 58413 64605 72733
81 35339 38884 45075 53204 55507 59056 65247 73376
83 35985 39527 45718 53847 56150 59699 65890 74018
85 36635 40170 46361 54489 56793 60341 66533 74661
87 37291 40812 47004 55132 57436 60984 67176 75304
89 37959 41455 47647 55775 58079 61627 67818 75947

Table 20.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a female, has five children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 10042 12273 18461 26590 42227 42516 43199 46763
17 10192 12913 19104 27232 42216 42507 43213 47404
19 10421 13555 19747 27875 42206 42500 43234 48047
21 10789 14198 20390 28518 42196 42494 43267 48690
23 11322 14841 21032 29161 42188 42490 43315 49333
25 11940 15484 21675 29803 42181 42488 43388 49975
27 12579 16127 22318 30446 42175 42489 43500 50618
29 13221 16769 22961 31089 42170 42493 43682 51261
31 13864 17412 23603 31732 42168 42502 43988 51904
33 14508 18055 24246 32375 42169 42517 44470 52546
35 15153 18698 24889 33017 42172 42538 45070 53189
37 15799 19340 25532 33660 42179 42570 45705 53832
39 16449 19983 26175 34303 42190 42615 46347 54475
41 17105 20626 26817 34946 42206 42679 46989 55118
43 17773 21269 27460 35589 42230 42771 47632 55760
45 18459 21912 28103 36231 42261 42912 48275 56403
47 19170 22554 28746 36874 42303 43136 48918 57046
49 19908 23197 29389 37517 42358 43506 49560 57689
51 20673 23840 30031 38160 42432 44041 50203 58332
53 21462 24483 30674 38802 42533 44659 50846 58974
55 22270 25126 31317 39445 42674 45298 51489 59617
57 23092 25770 31960 40088 42887 45940 52132 60260
59 23927 26414 32602 40731 43222 46583 52774 60903
61 24771 27060 33245 41374 43722 47226 53417 61545
63 25622 27710 33888 42016 44328 47868 54060 62188
65 26478 28365 34531 42659 44965 48511 54703 62831
67 27339 29031 35174 43302 45607 49154 55345 63474
69 28204 29715 35816 43945 46251 49797 55988 64117
71 29070 30424 36459 44588 46896 50440 56631 64759
73 29938 31162 37102 45230 47543 51082 57274 65402
75 30807 31928 37745 45873 48195 51725 57917 66045
77 31675 32720 38388 46516 48854 52368 58559 66688
79 32541 33534 39030 47159 49528 53011 59202 67331
81 33402 34364 39673 47801 50222 53654 59845 67973
83 34256 35208 40316 48444 50942 54296 60488 68616
85 35094 36063 40959 49087 51690 54939 61131 69259
87 35896 36926 41602 49730 52463 55582 61773 69902
89 36612 37797 42244 50373 53259 56225 62416 70544

Table 21.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a male, has no children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 12013 15561 21753 29881 39147 39510 41937 50053
17 12656 16204 22395 30524 39153 39540 42569 50696
19 13298 16847 23038 31167 39164 39582 43210 51338
21 13941 17490 23681 31809 39179 39642 43853 51981
23 14584 18132 24324 32452 39201 39729 44496 52624
25 15227 18775 24967 33095 39231 39859 45138 53267
27 15870 19418 25609 33738 39271 40065 45781 53910
29 16512 20061 26252 34381 39324 40404 46424 54552
31 17155 20704 26895 35023 39394 40914 47067 55195
33 17798 21346 27538 35666 39489 41525 47710 55838
35 18441 21989 28181 36309 39622 42162 48352 56481
37 19083 22632 28823 36952 39819 42804 48995 57123
39 19726 23275 29466 37594 40128 43447 49638 57766
41 20369 23917 30109 38237 40600 44089 50281 58409
43 21012 24560 30752 38880 41194 44732 50924 59052
45 21655 25203 31394 39523 41828 45375 51566 59695
47 22297 25846 32037 40166 42469 46018 52209 60337
49 22940 26489 32680 40808 43112 46660 52852 60980
51 23583 27131 33323 41451 43755 47303 53495 61623
53 24226 27774 33966 42094 44398 47946 54137 62266
55 24869 28417 34608 42737 45040 48589 54780 62909
57 25511 29060 35251 43380 45683 49232 55423 63551
59 26154 29703 35894 44022 46326 49874 56066 64194
61 26797 30345 36537 44665 46969 50517 56709 64837
63 27440 30988 37180 45308 47612 51160 57351 65480
65 28082 31631 37822 45951 48254 51803 57994 66122
67 28725 32274 38465 46593 48897 52446 58637 66765
69 29368 32916 39108 47236 49540 53088 59280 67408
71 30011 33559 39751 47879 50183 53731 59923 68051
73 30654 34202 40393 48522 50825 54374 60565 68694
75 31297 34845 41036 49165 51468 55017 61208 69336
77 31940 35488 41679 49807 52111 55659 61851 69979
79 32583 36130 42322 50450 52754 56302 62494 70622
81 33226 36773 42965 51093 53397 56945 63136 71265
83 33871 37416 43607 51736 54039 57588 63779 71908
85 34517 38059 44250 52379 54682 58231 64422 72550
87 35166 38702 44893 53021 55325 58873 65065 73193
89 35821 39344 45536 53664 55968 59516 65708 73836

Table 22.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a male, has one child and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 14278 17827 24018 32146 39720 40167 44190 52318
17 14921 18470 24661 32789 39740 40243 44833 52961
19 15564 19112 25304 33432 39767 40357 45476 53604
21 16207 19755 25947 34075 39803 40533 46118 54247
23 16849 20398 26589 34718 39851 40822 46761 54889
25 17492 21041 27232 35360 39915 41278 47404 55532
27 18135 21683 27875 36003 40001 41867 48047 56175
29 18778 22326 28518 36646 40120 42500 48689 56818
31 19421 22969 29160 37289 40292 43141 49332 57461
33 20063 23612 29803 37932 40557 43784 49975 58103
35 20706 24255 30446 38574 40974 44426 50618 58746
37 21349 24897 31089 39217 41540 45069 51261 59389
39 21992 25540 31732 39860 42167 45712 51903 60032
41 22635 26183 32374 40503 42807 46355 52546 60675
43 23277 26826 33017 41146 43449 46998 53189 61317
45 23920 27469 33660 41788 44092 47640 53832 61960
47 24563 28111 34303 42431 44735 48283 54475 62603
49 25206 28754 34946 43074 45378 48926 55117 63246
51 25848 29397 35588 43717 46020 49569 55760 63888
53 26491 30040 36231 44359 46663 50212 56403 64531
55 27134 30682 36874 45002 47306 50854 57046 65174
57 27777 31325 37517 45645 47949 51497 57689 65817
59 28420 31968 38159 46288 48591 52140 58331 66460
61 29062 32611 38802 46931 49234 52783 58974 67102
63 29705 33254 39445 47573 49877 53425 59617 67745
65 30348 33896 40088 48216 50520 54068 60260 68388
67 30991 34539 40731 48859 51163 54711 60902 69031
69 31634 35182 41373 49502 51805 55354 61545 69674
71 32276 35825 42016 50145 52448 55997 62188 70316
73 32919 36468 42659 50787 53091 56639 62831 70959
75 33562 37110 43302 51430 53734 57282 63474 71602
77 34205 37753 43945 52073 54377 57925 64116 72245
79 34847 38396 44587 52716 55019 58568 64759 72887
81 35490 39039 45230 53358 55662 59211 65402 73530
83 36133 39681 45873 54001 56305 59853 66045 74173
85 36776 40324 46516 54644 56948 60496 66688 74816
87 37419 40967 47158 55287 57590 61139 67330 75459
89 38062 41610 47801 55930 58233 61782 67973 76101

Table 23.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a male, has two children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 14543 18091 24282 32411 40242 40671 44454 52583
17 15185 18734 24925 33054 40259 40737 45097 53225
19 15828 19377 25568 33696 40283 40833 45740 53868
21 16471 20019 26211 34339 40315 40979 46383 54511
23 17114 20662 26854 34982 40358 41213 47025 55154
25 17756 21305 27496 35625 40415 41598 47668 55797
27 18399 21948 28139 36267 40491 42144 48311 56439
29 19042 22591 28782 36910 40594 42766 48954 57082
31 19685 23233 29425 37553 40741 43406 49597 57725
33 20328 23876 30067 38196 40961 44048 50239 58368
35 20970 24519 30710 38839 41310 44691 50882 59010
37 21613 25162 31353 39481 41823 45333 51525 59653
39 22256 25804 31996 40124 42434 45976 52168 60296
41 22899 26447 32639 40767 43072 46619 52810 60939
43 23542 27090 33281 41410 43714 47262 53453 61582
45 24184 27733 33924 42053 44356 47905 54096 62224
47 24827 28376 34567 42695 44999 48547 54739 62867
49 25470 29018 35210 43338 45642 49190 55382 63510
51 26113 29661 35853 43981 46285 49833 56024 64153
53 26755 30304 36495 44624 46927 50476 56667 64796
55 27398 30947 37138 45266 47570 51119 57310 65438
57 28041 31590 37781 45909 48213 51761 57953 66081
59 28684 32232 38424 46552 48856 52404 58596 66724
61 29327 32875 39066 47195 49498 53047 59238 67367
63 29969 33518 39709 47838 50141 53690 59881 68009
65 30612 34161 40352 48480 50784 54332 60524 68652
67 31255 34803 40995 49123 51427 54975 61167 69295
69 31898 35446 41638 49766 52070 55618 61809 69938
71 32541 36089 42280 50409 52712 56261 62452 70581
73 33183 36732 42923 51052 53355 56904 63095 71223
75 33826 37375 43566 51694 53998 57546 63738 71866
77 34469 38017 44209 52337 54641 58189 64381 72509
79 35112 38660 44852 52980 55284 58832 65023 73152
81 35755 39303 45494 53623 55926 59475 65666 73795
83 36397 39946 46137 54265 56569 60118 66309 74437
85 37040 40589 46780 54908 57212 60760 66952 75080
87 37683 41231 47423 55551 57855 61403 67595 75723
89 38326 41874 48065 56194 58497 62046 68237 76366

Table 24.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a male, has three children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 12902 16451 22642 30771 40756 41100 42897 50942
17 13545 17094 23285 31413 40759 41119 43472 51585
19 14188 17736 23928 32056 40764 41148 44102 52228
21 14831 18379 24571 32699 40774 41188 44743 52871
23 15473 19022 25213 33342 40789 41245 45385 53514
25 16116 19665 25856 33984 40810 41328 46028 54156
27 16759 20307 26499 34627 40839 41451 46671 54799
29 17402 20950 27142 35270 40877 41645 47314 55442
31 18045 21593 27784 35913 40928 41965 47956 56085
33 18687 22236 28427 36556 40996 42455 48599 56727
35 19330 22879 29070 37198 41087 43059 49242 57370
37 19973 23521 29713 37841 41215 43695 49885 58013
39 20616 24164 30356 38484 41401 44336 50527 58656
41 21259 24807 30998 39127 41693 44979 51170 59299
43 21901 25450 31641 39770 42144 45622 51813 59941
45 22544 26093 32284 40412 42729 46264 52456 60584
47 23187 26735 32927 41055 43361 46907 53099 61227
49 23830 27378 33570 41698 44002 47550 53741 61870
51 24472 28021 34212 42341 44644 48193 54384 62513
53 25115 28664 34855 42983 45287 48836 55027 63155
55 25758 29306 35498 43626 45930 49478 55670 63798
57 26401 29949 36141 44269 46573 50121 56313 64441
59 27044 30592 36783 44912 47215 50764 56955 65084
61 27686 31235 37426 45555 47858 51407 57598 65726
63 28329 31878 38069 46197 48501 52049 58241 66369
65 28972 32520 38712 46840 49144 52692 58884 67012
67 29615 33163 39355 47483 49787 53335 59526 67655
69 30258 33806 39997 48126 50429 53978 60169 68298
71 30901 34449 40640 48769 51072 54621 60812 68940
73 31544 35092 41283 49411 51715 55263 61455 69583
75 32187 35734 41926 50054 52358 55906 62098 70226
77 32831 36377 42569 50697 53001 56549 62740 70869
79 33477 37020 43211 51340 53643 57192 63383 71512
81 34125 37663 43854 51982 54286 57835 64026 72154
83 34778 38306 44497 52625 54929 58477 64669 72797
85 35440 38948 45140 53268 55572 59120 65312 73440
87 36117 39591 45782 53911 56214 59763 65954 74083
89 36817 40234 46425 54554 56857 60406 66597 74725

Table 25.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a male, has four children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 13235 16783 22975 31103 41363 41701 43298 51275
17 13878 17426 23618 31746 41364 41717 43822 51918
19 14521 18069 24260 32389 41369 41741 44438 52561
21 15163 18712 24903 33032 41377 41776 45076 53203
23 15806 19355 25546 33674 41389 41825 45718 53846
25 16449 19997 26189 34317 41407 41896 46361 54489
27 17092 20640 26832 34960 41433 41999 47003 55132
29 17734 21283 27474 35603 41467 42158 47646 55774
31 18377 21926 28117 36245 41512 42416 48289 56417
33 19020 22568 28760 36888 41572 42833 48932 57060
35 19663 23211 29403 37531 41652 43401 49575 57703
37 20306 23854 30045 38174 41762 44029 50217 58346
39 20948 24497 30688 38817 41919 44669 50860 58988
41 21591 25140 31331 39459 42159 45312 51503 59631
43 22234 25782 31974 40102 42538 45954 52146 60274
45 22877 26425 32617 40745 43077 46597 52788 60917
47 23520 27068 33259 41388 43696 47240 53431 61560
49 24162 27711 33902 42031 44335 47883 54074 62202
51 24805 28354 34545 42673 44977 48525 54717 62845
53 25448 28996 35188 43316 45620 49168 55360 63488
55 26091 29639 35831 43959 46262 49811 56002 64131
57 26733 30282 36473 44602 46905 50454 56645 64774
59 27376 30925 37116 45244 47548 51097 57288 65416
61 28019 31567 37759 45887 48191 51739 57931 66059
63 28662 32210 38402 46530 48834 52382 58574 66702
65 29305 32853 39044 47173 49476 53025 59216 67345
67 29947 33496 39687 47816 50119 53668 59859 67987
69 30590 34139 40330 48458 50762 54310 60502 68630
71 31233 34781 40973 49101 51405 54953 61145 69273
73 31876 35424 41616 49744 52048 55596 61787 69916
75 32519 36067 42258 50387 52690 56239 62430 70559
77 33163 36710 42901 51030 53333 56882 63073 71201
79 33807 37353 43544 51672 53976 57524 63716 71844
81 34452 37995 44187 52315 54619 58167 64359 72487
83 35100 38638 44830 52958 55262 58810 65001 73130
85 35753 39281 45472 53601 55904 59453 65644 73773
87 36415 39924 46115 54243 56547 60096 66287 74415
89 37092 40566 46758 54886 57190 60738 66930 75058

Table 26.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, and body mass index when the patient is a male, has five children and an average age.

Not smoker
Smoker
BMI VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
15 9520 11392 17572 25701 41789 42076 42747 45877
17 9636 12026 18215 26344 41778 42067 42757 46516
19 9806 12667 18858 26986 41767 42059 42773 47158
21 10071 13309 19501 27629 41757 42052 42797 47801
23 10493 13952 20144 28272 41748 42047 42834 48444
25 11063 14595 20786 28915 41740 42043 42889 49087
27 11692 15238 21429 29558 41733 42042 42972 49729
29 12333 15881 22072 30200 41727 42044 43102 50372
31 12976 16523 22715 30843 41724 42050 43315 51015
33 13620 17166 23358 31486 41722 42060 43674 51658
35 14266 17809 24000 32129 41723 42077 44203 52301
37 14914 18452 24643 32771 41728 42101 44820 52943
39 15567 19095 25286 33414 41736 42136 45459 53586
41 16229 19737 25929 34057 41749 42186 46101 54229
43 16906 20380 26571 34700 41767 42258 46743 54872
45 17605 21023 27214 35343 41793 42363 47386 55514
47 18331 21666 27857 35985 41827 42524 48029 56157
49 19084 22309 28500 36628 41873 42787 48672 56800
51 19863 22951 29143 37271 41933 43211 49314 57443
53 20663 23595 29785 37914 42014 43783 49957 58086
55 21479 24238 30428 38557 42126 44411 50600 58728
57 22309 24882 31071 39199 42285 45052 51243 59371
59 23149 25527 31714 39842 42529 45694 51886 60014
61 23997 26175 32357 40485 42914 46337 52528 60657
63 24851 26827 32999 41128 43458 46980 53171 61300
65 25710 27488 33642 41770 44079 47623 53814 61942
67 26573 28163 34285 42413 44719 48265 54457 62585
69 27439 28860 34928 43056 45363 48908 55100 63228
71 28307 29584 35571 43699 46009 49551 55742 63871
73 29175 30338 36213 44342 46658 50194 56385 64513
75 30043 31119 36856 44984 47314 50837 57028 65156
77 30910 31924 37499 45627 47981 51479 57671 65799
79 31774 32747 38142 46270 48665 52122 58314 66442
81 32632 33586 38784 46913 49373 52765 58956 67085
83 33478 34436 39427 47556 50108 53408 59599 67727
85 34301 35296 40070 48198 50871 54051 60242 68370
87 35062 36163 40713 48841 51657 54694 60885 69013
89 35727 37037 41356 49484 52463 55337 61527 69656

Table 27.

Estimates of (9) versus p = 0.9,0.95,0.99,0.999, smoking status, sex and number of children when the patient is of average age and average body mass index.

Not smoker
Smoker
Sex No of children VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999 VaRˆ0.9 VaRˆ0.95 VaRˆ0.99 VaRˆ0.999
Female 0 17936 21484 27675 35804 39885 41672 47847 55976
Female 1 20201 23750 29941 38069 40860 43922 50113 58241
Female 2 20465 24014 30205 38334 41289 44186 50377 58505
Female 3 18825 22374 28565 36693 41407 42646 48737 56865
Female 4 19158 22706 28898 37026 41986 43056 49069 57198
Female 5 13756 17304 23495 31624 42168 42500 43925 51796
Male 0 17047 20595 26787 34915 39380 40818 46959 55087
Male 1 19312 22861 29052 37181 40258 43033 49224 57352
Male 2 19577 23125 29317 37445 40712 43298 49488 57617
Male 3 17936 21485 27676 35805 40919 41899 47848 55976
Male 4 18269 21817 28009 36137 41503 42363 48181 56309
Male 5 12868 16415 22607 30735 41724 42049 43270 50907

Data availability

Data will be made available on request.

References

  • 1.Richardson C.J. The loss of property rights and the collapse of Zimbabwe. Cato J. 2011;25:541–565. [Google Scholar]
  • 2.Glenday C. 2013. Guinness Book of Records 2014. [Google Scholar]
  • 3.Kapp C. Health crisis worsens in Zimbabwe. World Report. 2007;369:1987–1988. doi: 10.1016/S0140-6736(07)60927-1. [DOI] [PubMed] [Google Scholar]
  • 4.Makoni M. COVID-19 worsens Zimbabwe's health crisis. Lancet. 2020;396 doi: 10.1016/S0140-6736(20)31751-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.https://www.worldbank.org/en/country/zimbabwe/overview
  • 6.Edigin E., Eseaton P., Kaul S., Shaka H., Ojemolon P.E., Asemota I.R., Akuna E., Manadan A. Systemic sclerosis is not associated with worse outcomes of patients admitted for ischemic stroke: analysis of the national inpatient sample. Cureus. 2020;12 doi: 10.7759/cureus.9155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Idolor O.N., Guraya A., Muojieje C.C., Kannayiram S.S., Nair K.M., Odion J., Sanwo E., Aihie O.P. Renal involvement in granulomatosis with polyangiitis increases economic health care burden: insights from the national inpatient sample database. Cureus. 2021;13 doi: 10.7759/cureus.12515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Odion J.O., Guraya A., Muojieje C.C., Idolor O.N., Sanwo E.J., Aihie O.P. Lung involvement in systemic sclerosis is associated with adverse hospital outcomes: insights from the National Inpatient Sample. J. Investig. Med. 2021;69:1022–1026. doi: 10.1136/jim-2020-001743. [DOI] [PubMed] [Google Scholar]
  • 9.Shaka H., Wani F., El-Amir Z., Dahiya D.S., Singh J., Edigin E., Eseaton P., Kichloo A. Comparing patient characteristics and outcomes in type 1 versus type 2 diabetes with diabetic ketoacidosis: a review and a propensity-matched nationwide analysis. J. Investig. Med. 2021;69:1196–1200. doi: 10.1136/jim-2021-001901. [DOI] [PubMed] [Google Scholar]
  • 10.Fenny A.P., Otieku E., Akufo C., Obeng-Nkrumah N., Asante F.A., Enemark U. The financial impact of puerperal infections on patients, carers and public hospitals in two regions in Ghana. Int. J. Gynaecol. Obstet. 2021;154:49–55. doi: 10.1002/ijgo.13509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Kluyts H.L., Becker P.J. Development of a clinical prediction model for high hospital cost in patients admitted for elective non-cardiac surgery to a private hospital in South Africa. South. Afr. J. Anaesth. Analg. 2021;27:214–221. [Google Scholar]
  • 12.Lipenguet G.M., Ngoungou E.B., Ibinga E., Engohang-Ndong J., Wittwer J. Evaluation of direct costs associated with the management of clinical stage of malaria in children under five years old in Gabon. Malar. J. 2021;20 doi: 10.1186/s12936-021-03862-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Cole T.J., Green P.J. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat. Med. 1992;11:1305–1319. doi: 10.1002/sim.4780111005. [DOI] [PubMed] [Google Scholar]
  • 14.Rigby R.A., Stasinopoulos D.M. Smooth centile curves for skew and kurtotic data modelled using the Box-Cox power exponential distribution. Stat. Med. 2004;23:3053–3076. doi: 10.1002/sim.1861. [DOI] [PubMed] [Google Scholar]
  • 15.Rigby R.A., Stasinopoulos D.M. Using the Box-Cox t distribution in GAMLSS to mode skewness and kurtosis. Stat. Model. 2006;6:200. [Google Scholar]
  • 16.Scarrott C.J., MacDonald A. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT Stat. J. 2012;10:33–59. [Google Scholar]
  • 17.Jorgensen B. vol. 9. Springer Verlag; New York: 1982. Statistical Properties of the Generalized Inverse Gaussian Distribution. (Lecture Notes in Statistics). [Google Scholar]
  • 18.Freimer M., Kollia G., Mudholkar G.S., Lin C.T. A study of the generalized Tukey lambda family. Commun. Stat., Theory Methods. 1988;17:3547–3567. [Google Scholar]
  • 19.Johnson N.L. Systems of frequency curves derived from the first law of Laplace. Trab. Estad. 1954;5:283–291. [Google Scholar]
  • 20.Box G.E.P., Cox D.R. An analysis of transformations (with discussion) J. R. Stat. Soc. B. 1964;26:211–252. [Google Scholar]
  • 21.Nelson D.B. Conditional heteroskedasticity in asset returns: a new approach. Econometrica. 1991;57:347–370. [Google Scholar]
  • 22.Azzalini A. Further results on a class of distributions which includes the normal ones. Statistica. 1986;46:199–208. [Google Scholar]
  • 23.Fernadez C., Osiewalski J., Steel M.F.J. Modelling and inference with v-spherical distributions. J. Am. Stat. Assoc. 1995;90:1331–1340. [Google Scholar]
  • 24.Jones M.C. In the discussion of Rigby, R. A. and Stasinopoulos, D. M. (2005) Appl. Stat. 2005;54:546–547. [Google Scholar]
  • 25.Jones M.C., Pewsey A. Sinh-arcsinh distributions. Biometrika. 2009;96:761–780. [Google Scholar]
  • 26.Azzalini A., Capitanio A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t distribution. J. R. Stat. Soc. B. 2003;65:367–389. [Google Scholar]
  • 27.Jones M.C., Faddy M.J. A skew extension of the t distribution with applications. J. R. Stat. Soc. B. 2003;65:159–174. [Google Scholar]
  • 28.Stasinopoulos M., Rigby B. 2020. gamlss.mx: Fitting Mixture Distributions with GAMLSS. Package version 6.0.0. [Google Scholar]
  • 29.Maechler M., Leisch F. 2019. nor1mix: Normal aka Gaussian (1-d) mixture models (S3 classes and methods) Package version 1.3.0. [Google Scholar]
  • 30.R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2023. R: A Language and Environment for Statistical Computing. [Google Scholar]
  • 31.Akaike H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974;19:716–723. [Google Scholar]
  • 32.Schwarz G.E. Estimating the dimension of a model. Ann. Stat. 1978;6:461–464. [Google Scholar]
  • 33.Li B., Babu G.J. Springer Verlag; New York: 2019. A Graduate Course on Statistical Inference. [Google Scholar]
  • 34.Jorion P. McGraw-Hill; New York: 2006. Value at Risk: The New Benchmark for Managing Financial Risk. [Google Scholar]
  • 35.Ng S.K., McLachlan G.J. Mixture models for clustering multilevel growth trajectories. Comput. Stat. Data Anal. 2014;71:43–51. [Google Scholar]
  • 36.Tang X., Qu A. Mixture modeling for longitudinal data. J. Comput. Graph. Stat. 2016;25:1117–1137. [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Data will be made available on request.


Articles from Heliyon are provided here courtesy of Elsevier

RESOURCES