Skip to main content
Health Research Policy and Systems logoLink to Health Research Policy and Systems
letter
. 2023 Apr 6;21:28. doi: 10.1186/s12961-023-00976-w

Online Health Communities: an alternative feasible data registry tool for developing countries

Omnia Abdelraheem 1, Diana G Sami 1, Mohamed Salama 1,2,3,
PMCID: PMC10077652  PMID: 37024909

Abstract

Given the many challenges facing healthcare access in many developing countries and the added limitations observed in emergencies like COVID-19 pandemic, the authors here discuss an alternative and feasible approach to overcome all these limitations.

Keywords: Online Health communities: OHC, Data registry, Data collection, Disease cohorts


A recent study by Adams and colleagues showed that medical teams should validate Online Health Communities (OHCs) as they do not threaten the parent–provider relationship [1]. The idea of OHCs is broadly accepted to increase engagement, disease awareness and management. Successful OHCs exist in many nations; in the USA, PatientsLikeMe has more than 850,000 members with more than 2800 diseases [2]. The UK has HealthUnlocked with 1.5 million members, covering more than 250 conditions [3]. More than 420 million people are registered on China's OHC Ping A Good Doctor, and the platform has close to 1.27 billion consultations overall [4].

The construction of health registries in developing countries has been challenging. Some developing countries suffer from a lack of disease registries and others face the failure of their registry projects. Significant barriers include; inconsistent documentation and archiving system (absence of Electronic Health Records), low quality of the data collected, lack of budget, scarcity of trained and qualified personnel, the poor performance of managers, low stakeholders' interest/motivation, and absence of funding [57].

Since internet users are significantly increasing in developing countries, for example, approximately 73% of the population in Egypt has access to the internet, the OHCs could provide an excellent opportunity to develop online disease registries [8]. They offer advantages to the healthcare sector in many ways, such as being accessible to the population, achieving high levels of engagement, and removing physical and location barriers [9]. These platforms offer patients customized disease-specific reports and visualization tools to help patients understand and share information about their condition which result in better disease management [10]. This improves the quality of life and decreases the sense of loneliness [11]. OHCs may offer a chance to replace conventional health information systems in the developing countries. They might serve as source of data for research, patient care, and policy shaping. Additionally, OHCs can help these countries overcome the issue of health illiteracy by supplying patients and caregivers with reliable information and knowledge [12]. In addition, they will offer new insights for researchers to learn about the processes and outcomes of care from a patient perspective [13]. As a result, patients will be shifted from passive recipients of medical care to experts in their conditions, leading to patient-driven innovations. Since social support is one of the fundamental motives behind individuals engaging in OHCs, the broad reach will attract governments and policymakers to consider disease registries and might end up as collaborators in these OHCs [14].

OHCs are considered a reliable and valid resource for medical research [15]. This is evidenced by hundreds of studies that have been published in peer-reviewed medical and scientific journals, which have validated the utility of OHCs as a research tool. PatientsLikeMe is one of the most OHCs with high publication output. The literature with OHCs data has enhanced our knowledge of various disease conditions. These include neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) [1618], Huntington’s disease [19], Parkinson’s disease [2022], Multiple sclerosis [2325], and Osteogenesis imperfecta [26], as well as neurological diseases such as Epilepsy [27, 28], Bipolar disorder, depression [29], and Insomnia [30]. Additionally, OHCs have also provided insights into autoimmune diseases like Rheumatoid Arthritis [31, 32], Neuromyelitis Optica [33], cancer types such as Non-Small Cell Lung Cancer [34], Ovarian Cancer [35], metabolic diseases such as Diabetes Mellitus [35, 36], and cardiovascular diseases [37]. Several studies revealed OHCs improved population health. One study showed that OHC played an important role in promoting healthy behavior. The results of the study showed that social integration support from online social relationships have a positive relationship with users’ health behavior and increased informational support [38]. Other studies indicated that OHC increased patient empowerment which consequently improved health outcomes [39]. Additionally, the studies also address various themes and perspectives such as patient perception [40], patients reported outcomes (PROs) [41], crowdsourcing, patient-centeredness [42, 43], pharmacovigilance and adverse drug reactions reporting [44], drug development process [45] and off-label prescribing [46].

OHCs also provide a unique opportunity for real-world data and observational studies. They are considered new tools for collecting and analyzing data for epidemiological research. Using Ping A Good Doctor, a cross-sectional survey study analyzed 35.3 million consultations and inquisitions over the course of 1 year [4]. The study found that the most frequently consulted departments were gynecology and obstetrics, dermatology, and pediatrics. The most common diseases were acute upper respiratory infections, pregnancy, and dermatitis. Most users were female and between the ages of 19 and 35. The study found that online healthcare services can relieve the stress on hospitals and provide good user experiences [47]. So, Online health communities can reduce the prevalence and incidence of diseases by providing access to accurate and up-to-date information about different health conditions and treatments. Also, OHCs are heavily used by patients with long- term conditions. It is thought that OHCs have potential to promote health, usage of healthcare resources, and facilitate self-management of illness [48]. Also, OHCs provided social support for ongoing health-related problems especially at the onset of COVID-19 pandemic [49].

Like any virtual community, privacy invasion or personal health information (PHI) disclosure is a crucial challenge facing the OHCs. Qualified researchers in universities from different disciplines can work collaboratively to manage the platform activities from data acquisition to data analysis, generate reports and publications, and maintain privacy. Also, it will open the door for pharmaceutical companies to understand patients' needs in a specific population leading to personalized medicine and better evaluating of drug effects [50].

Digital platforms have contributed to the spread of misinformation online, which can have a detrimental effect on people's health, as stated by the WHO [51]. Therefore, it is important to note that certain OHCs, such as PatientsLikeMe and HealthUnlocked, operate as patient-driven platforms where information is reported and shared by members [52, 53]. It is crucial to understand that the information provided within these communities does not replace the need for guidance and consultation from healthcare professionals. In adherence to this, terms and conditions of use for these types of communities typically stipulate that the reliance on any information provided is the responsibility of the individual member [54, 55]. It is also important to be aware of the limitations in distinguishing between credible and unreliable information from these patient-driven platforms, and to exercise caution when interpreting the information provided. In contrast, other online health communities such as Ping An Health, which is also known as Ping An Good Doctor, function as a national internet-based hospital and provide online healthcare services, which may have more rigorous standards for the information provided [47].

To combat misinformation, OHC should have a team of researchers and experts in the field to make sure that all information posted are from a reliable source with scientific evidence and platforms with evidence-based data [51]. Although artificial intelligence is used unethically to spread misinformation, it also plays a crucial role in fighting misinformation and infodemics [56]. With support from the government and acceptance by the public, online health care services could develop quickly and greatly benefit people's daily lives and help in solving health problems [47].

Although OHC is crucial for developing countries due to the economic situation, there are some limitations. Low-Middle Income Countries (LMICs) have limited access to the internet; about 35% of the population have access to the internet compared to 80% in the developed countries. According to the World Bank, "Connecting for inclusion, high-speed internet access is not a luxury, but a basic necessity for economic and human development in both developed and developing countries" [57].

In conclusion, OHCs offer an alternative and workable strategy to get over the restrictions of developing disease registries. Also, it provides an accessible solution for healthcare access in light of the numerous obstacles that many developing countries face in their health systems and during emergencies.

Acknowledgements

Not applicable.

Author contributions

OA, DGS conceptualized and drafted the manuscript. MS revised and edited the final version. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors consent to publish this work upon acceptance.

Competing interests

Authors declare no competing interests.

Footnotes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  • 1.Adams SY, Tucker R, Lechner BE. The new normal: parental use of online health communities in the NICU. Pediatr Res. 2021 doi: 10.1038/s41390-021-01684-3. [DOI] [PubMed] [Google Scholar]
  • 2.Live better, together! | PatientsLikeMe. https://www.patientslikeme.com/. Accessed 25 May 2022.
  • 3.HealthUnlocked. https://about.healthunlocked.com/. Accessed 25 May 2022.
  • 4.Company overview—ping an good doctor. https://www.pagd.net/allPage/aboutUs/47?lang=EN_US. Accessed 25 May 2022.
  • 5.Aljurf M, et al. Challenges and opportunities for HSCT outcome registries: perspective from international HSCT registries experts. Bone Marrow Transplant. 2014;49(8):1016–1021. doi: 10.1038/bmt.2014.78. [DOI] [PubMed] [Google Scholar]
  • 6.Sawe HR, Sirili N, Weber E, Coats TJ, Wallis LA, Reynolds TA. Barriers and facilitators to implementing trauma registries in low- and middle-income countries: qualitative experiences from Tanzania. Afr J Emerg Med. 2020;10:S23–S28. doi: 10.1016/J.AFJEM.2020.06.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Lazem M, Sheikhtaheri A. Barriers and facilitators for the implementation of health condition and outcome registry systems: a systematic literature review. J Am Med Inform Assoc. 2022;29(4):723–734. doi: 10.1093/JAMIA/OCAB293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Africa number of internet users by country 2022 | Statista. https://www.statista.com/statistics/505883/number-of-internet-users-in-african-countries/. Accessed May 25, 2022.
  • 9.Tseng HT, Ibrahim F, Hajli N, Nisar TM, Shabbir H. Effect of privacy concerns and engagement on social support behaviour in online health community platforms. Technol Forecast Soc Change. 2022;178:121592. doi: 10.1016/J.TECHFORE.2022.121592. [DOI] [Google Scholar]
  • 10.Frost JH, Massagli MP. Social uses of personal health information within PatientsLikeMe, an online patient community: what can happen when patients have access to one another’s data. J Med Internet Res. 2008 doi: 10.2196/JMIR.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Wicks P, Thorley EM, Simacek K, Curran C, Emmas C. Scaling PatientsLikeMe via a ‘generalized platform’ for members with chronic illness: web-based survey study of benefits arising. J Med Internet Res. 2018 doi: 10.2196/JMIR.9909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Meherali S, Punjani NS, Mevawala A. Health literacy interventions to improve health outcomes in low- and middle-income countries. Health Lit Res Pract. 2020;4(4):e251–e266. doi: 10.3928/24748307-20201118-01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.The Emerging World of Online Health Communities. https://ssir.org/articles/entry/the_emerging_world_of_online_health_communities . Accessed 25 May 2022.
  • 14.Wang X, Zhao K, Street N. Social support and user engagement in online health communities. Lecture Notes Comp Sci (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014;8549:97–110. doi: 10.1007/978-3-319-08416-9_10. [DOI] [Google Scholar]
  • 15.Eichler GS et al. Exploring concordance of patient-reported information on PatientsLikeMe and medical claims data at the patient level. J Med Internet Res 2016;18(5):e110. https://www.jmir.org/2016/5/e110. 2016;18(5): e5130. 10.2196/JMIR.5130. [DOI] [PMC free article] [PubMed]
  • 16.Wicks P, Vaughan TE, Massagli MP, Heywood J. Accelerated clinical discovery using self-reported patient data collected online and a patient-matching algorithm. Nat Biotechnol. 2011;29(5):411–414. doi: 10.1038/nbt.1837. [DOI] [PubMed] [Google Scholar]
  • 17.Bedlack RS, et al. How common are ALS plateaus and reversals? Neurology. 2016;86(9):808–812. doi: 10.1212/WNL.0000000000002251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Wicks P, Albert SM. It’s time to stop saying ‘the mind is unaffected’ in ALS. Neurology. 2018;91(15):679–681. doi: 10.1212/WNL.0000000000006303. [DOI] [PubMed] [Google Scholar]
  • 19.Thorley EM, et al. Understanding how chorea affects health-related quality of life in Huntington disease: an online survey of patients and caregivers in the United States. Patient. 2018;11(5):547. doi: 10.1007/S40271-018-0312-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Venkataraman V, Donohue SJ, Biglan KM, Wicks P, Dorsey ER. Virtual visits for Parkinson disease: a case series. Neurol Clin Pract. 2014;4(2):146. doi: 10.1212/01.CPJ.0000437937.63347.5A. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Wicks P, MacPhee GJA. Pathological gambling amongst Parkinson’s disease and ALS patients in an online community (PatientsLikeMe.com) Mov Disord. 2009;24(7):1085–1088. doi: 10.1002/MDS.22528. [DOI] [PubMed] [Google Scholar]
  • 22.LouJackson M, Bex PJ, Ellison JM, Wicks P, Wallis J. Feasibility of a web-based survey of hallucinations and assessment of visual function in patients with Parkinson’s disease. Interact J Med Res. 2014;3(1):e2744. doi: 10.2196/IJMR.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Wicks P, Rasouliyan L, Katic B, Nafees B, Flood E, Sasané R. The real-world patient experience of fingolimod and dimethyl fumarate for multiple sclerosis. BMC Res Notes. 2016;9(1):1–9. doi: 10.1186/S13104-016-2243-8/TABLES/6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Bove R, et al. Evaluation of an online platform for multiple sclerosis research: patient description, validation of severity scale, and exploration of BMI effects on disease course. PLoS ONE. 2013;8(3):e59707. doi: 10.1371/JOURNAL.PONE.0059707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Wicks P, Brandes D, Park J, Liakhovitski D, Koudinova T, Sasane R. Preferred features of oral treatments and predictors of non-adherence: two web-based choice experiments in multiple sclerosis patients. Interact J Med Res. 2015;4(1):e6. doi: 10.2196/IJMR.3776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Brownstein CA, Wicks P. The potential research impact of patient reported outcomes on osteogenesis imperfecta. Clin Orthop Relat Res. 2010;468(10):2581. doi: 10.1007/S11999-010-1373-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Hixson JD, et al. Patients optimizing epilepsy management via an online community: The POEM Study. Neurology. 2015;85(2):129. doi: 10.1212/WNL.0000000000001728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.de la Loge C, et al. PatientsLikeMe® online epilepsy community: patient characteristics and predictors of poor health-related quality of life. Epilepsy Behav. 2016;63:20–28. doi: 10.1016/J.YEBEH.2016.07.035. [DOI] [PubMed] [Google Scholar]
  • 29.Tonozzi TR, Braunstein GD, Kammesheidt A, Curran C, Golshan S, Kelsoe J. Pharmacogenetic profile and major depressive and/or bipolar disorder treatment: a retrospective, cross-sectional study. Pharmacogenomics. 2018;19(15):1169–1179. doi: 10.2217/PGS-2018-0088. [DOI] [PubMed] [Google Scholar]
  • 30.Katic B, et al. New approach for analyzing self-reporting of insomnia symptoms reveals a high rate of comorbid insomnia across a wide spectrum of chronic diseases. Sleep Med. 2015;16(11):1332–1341. doi: 10.1016/J.SLEEP.2015.07.024. [DOI] [PubMed] [Google Scholar]
  • 31.Kelman A, et al. Communicating laboratory test results for rheumatoid factor: what do patients and physicians want? Patient Prefer Adher. 2016;10:2501. doi: 10.2147/PPA.S104396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Costello R, Jacklin C, Evans MJ, McBeth J, Dixon WG. Original article: Representativeness of a digitally engaged population and a patient organisation population with rheumatoid arthritis and their willingness to participate in research: a cross-sectional study. RMD Open. 2018;4(1):e000664. doi: 10.1136/RMDOPEN-2018-000664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Eaneff S, et al. Patient perspectives on neuromyelitis optica spectrum disorders: data from the PatientsLikeMe online community. Mult Scler Relat Disord. 2017;17:116–122. doi: 10.1016/J.MSARD.2017.07.014. [DOI] [PubMed] [Google Scholar]
  • 34.Rodriguez AM, Braverman J, Aggarwal D, Friend J, Duus E. The experience of weight loss and its associated burden in patients with non-small cell lung cancer: results of an online survey. JCSM Clin Rep. 2017;2(2):1–12. doi: 10.17987/JCSM-CR.V2I2.18. [DOI] [Google Scholar]
  • 35.Simacek K, Raja P, Chiauzzi E, Eek D, Halling K. What do ovarian cancer patients expect from treatment?: Perspectives from an online patient community. Cancer Nurs. 2017;40(5):E17–E27. doi: 10.1097/NCC.0000000000000415. [DOI] [PubMed] [Google Scholar]
  • 36.Lopez JMS, Katic BJ, Fitz-Randolph M, Jackson RA, Chow W, Mullins CD. Understanding preferences for type 2 diabetes mellitus self-management support through a patient-centered approach: a 2-phase mixed-methods study. BMC Endocr Disord. 2016;16(1):1–11. doi: 10.1186/S12902-016-0122-X/FIGURES/6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Antman EM, et al. Acquisition, analysis, and sharing of data in 2015 and beyond: a survey of the landscape a conference report from the American heart association data summit 2015. J Am Heart Assoc. 2015 doi: 10.1161/JAHA.115.002810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Li Y, Yan X. How could peers in online health community help improve health behavior. Int J Environ Res Public Health. 2020;17:2995. doi: 10.3390/IJERPH17092995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Johansson V, Islind AS, Lindroth T, Angenete E, Gellerstedt M. Online communities as a driver for patient empowerment: systematic review. J Med Internet Res. 2021;23(2):e19910. doi: 10.2196/19910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Simacek K, Curran C, Fenici P, Garcia-Sanchez R. Patient perceptions of their glycemic control and its influence on type 2 diabetes outcomes: an international survey of online communities. Patient Prefer Adher. 2019;13:295–307. doi: 10.2147/PPA.S186801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Brownstein CA, Brownstein JS, Williams DS, Wicks P, Heywood JA. The power of social networking in medicine. Nat Biotechnol. 2009;27(10):888–890. doi: 10.1038/nbt1009-888. [DOI] [PubMed] [Google Scholar]
  • 42.Richards T, Coulter A, Wicks P. Time to deliver patient centred care. BMJ. 2015 doi: 10.1136/BMJ.H530. [DOI] [PubMed] [Google Scholar]
  • 43.Lavallee DC, Wicks P, Alfonso Cristancho R, Mullins CD. Stakeholder engagement in patient-centered outcomes research: high-touch or high-tech? Expert Rev Pharmacoecon Outcomes Res. 2014;14(3):335–344. doi: 10.1586/14737167.2014.901890. [DOI] [PubMed] [Google Scholar]
  • 44.Blaser DA, et al. Comparison of rates of nausea side effects for prescription medications from an online patient community versus medication labels: an exploratory analysis. AAPS Open. 2017;3(1):1–10. doi: 10.1186/S41120-017-0020-Y. [DOI] [Google Scholar]
  • 45.Anand A, Brandwood HJ, JamesonEvans M. Improving patient involvement in the drug development process: case study of potential applications from an online peer support network. Clin Ther. 2017;39(11):2181–2188. doi: 10.1016/j.clinthera.2017.10.004. [DOI] [PubMed] [Google Scholar]
  • 46.Frost J, Okun S, Vaughan T, Heywood J, Wicks P. Patient-reported outcomes as a source of evidence in off-label prescribing: analysis of data from PatientsLikeMe. J Med Internet Res 2011;13(1):e6 https://www.jmir.org/2011/1/e6. 2011;13(1): e1643. doi: 10.2196/JMIR.1643. [DOI] [PMC free article] [PubMed]
  • 47.Jiang X, et al. Characteristics of online health care services from China’s largest online medical platform: cross-sectional survey study. J Med Internet Res. 2021;23(4):e25817. doi: 10.2196/25817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Joglekar S et al. How online communities of people with long-term conditions function and evolve: network analysis of the structure and dynamics of the asthma UK and British Lung Foundation Online Communities. J Med Internet Res. 2018;20(7):e238. https://www.jmir.org/2018/7/e238. 2018;20(7): e9952. 10.2196/JMIR.9952. [DOI] [PMC free article] [PubMed]
  • 49.Jong W, Liang OS, Yang CC. The exchange of informational support in Online Health Communities at the onset of the COVID-19 pandemic: content analysis. Jmirx Med. 2021;2(3):e27485. doi: 10.2196/27485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Heywood J. Straight talk with...Jamie Heywood. Nat Med. 2014;20(5):457–457. doi: 10.1038/nm0514-457. [DOI] [PubMed] [Google Scholar]
  • 51.do Nascimento IJB, et al. Infodemics and health misinformation: a systematic review of reviews. Bull World Health Organ. 2022;100(9):544. doi: 10.2471/BLT.21.287654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Brajovic S, et al. Validating a framework for coding patient-reported health information to the medical dictionary for regulatory activities terminology: an evaluative study. JMIR Med Inform. 2018 doi: 10.2196/MEDINFORM.9878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Costello RE, Anand A, Evans MJ, Dixon WG. Associations between engagement with an Online Health Community and changes in patient activation and health care utilization: longitudinal web-based survey. J Med Internet Res. 2019 doi: 10.2196/13477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.User agreement | PatientsLikeMe. https://www.patientslikeme.com/about/user_agreement. Accessed 23 Jan 2023.
  • 55.How communities are safeguarded?—HealthUnlocked Help Center. https://support.healthunlocked.com/article/11-community-guidelines. Accessed 23 Jan 2023.
  • 56.Benzie A, Montasari R, Benzie A, Rodham H, Montasari R. Artificial intelligence and the spread of mis- and disinformation. Artif Intell Natl Secur. 2022 doi: 10.1007/978-3-031-06709-9_1. [DOI] [Google Scholar]
  • 57.Kelly T, Rossotto CM. Broadband Strategies Handbook. 2012. 10.1596/978-0-8213-8945-4.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

Not applicable.


Articles from Health Research Policy and Systems are provided here courtesy of BMC

RESOURCES