Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Mar 10;79(Pt 4):292–296. doi: 10.1107/S2056989023001986

Crystal structure and Hirshfeld surface analysis of (22 RS,23 SR,25 RS,26 SR)-23,25,5-trimethyl-21-(2,2,2-tri­fluoro­acet­yl)-5-aza-2(2,6)-piperidina-1,3(2,5)-di­furana­cyclo­hexa­phan-24-one

Sema Öztürk Yıldırım a,b, Mehmet Akkurt b, Anastasia A Ershova c, Mikhail S Grigoriev d, Bruno GM Rocha e, Ajaya Bhattarai f,*
Editor: B Therrieng
PMCID: PMC10088306  PMID: 37057003

The title compound features a main twelve-membered difuryl ring with which the furan rings make dihedral angles of 76.14 (5) and 33.81 (5)°. In the crystal, C–H⋯O, C—H⋯F, C—H⋯π and C—F⋯π inter­actions link the mol­ecules into the chains along the b-axis direction, forming sheets parallel to the (001) plane. These sheets are also connected by van der Waals inter­action.

Keywords: crystal structure, twelve-membered heterocycles, furan, alkyl­ation, piperidon, Hirshfeld surface analysis, Mannich reaction

Abstract

The title compound, C20H21F3N2O4, features a main twelve-membered difuryl ring with which the furan rings make dihedral angles of 76.14 (5) and 33.81 (5)°. The dihedral angle between the furan rings is 42.55 (7)°. The six-membered nitro­gen heterocycle has a twist-boat conformation. In the crystal, pairs of mol­ecules are connected by inter­molecular C—H⋯O inter­actions, generating an R 2 2(14) ring motif. These pairs of mol­ecules form zigzag chains along the a-axis direction by means of C—H⋯F inter­actions. Furthermore, C—H⋯π and C–F⋯π inter­actions link the mol­ecules into chains along the b-axis direction, forming sheets parallel to the (001) plane. These sheets are also connected by van der Waals inter­actions.

1. Chemical context

Twelve-membered aza- and oxa-macrocycles possess a wide range of useful biological activities and exhibit a tendency to bind metal cations with their macrocyclic cavities (Simonov et al., 1993). For example, well-known naturally occurring macrocycles such as enniatins demonstrate a high cytotoxic activity (Levy et al., 1995; Ivanova et al., 2006) and aza­tri(tetra­)pyrrolic macrocycles can be used as ion-pair receptors (Yadigarov et al., 2009). Chiral macrocycles with multiple non-covalent bonding sites show chiral recognition to different anions (Ema et al., 2014; Khalilov et al., 2021; Maharramov et al., 2010). S,N-Containing macrobicyclic aza­cryptands (Khabibullina et al., 2018; Naghiyev et al., 2020; Safavora et al., 2019) including dipyrrolyl­methane subunits in their structures exhibit a high affinity to anions, especially the fluoride ion (Guchhait, et al., 2011; Shikhaliyev et al., 2018, 2019) and can be used as chemical delivery systems.

On the other hand, the Mannich reaction is an extensively used method for the construction of various types of polycyclic systems (Rivera et al., 2015; Ma et al., 2021; Mahmoudi et al., 2016), including those containing pyrroles (Jana et al., 2019). In order to create a short pathway to macrocycles possessing two different donating atoms in a twelve-membered ring, we used an acid-catalysed Mannich type reaction between 2,6-difuryl-substituted piperidone and N-substituted 1,5,3-diox­azepane (Fig. 1). The main goal of this study was to obtain the first representative of a twelve-membered difuryl containing rings and to establish its stereochemistry and non-covalent bond donor or acceptor ability (Gurbanov et al., 2020a ,b ; Mahmudov et al., 2021, 2022). The rings formed in this transformation can serve as precursors for studying the IMDAV (intra­molecular Diels–Alder reaction of vinyl­arenes; Krishna, et al., 2022) and IMDAF (intra­molecular Diels–Alder reaction of furans; Kvyatkovskaya et al., 2021a ,b ; Borisova, et al., 2018) reactions. 1.

Figure 1.

Figure 1

The synthetic route.

2. Structural commentary

As shown in Fig. 2, the title compound has a main twelve-membered difuryl-containing ring (O18 /C2/C1/N17/C13/C12/O19/C9/C8/N7/C6/C5) to which the furan rings (O18/C2–C5 and O19/C9–C12) subtend dihedral angles of 76.14 (5) and 33.81 (5)°, respectively. The dihedral angle subtended by the furan ring is 42.55 (7)°. The six-membered nitro­gen heterocycle (N17/C1/C13–C16) adopts a twist-boat conformation with puckering parameters (Cremer & Pople, 1975) Q T = 0.6999 (12) Å, θ = 90.12 (10)° and φ = 228.08 (10)°.

Figure 2.

Figure 2

Mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, pairs of mol­ecules are connected by inter­molecular C—H⋯O inter­actions, forming an Inline graphic (14) ring motif (Bernstein et al., 1995). These pairs of mol­ecules form zigzag chains along the a-axis direction by C—H⋯F inter­actions (Table 1, Fig. 3). Furthermore, C—H⋯π and C—F⋯π inter­actions [C18—F1⋯Cg1i, C18⋯Cg1i = 3.9574 (14) Å, F1⋯Cg1i = 3.5265 (9) Å, C18—F1⋯Cg1i = 98.83 (6)° and C18—F3⋯Cg1i, C18⋯Cg1i = 3.9574 (14) Å, F1⋯Cg1i = 3.5496 (11) Å, C18—F1⋯Cg1i = 97.90 (7)° where Cg1 is the centroid of the O18/C2–C5 ring; symmetry code: (i) Inline graphic  + x, y, Inline graphic  − z] link the mol­ecules into chains along the b-axis direction, forming sheets parallel to the (001) plane (Table 1, Fig. 4). These sheets are also connected by van der Waals inter­actions.

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the O19/C9–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O15i 0.95 2.51 3.3809 (15) 152
C20—H20B⋯F3ii 0.98 2.54 3.4700 (16) 160
C21—H21BCg2iii 0.98 2.88 3.7561 (13) 150

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 3.

Figure 3

View down the b-axis showing the C—H⋯O and C—H⋯F hydrogen bonds (dashed lines).

Figure 4.

Figure 4

A general view in the unit cell of the C—H⋯π and C—F⋯π inter­actions (dashed lines). Symmetry codes: (iii) −x +  Inline graphic , y −  Inline graphic , z; (iv) Inline graphic  + x, y, Inline graphic  − z.

Crystal Explorer17.5 (Turner et al., 2017) was used to perform a Hirshfeld surface analysis and to create the corres­ponding two-dimensional fingerprint plots, with the three-dimensional d norm surfaces plotted at a standard resolution of −0.1525 (red) to 1.7277 (blue) a.u (Fig. 5). The bright-red patches near atoms O15 and H20B on the Hirshfeld surface represent weak C—H⋯O and C—H⋯F inter­actions (Tables 1 and 2).

Figure 5.

Figure 5

(a) Front and (b) back views of the three-dimensional Hirshfeld surfaces of the title mol­ecule.

Table 2. Summary of short inter­atomic contacts (Å) in the title compound.

N7⋯H4 2.71 Inline graphic  + x, y, Inline graphic  − z
F2⋯H19C 2.65 1 − x, − Inline graphic  + y, Inline graphic  − z
H20B⋯F3 2.54 1 − x, 1 − y, 1 − z
H21A⋯H19A 2.46 Inline graphic  − x, 1 − y, − Inline graphic  + z
H20A⋯H16 2.48 -x, 1 − y, 1 − z
H20C⋯H21B 2.50 Inline graphic  − x, Inline graphic  + y, z
H20A⋯H11 2.53 Inline graphic  + x, Inline graphic  − y, 1 − z

The fingerprint plots (Fig. 6) show that H⋯H (44.9%), F⋯H/H⋯F (23.0%), O⋯H/H⋯O (16.7%) and C⋯H/H⋯C (8.5%) inter­actions contribute the most to surface contacts. The crystal packing is additionally influenced by F⋯C/C⋯F (3.0%), N⋯H/H⋯N (1.4%), F⋯O/O⋯F (0.9%), C⋯O/O⋯C (0.9%), O⋯O (0.5%) and C⋯C (0.1%) inter­actions. The Hirshfeld surface study confirms the significance of H-atom inter­actions in the packing formation. The large number of H⋯H, F⋯H/H⋯F, O⋯H/H⋯O and C⋯H/H⋯C inter­actions indicate that van der Waals inter­actions and hydrogen bonding are important in the crystal packing (Hathwar et al., 2015).

Figure 6.

Figure 6

Two-dimensional fingerprint plots for title mol­ecules showing (a) all inter­actions, and delineated into (b) H⋯H, (c) F⋯H/H⋯F, (d) O⋯H/H⋯O and (e) C⋯H/H⋯C inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

4. Database survey

1,8,12,19,24,26-Hexaaza­penta­cyclo­[17.3.1.13,6.18,12.114,17]hexa­cosa-3,5,14,16-tetra­ene ethyl acetate solvate dihydrate (CSD refcode NOYCOW; Jana et al., 2019) is the most similar compound to the title found in a search of the Cambridge Structural Database (CSD, Version 5.42, update of September 2021; Groom et al., 2016). It crystallizes in the monoclinic space group I2/a (15) with Z = 8. The two pyrrolic NH atoms are oriented in the same direction. It exhibits a different conformation from the title compound: the furan rings in the title compound are almost normal to the mean plane of the main twelve-membered difuryl-containing ring and their oxygen atoms are oriented to the opposite sides whereas in NOYCOW, they are also almost normal, but are on the same side.

5. Synthesis and crystallization

A mixture of N-tri­fluoro-acyl­ated piperodone (2.6 mmol), 3-methyl-1,5,3-dioxazepane (2.7 mmol) and Me3SiCl (1.1 mL, 8.6 mmol) in dry di­chloro­methane (CH2Cl2) (5 mL) was left for 5 days under an argon atmosphere without stirring. The reaction mixture was then poured into water (30 mL) and basified with solid K2CO3 until the pH was 9–10. The organic products were extracted with CH2Cl2 (2 × 20 mL) and dried over anhydrous Na2SO4. After evaporation of the solvent, the crude residue was purified by column chromatography on silica gel (ethyl acetate/hexane, from 1:20 to 1:4) and then the resulting solid fractions were recrystallized from a chloro­form/hexane mixture to give the macrocycle as a white solid. Single crystals were obtained by slow crystallization from a hexa­ne/chloro­form mixture.

Yield 20% (0.21 g), m.p. 420–422 K. 1H NMR (700 MHz, CDCl3) δ (J, Hz): 6.24 (br.s, 2H), 6.19 (br.s, 1H), 6.02 (d, J = 2.9 Hz, 1H), 5.28 (s, 1H), 5.11 (d, J = 9.5 Hz, 1H), 3.86 (d, J = 15.5 Hz, 1H), 3.76 (d, J = 15.3 Hz, 1H), 3.71 (s, 2H), 3.55–3.49 (m, 1H), 3.20 (q, J = 7.2 Hz, 1H), 2.35 (s, 3H), 1.36 (d, J = 7.2 Hz, 3H), 1.08 (d, J = 6.4 Hz, 3H); 13C{1H} NMR (176 MHz, CDCl3) δ 208.8, 156.5 (q, J = 36.5 Hz), 154.7, 152.3, 149.9, 148.6, 116.3 (q, J = 289.0 Hz), 111.4, 109.9, 109.8, 109.6, 57.2, 56.9, 53.3, 49.6, 44.7, 42.8, 42.0, 15.7, 12.9; HRMS (ESI) m/z: [M + H]+ 411.; Analysis calculated for C20H21F3N2O4 %: C 58.53, H 5.16, N 6.83. Found: C 58.54, H 5.17, N 6.83.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H atoms were placed in calculated positions [C—H = 0.95–1.00 Å; U iso(H) = 1.2 or 1.5U eq(C)] and were included in the refinement in the riding-model approximation. Owing to poor agreement between observed and calculated intensities, twenty three outliers (0 0 6, 4 0 12, 5 1 6, 3 6 3, 4 8 5, 4 5 5, 12 11 0, 0 6 3, 4 7 5, 1 0 8, 1 1 2, 0 4 9, 6 5 2, 4 8 0, 3 6 7, 7 1 1, 4 1 9, 5 0 6, 0 0 2, 2 1 7, 4 2 8, 4 4 5, 2 5 5) were omitted during the final refinement cycle.

Table 3. Experimental details.

Crystal data
Chemical formula C20H21F3N2O4
M r 410.39
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c (Å) 11.1351 (1), 17.0545 (2), 19.9131 (3)
V3) 3781.57 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.03
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021)
T min, T max 0.761, 0.801
No. of measured, independent and observed [I > 2σ(I)] reflections 24690, 4040, 3752
R int 0.031
(sin θ/λ)max−1) 0.637
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.102, 1.03
No. of reflections 4040
No. of parameters 265
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.21

Computer programs: CrysAlis PRO (Rigaku OD, 2021), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2020).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023001986/tx2063sup1.cif

e-79-00292-sup1.cif (779.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023001986/tx2063Isup2.hkl

e-79-00292-Isup2.hkl (322.4KB, hkl)

CCDC reference: 2245808

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors’ contributions are as follows. Conceptualization, MA, AAE and AB; synthesis, AAE, MSG and BGMR; X-ray analysis, SÖY and MA; writing (review and editing of the manuscript) SÖY, MA and AB; funding acquisition, AAE and MSG; supervision, MA, AAE and AB.

supplementary crystallographic information

Crystal data

C20H21F3N2O4 Dx = 1.442 Mg m3
Mr = 410.39 Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pbca Cell parameters from 15774 reflections
a = 11.1351 (1) Å θ = 2.2–78.7°
b = 17.0545 (2) Å µ = 1.03 mm1
c = 19.9131 (3) Å T = 100 K
V = 3781.57 (8) Å3 Prism, colourless
Z = 8 0.25 × 0.20 × 0.20 mm
F(000) = 1712

Data collection

XtaLAB Synergy, Dualflex, HyPix diffractometer 3752 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube Rint = 0.031
φ and ω scans θmax = 79.3°, θmin = 5.2°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) h = −12→14
Tmin = 0.761, Tmax = 0.801 k = −20→21
24690 measured reflections l = −25→25
4040 independent reflections

Refinement

Refinement on F2 Primary atom site location: difference Fourier map
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0586P)2 + 1.2514P] where P = (Fo2 + 2Fc2)/3
4040 reflections (Δ/σ)max = 0.001
265 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Experimental. CrysAlisPro 1.171.41.117a (Rigaku OD, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.46254 (7) 0.40849 (4) 0.69241 (4) 0.03490 (19)
F2 0.47797 (8) 0.35558 (4) 0.59393 (4) 0.0394 (2)
F3 0.62779 (7) 0.41697 (5) 0.63772 (5) 0.0411 (2)
C1 0.25270 (10) 0.46229 (6) 0.61741 (6) 0.0228 (2)
H1 0.2891 0.4136 0.6366 0.027*
C2 0.18508 (10) 0.50270 (6) 0.67299 (6) 0.0234 (2)
C3 0.06815 (11) 0.52036 (7) 0.68327 (6) 0.0269 (2)
H3 0.0021 0.5056 0.6559 0.032*
C4 0.06377 (11) 0.56583 (7) 0.74372 (6) 0.0287 (3)
H4 −0.0059 0.5875 0.7641 0.034*
C5 0.17741 (11) 0.57194 (7) 0.76607 (6) 0.0264 (2)
C6 0.23342 (11) 0.61600 (7) 0.82269 (6) 0.0291 (3)
H6A 0.1701 0.6439 0.8481 0.035*
H6B 0.2730 0.5786 0.8536 0.035*
N7 0.32220 (10) 0.67275 (6) 0.79832 (5) 0.0295 (2)
C8 0.27337 (13) 0.73574 (7) 0.75550 (7) 0.0337 (3)
H8A 0.2940 0.7876 0.7747 0.040*
H8B 0.1848 0.7315 0.7532 0.040*
C9 0.32582 (12) 0.72806 (7) 0.68700 (6) 0.0299 (3)
C10 0.42408 (12) 0.75661 (7) 0.65530 (7) 0.0318 (3)
H10 0.4722 0.7997 0.6692 0.038*
C11 0.44143 (11) 0.70908 (7) 0.59651 (6) 0.0286 (3)
H11 0.5035 0.7143 0.5641 0.034*
C12 0.35196 (10) 0.65556 (7) 0.59651 (6) 0.0246 (2)
C13 0.32223 (10) 0.58544 (6) 0.55457 (6) 0.0230 (2)
H13 0.3733 0.5873 0.5133 0.028*
C14 0.18934 (10) 0.58564 (6) 0.53217 (6) 0.0247 (2)
H14 0.1393 0.5980 0.5725 0.030*
C15 0.15409 (10) 0.50470 (7) 0.50819 (6) 0.0243 (2)
O15 0.11156 (8) 0.49283 (5) 0.45311 (4) 0.0309 (2)
C16 0.17334 (10) 0.43780 (7) 0.55769 (6) 0.0250 (2)
H16 0.0930 0.4225 0.5759 0.030*
N17 0.35219 (9) 0.51181 (5) 0.59182 (5) 0.0220 (2)
C17 0.47033 (10) 0.49467 (7) 0.59476 (6) 0.0244 (2)
O17 0.54942 (7) 0.53360 (5) 0.56885 (4) 0.0294 (2)
O18 0.25418 (7) 0.53151 (5) 0.72431 (4) 0.02384 (18)
C18 0.50906 (11) 0.41827 (7) 0.63123 (7) 0.0303 (3)
O19 0.27850 (8) 0.66728 (5) 0.65050 (4) 0.02727 (19)
C19 0.39990 (13) 0.70224 (8) 0.85115 (7) 0.0353 (3)
H19A 0.4331 0.6581 0.8766 0.053*
H19B 0.3534 0.7360 0.8813 0.053*
H19C 0.4656 0.7325 0.8312 0.053*
C20 0.16602 (12) 0.64922 (7) 0.48000 (7) 0.0320 (3)
H20A 0.0798 0.6519 0.4704 0.048*
H20B 0.2098 0.6368 0.4387 0.048*
H20C 0.1934 0.6999 0.4974 0.048*
C21 0.22552 (12) 0.36654 (7) 0.52092 (6) 0.0311 (3)
H21A 0.1701 0.3501 0.4854 0.047*
H21B 0.2367 0.3234 0.5528 0.047*
H21C 0.3031 0.3806 0.5011 0.047*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0367 (4) 0.0339 (4) 0.0340 (4) 0.0041 (3) −0.0030 (3) 0.0081 (3)
F2 0.0474 (5) 0.0240 (4) 0.0468 (5) 0.0084 (3) −0.0041 (4) −0.0032 (3)
F3 0.0281 (4) 0.0407 (4) 0.0544 (5) 0.0110 (3) −0.0028 (3) 0.0045 (4)
C1 0.0233 (5) 0.0194 (5) 0.0258 (5) −0.0018 (4) 0.0010 (4) 0.0013 (4)
C2 0.0253 (5) 0.0218 (5) 0.0231 (5) −0.0035 (4) −0.0007 (4) 0.0007 (4)
C3 0.0231 (5) 0.0307 (6) 0.0270 (6) −0.0025 (4) −0.0004 (4) 0.0010 (5)
C4 0.0246 (6) 0.0337 (6) 0.0279 (6) 0.0002 (5) 0.0034 (4) −0.0007 (5)
C5 0.0270 (6) 0.0270 (6) 0.0253 (6) −0.0001 (4) 0.0031 (4) −0.0018 (4)
C6 0.0297 (6) 0.0311 (6) 0.0266 (6) −0.0015 (5) 0.0011 (5) −0.0028 (5)
N7 0.0329 (5) 0.0269 (5) 0.0288 (5) −0.0024 (4) −0.0017 (4) −0.0021 (4)
C8 0.0418 (7) 0.0249 (6) 0.0345 (7) 0.0014 (5) −0.0018 (5) −0.0041 (5)
C9 0.0377 (7) 0.0207 (5) 0.0313 (6) −0.0007 (5) −0.0051 (5) −0.0011 (4)
C10 0.0389 (7) 0.0211 (5) 0.0353 (7) −0.0056 (5) −0.0071 (5) 0.0025 (5)
C11 0.0300 (6) 0.0228 (5) 0.0330 (6) −0.0038 (4) −0.0018 (5) 0.0053 (5)
C12 0.0266 (5) 0.0205 (5) 0.0268 (5) 0.0005 (4) −0.0016 (4) 0.0033 (4)
C13 0.0233 (5) 0.0200 (5) 0.0256 (5) −0.0008 (4) 0.0005 (4) 0.0030 (4)
C14 0.0245 (5) 0.0228 (5) 0.0268 (6) 0.0003 (4) −0.0011 (4) 0.0016 (4)
C15 0.0198 (5) 0.0262 (5) 0.0269 (6) −0.0006 (4) 0.0016 (4) −0.0010 (4)
O15 0.0305 (4) 0.0344 (5) 0.0278 (4) −0.0005 (4) −0.0040 (4) −0.0028 (3)
C16 0.0263 (5) 0.0222 (5) 0.0265 (6) −0.0048 (4) 0.0011 (4) −0.0007 (4)
N17 0.0222 (5) 0.0185 (4) 0.0255 (5) 0.0001 (3) 0.0014 (4) 0.0017 (3)
C17 0.0236 (5) 0.0239 (5) 0.0258 (6) 0.0011 (4) 0.0004 (4) −0.0019 (4)
O17 0.0234 (4) 0.0325 (4) 0.0322 (5) −0.0013 (3) 0.0020 (3) 0.0012 (3)
O18 0.0223 (4) 0.0246 (4) 0.0246 (4) −0.0010 (3) 0.0001 (3) −0.0021 (3)
C18 0.0290 (6) 0.0270 (6) 0.0349 (6) 0.0049 (5) −0.0005 (5) 0.0008 (5)
O19 0.0299 (4) 0.0235 (4) 0.0284 (4) −0.0026 (3) 0.0005 (3) −0.0017 (3)
C19 0.0393 (7) 0.0340 (6) 0.0326 (7) −0.0059 (5) −0.0025 (5) −0.0057 (5)
C20 0.0332 (6) 0.0273 (6) 0.0355 (6) 0.0005 (5) −0.0059 (5) 0.0059 (5)
C21 0.0407 (7) 0.0219 (5) 0.0307 (6) −0.0039 (5) 0.0015 (5) −0.0030 (5)

Geometric parameters (Å, º)

F1—C18 1.3344 (15) C11—C12 1.3511 (16)
F2—C18 1.3470 (15) C11—H11 0.9500
F3—C18 1.3286 (15) C12—O19 1.3655 (14)
C1—N17 1.4833 (14) C12—C13 1.4958 (15)
C1—C2 1.5056 (16) C13—N17 1.4961 (13)
C1—C16 1.5393 (16) C13—C14 1.5455 (16)
C1—H1 1.0000 C13—H13 1.0000
C2—C3 1.3521 (17) C14—C15 1.5125 (16)
C2—O18 1.3702 (14) C14—C20 1.5239 (16)
C3—C4 1.4328 (17) C14—H14 1.0000
C3—H3 0.9500 C15—O15 1.2117 (15)
C4—C5 1.3454 (17) C15—C16 1.5230 (16)
C4—H4 0.9500 C16—C21 1.5333 (16)
C5—O18 1.3776 (14) C16—H16 1.0000
C5—C6 1.4916 (16) N17—C17 1.3489 (15)
C6—N7 1.4661 (16) C17—O17 1.2176 (15)
C6—H6A 0.9900 C17—C18 1.5527 (16)
C6—H6B 0.9900 C19—H19A 0.9800
N7—C19 1.4520 (16) C19—H19B 0.9800
N7—C8 1.4755 (17) C19—H19C 0.9800
C8—C9 1.4895 (19) C20—H20A 0.9800
C8—H8A 0.9900 C20—H20B 0.9800
C8—H8B 0.9900 C20—H20C 0.9800
C9—C10 1.3537 (19) C21—H21A 0.9800
C9—O19 1.3713 (14) C21—H21B 0.9800
C10—C11 1.4370 (18) C21—H21C 0.9800
C10—H10 0.9500
N17—C1—C2 111.43 (9) N17—C13—H13 107.9
N17—C1—C16 108.54 (9) C14—C13—H13 107.9
C2—C1—C16 113.89 (9) C15—C14—C20 112.95 (10)
N17—C1—H1 107.6 C15—C14—C13 109.73 (9)
C2—C1—H1 107.6 C20—C14—C13 111.19 (10)
C16—C1—H1 107.6 C15—C14—H14 107.6
C3—C2—O18 110.37 (10) C20—C14—H14 107.6
C3—C2—C1 134.01 (11) C13—C14—H14 107.6
O18—C2—C1 115.57 (10) O15—C15—C14 122.66 (11)
C2—C3—C4 106.29 (10) O15—C15—C16 121.05 (10)
C2—C3—H3 126.9 C14—C15—C16 116.28 (10)
C4—C3—H3 126.9 C15—C16—C21 109.76 (10)
C5—C4—C3 106.73 (11) C15—C16—C1 112.18 (9)
C5—C4—H4 126.6 C21—C16—C1 111.50 (10)
C3—C4—H4 126.6 C15—C16—H16 107.7
C4—C5—O18 110.19 (10) C21—C16—H16 107.7
C4—C5—C6 133.02 (11) C1—C16—H16 107.7
O18—C5—C6 116.68 (10) C17—N17—C1 126.16 (9)
N7—C6—C5 111.36 (10) C17—N17—C13 114.89 (9)
N7—C6—H6A 109.4 C1—N17—C13 118.79 (9)
C5—C6—H6A 109.4 O17—C17—N17 124.67 (11)
N7—C6—H6B 109.4 O17—C17—C18 117.06 (11)
C5—C6—H6B 109.4 N17—C17—C18 118.23 (10)
H6A—C6—H6B 108.0 C2—O18—C5 106.33 (9)
C19—N7—C6 113.00 (10) F3—C18—F1 107.18 (11)
C19—N7—C8 112.71 (10) F3—C18—F2 107.23 (10)
C6—N7—C8 115.05 (10) F1—C18—F2 107.72 (10)
N7—C8—C9 108.70 (10) F3—C18—C17 109.62 (10)
N7—C8—H8A 109.9 F1—C18—C17 115.10 (10)
C9—C8—H8A 109.9 F2—C18—C17 109.68 (10)
N7—C8—H8B 109.9 C12—O19—C9 107.32 (9)
C9—C8—H8B 109.9 N7—C19—H19A 109.5
H8A—C8—H8B 108.3 N7—C19—H19B 109.5
C10—C9—O19 109.59 (11) H19A—C19—H19B 109.5
C10—C9—C8 135.42 (12) N7—C19—H19C 109.5
O19—C9—C8 113.66 (11) H19A—C19—H19C 109.5
C9—C10—C11 106.59 (11) H19B—C19—H19C 109.5
C9—C10—H10 126.7 C14—C20—H20A 109.5
C11—C10—H10 126.7 C14—C20—H20B 109.5
C12—C11—C10 106.38 (11) H20A—C20—H20B 109.5
C12—C11—H11 126.8 C14—C20—H20C 109.5
C10—C11—H11 126.8 H20A—C20—H20C 109.5
C11—C12—O19 110.05 (10) H20B—C20—H20C 109.5
C11—C12—C13 134.69 (11) C16—C21—H21A 109.5
O19—C12—C13 115.09 (10) C16—C21—H21B 109.5
C12—C13—N17 110.17 (9) H21A—C21—H21B 109.5
C12—C13—C14 111.80 (9) C16—C21—H21C 109.5
N17—C13—C14 111.01 (9) H21A—C21—H21C 109.5
C12—C13—H13 107.9 H21B—C21—H21C 109.5
N17—C1—C2—C3 125.68 (14) O15—C15—C16—C21 42.86 (15)
C16—C1—C2—C3 2.49 (18) C14—C15—C16—C21 −137.91 (10)
N17—C1—C2—O18 −51.30 (13) O15—C15—C16—C1 167.40 (11)
C16—C1—C2—O18 −174.48 (9) C14—C15—C16—C1 −13.37 (14)
O18—C2—C3—C4 2.27 (13) N17—C1—C16—C15 −40.88 (12)
C1—C2—C3—C4 −174.82 (12) C2—C1—C16—C15 83.87 (12)
C2—C3—C4—C5 −0.54 (14) N17—C1—C16—C21 82.69 (11)
C3—C4—C5—O18 −1.37 (14) C2—C1—C16—C21 −152.56 (10)
C3—C4—C5—C6 174.71 (13) C2—C1—N17—C17 116.85 (12)
C4—C5—C6—N7 −118.73 (15) C16—C1—N17—C17 −116.96 (12)
O18—C5—C6—N7 57.15 (14) C2—C1—N17—C13 −67.88 (12)
C5—C6—N7—C19 −165.25 (11) C16—C1—N17—C13 58.31 (12)
C5—C6—N7—C8 63.35 (13) C12—C13—N17—C17 −75.59 (12)
C19—N7—C8—C9 112.65 (12) C14—C13—N17—C17 160.03 (10)
C6—N7—C8—C9 −115.81 (12) C12—C13—N17—C1 108.62 (11)
N7—C8—C9—C10 −90.45 (17) C14—C13—N17—C1 −15.77 (13)
N7—C8—C9—O19 74.55 (13) C1—N17—C17—O17 174.16 (11)
O19—C9—C10—C11 −1.95 (14) C13—N17—C17—O17 −1.27 (17)
C8—C9—C10—C11 163.48 (14) C1—N17—C17—C18 −3.30 (17)
C9—C10—C11—C12 0.47 (14) C13—N17—C17—C18 −178.73 (10)
C10—C11—C12—O19 1.19 (13) C3—C2—O18—C5 −3.10 (12)
C10—C11—C12—C13 −173.65 (12) C1—C2—O18—C5 174.59 (9)
C11—C12—C13—N17 103.88 (15) C4—C5—O18—C2 2.73 (13)
O19—C12—C13—N17 −70.77 (12) C6—C5—O18—C2 −174.06 (10)
C11—C12—C13—C14 −132.19 (14) O17—C17—C18—F3 11.43 (15)
O19—C12—C13—C14 53.16 (13) N17—C17—C18—F3 −170.92 (10)
C12—C13—C14—C15 −163.52 (9) O17—C17—C18—F1 132.31 (12)
N17—C13—C14—C15 −40.06 (12) N17—C17—C18—F1 −50.03 (15)
C12—C13—C14—C20 70.80 (12) O17—C17—C18—F2 −106.05 (12)
N17—C13—C14—C20 −165.74 (10) N17—C17—C18—F2 71.60 (14)
C20—C14—C15—O15 −0.18 (16) C11—C12—O19—C9 −2.39 (13)
C13—C14—C15—O15 −124.85 (12) C13—C12—O19—C9 173.57 (9)
C20—C14—C15—C16 −179.39 (10) C10—C9—O19—C12 2.69 (13)
C13—C14—C15—C16 55.94 (13) C8—C9—O19—C12 −166.19 (10)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the O19/C9–C12 ring.

D—H···A D—H H···A D···A D—H···A
C1—H1···F1 1.00 2.23 2.9210 (14) 125
C1—H1···F2 1.00 2.47 3.1341 (14) 123
C3—H3···O15i 0.95 2.51 3.3809 (15) 152
C14—H14···O19 1.00 2.49 2.9114 (14) 105
C20—H20B···F3ii 0.98 2.54 3.4700 (16) 160
C21—H21B···Cg2iii 0.98 2.88 3.7561 (13) 150

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1/2, y−1/2, z.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Borisova, K. K., Nikitina, E. V., Novikov, R. A., Khrustalev, V. N., Dorovatovskii, P. V., Zubavichus, Y. V., Kuznetsov, M. L., Zaytsev, V. P., Varlamov, A. V. & Zubkov, F. I. (2018). Chem. Commun. 54, 2850–2853. [DOI] [PubMed]
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Ema, T., Okuda, K., Watanabe, S., Yamasaki, T., Minami, T., Esipenko, N. A. & Anzenbacher, P. (2014). Org. Lett. 16, 1302–1305. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Guchhait, T. & Mani, G. (2011). J. Org. Chem. 76, 10114–10121. [DOI] [PubMed]
  8. Gurbanov, A. V., Kuznetsov, M. L., Demukhamedova, S. D., Alieva, I. N., Godjaev, N. M., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2020a). CrystEngComm, 22, 628–633.
  9. Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020b). Chem. Eur. J. 26, 14833–14837. [DOI] [PubMed]
  10. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  11. Ivanova, L., Skjerve, E., Eriksen, G. S. & Uhlig, S. (2006). Toxicon, 47, 868–876. [DOI] [PubMed]
  12. Jana, D., Guchhait, T., Subramaniyan, V., Kumar, A. & Mani, G. (2019). Tetrahedron Lett. 60, 151247–151250.
  13. Khabibullina, G. R., Fedotova, E. S., Tyumkina, T. V., Abdullin, M. F., Ibragimov, A. G. & Dzhemilev, U. M. (2018). Chem. Heterocycl. C. 54, 744–750.
  14. Khalilov, A. N., Tüzün, B., Taslimi, P., Tas, A., Tuncbilek, Z. & Cakmak, N. K. (2021). J. Mol. Liq. 344, 117761.
  15. Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2022). Synthesis, 54, 797–863.
  16. Kvyatkovskaya, E. A., Borisova, K. K., Epifanova, P. P., Senin, A. A., Khrustalev, V. N., Grigoriev, M. S., Bunev, A. S., Gasanov, R. E., Polyanskii, K. B. & Zubkov, F. I. (2021a). New J. Chem. 45, 19497–19505.
  17. Kvyatkovskaya, E. A., Epifanova, P. P., Nikitina, E. V., Senin, A. A., Khrustalev, V. N., Polyanskii, K. B. & Zubkov, F. I. (2021b). New J. Chem. 45, 3400–3407.
  18. Levy, D., Bluzat, A., Seigneuret, M. & Rigaud, J.-L. (1995). Biochem. Pharmacol. 50, 2105–2107. [DOI] [PubMed]
  19. Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.
  20. Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. G., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.
  21. Mahmoudi, G., Bauzá, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodríguez-Diéguez, A., López-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
  22. Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Guedes da Silva, M. F. C., Resnati, G. & Pombeiro, A. J. L. (2022). Coord. Chem. Rev. 464, 214556.
  23. Mahmudov, K. T., Huseynov, F. E., Aliyeva, V. A., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Chem. Eur. J. 27, 14370–14389. [DOI] [PubMed]
  24. Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235–2248. [DOI] [PMC free article] [PubMed]
  25. Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  26. Rivera, A., Nerio, L. S. & Quevedo, R. (2015). Tetrahedron Lett. 56, 6059–6062.
  27. Safavora, A. S., Brito, I., Cisterna, J., Cárdenas, A., Huseynov, E. Z., Khalilov, A. N., Naghiyev, F. N., Askerov, R. K. & Maharramov, A. M. Z. (2019). Kristallogr. New Cryst. Struct. 234, 1183–1185.
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Shikhaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 150, 377–381.
  31. Shikhaliyev, N. Q., Kuznetsov, M. L., Maharramov, A. M., Gurbanov, A. V., Ahmadova, N. E., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2019). CrystEngComm, 21, 5032–5038.
  32. Simonov, Y. A., Dvorkin, A. A., Fonari, M. S., Malinowski, T. I., Luboch, E., Cygan, A., Biernat, J. F., Ganin, E. V. & Popkov, Y. A. (1993). J. Inclusion Phenom. Mol. Recognit. Chem. 15, 79–89.
  33. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  34. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia.http://hirshfeldsuface.net
  35. Yadigarov, R. R., Khalilov, A. N., Mamedov, I. G., Nagiev, F. N., Magerramov, A. M. & Allakhverdiev, M. A. (2009). Russ. J. Org. Chem. 45, 1856–1858.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989023001986/tx2063sup1.cif

e-79-00292-sup1.cif (779.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023001986/tx2063Isup2.hkl

e-79-00292-Isup2.hkl (322.4KB, hkl)

CCDC reference: 2245808

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES