Abstract
Ten male volunteers were exposed to ethylene glycol monoethyl ether acetate (EGEE-Ac) under various conditions of exposure and physical workload. As exposure proceeded, retention, atmospheric clearance, and uptake rate declined slowly to reach steady state levels after three to four hours. Retention increased as a consequence of higher exposure concentrations and of physical workload performed during exposure. Uptake rate was higher as exposure concentration or pulmonary ventilation rate, or both, increased. Subject related factors such as pulmonary ventilation, cardiac output, height, and body fat content also determined individual uptake. During exposure, partial respiratory elimination of EGEE was observed. This finding confirms the hypothesis that EGEE-Ac is first converted to EGEE by (plasma) esterases. The amount of EGEE eliminated at steady state levels correlated more with uptake rate of EGEE-Ac than with exposure concentration. Respiratory elimination of unmetabolised EGEE-Ac accounted for less than or equal to 0.5% of total body uptake. The elimination curves were biexponential indicating that at least two pharmacological compartments are involved. Postexposure breath concentrations were higher as total body uptake increased. Several observations may indicate that the hydrolysis of the ester moiety of EGEE-Ac is hindered by the presence of the natural esterase substrates. With increasing plasma concentrations, however, EGEE-Ac competed more favourably for the available esterase.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Astrand I. Uptake of solvents in the blood and tissues of man. A review. Scand J Work Environ Health. 1975 Dec;1(4):199–218. [PubMed] [Google Scholar]
- Cheever K. L., Plotnick H. B., Richards D. E., Weigel W. W. Metabolism and excretion of 2-ethoxyethanol in the adult male rat. Environ Health Perspect. 1984 Aug;57:241–248. doi: 10.1289/ehp.8457241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durnin J. V., Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974 Jul;32(1):77–97. doi: 10.1079/bjn19740060. [DOI] [PubMed] [Google Scholar]
- Foster P. M., Creasy D. M., Foster J. R., Gray T. J. Testicular toxicity produced by ethylene glycol monomethyl and monoethyl ethers in the rat. Environ Health Perspect. 1984 Aug;57:207–217. doi: 10.1289/ehp.8457207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groeseneken D., Veulemans H., Masschelein R. Respiratory uptake and elimination of ethylene glycol monoethyl ether after experimental human exposure. Br J Ind Med. 1986 Aug;43(8):544–549. doi: 10.1136/oem.43.8.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Groeseneken D., Veulemans H., Masschelein R. Urinary excretion of ethoxyacetic acid after experimental human exposure to ethylene glycol monoethyl ether. Br J Ind Med. 1986 Sep;43(9):615–619. doi: 10.1136/oem.43.9.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guest D., Hamilton M. L., Deisinger P. J., DiVincenzo G. D. Pulmonary and percutaneous absorption of 2-propoxyethyl acetate and 2-ethoxyethyl acetate in beagle dogs. Environ Health Perspect. 1984 Aug;57:177–183. doi: 10.1289/ehp.8457177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller R. R., Hermann E. A., Langvardt P. W., McKenna M. J., Schwetz B. A. Comparative metabolism and disposition of ethylene glycol monomethyl ether and propylene glycol monomethyl ether in male rats. Toxicol Appl Pharmacol. 1983 Feb;67(2):229–237. doi: 10.1016/0041-008x(83)90229-6. [DOI] [PubMed] [Google Scholar]
- Rowell L. B. Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 1974 Jan;54(1):75–159. doi: 10.1152/physrev.1974.54.1.75. [DOI] [PubMed] [Google Scholar]
- Veulemans H., Masschelein R. Experimental human exposure to toluene. I. Factors influencing the individual respiratory uptake and elimination. Int Arch Occup Environ Health. 1978 Nov 15;42(2):91–103. doi: 10.1007/BF01297548. [DOI] [PubMed] [Google Scholar]
- Veulemans H., Van Vlem E., Janssens H., Masschelein R., Leplat A. Experimental human exposure to n-Hexane. Study of the respiratory uptake and elimination, and of n-Hexane concentrations in peripheral venous blood. Int Arch Occup Environ Health. 1982 Feb;49(3-4):251–263. doi: 10.1007/BF00377934. [DOI] [PubMed] [Google Scholar]
