Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Mar 23;79(Pt 4):386–391. doi: 10.1107/S2056989023002591

Enanti­opure (S)-butan-2-yl N-(4-x-phen­yl)thio­carbamates, x = NO2, OCH3, F, and Cl

Werner Kaminsky a,*, Max Kaganyuk a
Editor: M Zellerb
PMCID: PMC10088315  PMID: 37057026

Enanti­opure (S)-butan-2-yl-N-(4-x-phen­yl)thio­carbamates, x = NO2, OCH3, F, and Cl were synthesized from reacting aryl iso­thio­cyanate with (S)-2-butanol to form new chiral crystals as the basis for future research into their non-linear physical and potentially biological properties.

Keywords: enanti­opure, (S)-2but­yl, thio­carbamate, iso­thio­cyanate, crystal structure

Abstract

The structures of (S)-butan-2-yl N-(4-nitro­phen­yl)thio­carbamate, C11H14N2O3S, (I), (S)-butan-2-yl N-(4-meth­oxy­phen­yl)thio­carbamate, C12H17NO2S, (II), (S)-butan-2-yl N-(4-fluoro­phen­yl)thio­carbamate, C11H14FNOS, (III), and (S)-butan-2-yl N-(4-chloro­phen­yl)thio­carbamate, C11H14ClNOS, (IV), all at 100 K, have monoclinic (P21) symmetry with two independent mol­ecules in the asymmetric unit. The Flack absolute structure parameters in all cases confirm the absence of inversion symmetry. The structures display N—H⋯S hydrogen bonds, resulting in R 2 2(8) hydrogen-bonded ring synthons connecting the two independent mol­ecules. Despite the ring synthon, the packing follows two distinct patterns, with (I) and (IV) ‘pancaking’ along the b-axis direction, while the other two ‘sandwich’ in layers perpendicular to the b axis. Crystal morphologies were determined theoretically via the BFDH (Bravais, Friedel, Donnay–Harker) model and agree qualitatively with the experimentally indexed results. One of the butyl substituent of (II) exhibits structural disorder.

1. Chemical context

This research is part of an undergraduate study into creating new chiral model compounds from reacting a chiral moiety with another mol­ecule to combine specific features of both. Initially, iso­thio­cyanates were reacted with α-methyl­benzyl­amine to form chiral thio­urea derivatives (Kaminsky et al., 2010), whereas here, the poisonous iso­thio­cyanates were reacted with (S)-2-butanol to form thio­carbamates with possible protein-docking capability (Bull & Breese, 1978; Du et al. 2020). Specifically, (S)-butan-2-yl-N-(4-x-phen­yl)thio­carb­amates were synthesized from enanti­opure (S)-2-butanol and 4-x-phenyl­iso­thio­cyanate, x = NO2, OCH3, F, and Cl. Similar thio­carbamates have been investigated previously for their biological activities (Ghosh & Brindisi, 2015). 1.

2. Structural commentary

Iso­thio­cyanates were selected because of the ease with which the –N=C=S functional group can be reacted with amines or alcohols to form thio­ureas or thio­carbamates, which in turn are well suited for simple crystal-growth studies. The –R=S linkage builds out selected hydrogen bonds, structuring the packing of the mol­ecule and thereby enhancing crystal growth. In addition, the sulfur atom has sufficient anomalous scattering capability with Mo radiation, which permits absolute structure determinations via single crystal X-ray diffraction. Further, from comparing a series of crystals with small chemical variations, we hoped to gain insight into the functionality of those inter­changed moieties, here NO2, OCH3, F, and Cl in the 4-x location on the structures of the phenyl­thio­carbamates. All four structures crystallize in the chiral space group P21 of the monoclinic system. Bond lengths and angles are in the expected ranges. We observed two pairings, where the 4-NO2 and 4-Cl crystals exhibited a similarly short b-axis, whereas OCH3 and F in the 4-x location had the longest axis dimensions along b. The chirality of the compounds was confirmed by the absolute structure parameters [(I)–(IV): −0.02 (3), −0.04 (4), 0.17 (13), and 0.022 (14), respectively].

3. Supra­molecular features

In each structure shown in Fig. 1, pairs of the title mol­ecules organize via the thio­amide {⋯H—N—C=S}2 into – Inline graphic (8) hydrogen-bonded ring synthons (Allen et al., 1999). All six non-H atoms of the ring synthons are coplanar with r.m.s. deviations from the plane of 0.026 to 0.044 Å between the four synthons. The N⋯S distances of the synthon bonds range from 3.314 (3) to 3.410 (2) Å (Tables 1–4 ). Hydrogen-to-acceptor distances are similar as well, however, the D—H⋯A angles appear to deviate slightly more from a ‘straight’ geometry in compounds (I) and (IV) than in (II) and (III). With the exception of (III), the sulfur atoms act as acceptors for two hydrogen bonds with a major N—H⋯S and a weaker secondary C—H⋯S inter­action, which causes the synthon geometry to shift slightly towards the secondary inter­actions. In (I), we observe a weak inter­action with the ortho-C—H of the phenyl groups (C2—H2⋯S2, C13—H13⋯S1). The inter­action is strong enough to also cause the phenyl rings to become coplanar with the synthon plane. In (II), the secondary inter­action is with a proton of the meth­oxy group from a symmetry-related mol­ecule. For (III), consolidating S⋯F non-covalent inter­molecular inter­actions (Thorley & McCulloch, 2018) are found at 3.62 (1) Å instead of an H⋯S inter­action. The phenyl rings in (IV) are tilted towards the ring synthon plane, causing the ortho-C—H distance to the sulfur atoms to be of lesser importance than in (I). Thus, for each case shown, we see a distinctly different bond environment of the sulfur atoms.

Figure 1.

Figure 1

The mol­ecular structure of (I)–(IV), with non-H atoms labeled and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds drawn as dashed lines. Disorder omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2 0.80 (2) 2.62 (2) 3.3762 (19) 159 (2)
N3—H3N⋯S1 0.85 (2) 2.57 (2) 3.4095 (18) 166 (2)
C2—H2⋯S2 0.95 2.87 3.592 (2) 134
C13—H13⋯S1 0.95 2.81 3.611 (2) 142
C5—H5⋯O2i 0.95 2.53 3.203 (3) 128

Symmetry code: (i) Inline graphic .

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2 0.82 (4) 2.53 (4) 3.347 (3) 171 (4)
N2—H2N⋯S1 0.86 (4) 2.47 (4) 3.314 (3) 165 (4)
C12—H12B⋯S1i 0.98 2.86 3.793 (4) 158
C24—H24B⋯S2ii 0.98 2.86 3.819 (4) 167
C18—H18⋯S2iii 0.95 2.98 3.730 (4) 136
C10B—H10C⋯S1 0.99 2.96 3.445 (11) 112

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Table 3. Hydrogen-bond geometry (Å, °) for (III) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2 0.86 (5) 2.51 (5) 3.341 (8) 164 (8)
N2—H2N⋯S1 0.86 (5) 2.50 (5) 3.336 (7) 165 (7)
C8—H8A⋯F1i 0.98 2.59 3.494 (10) 154

Symmetry code: (i) Inline graphic .

Table 4. Hydrogen-bond geometry (Å, °) for (IV) .

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.83 (2) 2.511 (19) 3.3163 (13) 163.0 (18)
N2—H2⋯S1 0.829 (19) 2.563 (19) 3.3645 (13) 162.8 (17)
C6—H6⋯S2 0.95 2.99 3.5961 (17) 123
C17—H17⋯S1 0.95 2.97 3.6122 (16) 127
C2—H2A⋯O1 0.95 2.38 2.8539 (18) 111
C13—H13⋯O2 0.95 2.29 2.8197 (19) 114

The packing follows two distinct patterns, with (I) and (IV) ‘pancaking’ along the b-axis direction, while the other two ‘sandwich’ in layers perpendicular to the b-axis, see Fig. 2.

Figure 2.

Figure 2

Packing of the structures of this report. (I), (IV): view slightly inclined to the b axis·(II), (III): view approximately along the a axis. Disorder omitted for clarity.

Packing of (II), (III): The 4-x-phenyl moiety is approximately parallel to the ac plane. The Inline graphic (8) hydrogen-bonded rings orient roughly parallel to the c plane in (II) or the bc plane in (III). The phenyl­carbamate double layers are separated by layers containing the (S)-butan-2-yl moieties. Short distances between the phenyl plane and a symmetry-related OCH3 group are seen in (II). As a result of the S—F inter­action in (III), the F atoms are not found as close to a phenyl group, but both are in hydrogen-bonding distance to a methyl group of a symmetry-related butyl moiety.

Packing of (I), (IV): The Inline graphic (8) hydrogen-bonded rings are roughly parallel to the bc planes. Each dimer stacks entirely like ‘pancakes’ along the short b-axis, with a separate stack for the 21 axis-related dimers. The dimers are inclined to b so that the NO2 group of (I), or Cl of (IV) are found at a short distance to the phenyl of the mol­ecule of the next layer. The NO2–phenyl plane distances are not the same for the independent phenyl moieties and are measured at 2.99 (2) and 3.169 (16) Å in (I). In (IV), the Cl–phenyl plane distances are 3.062 (3) and 3.316 (12) Å. These distances are short and may indicate inter­action between the phenyl ring and the 4-x-groups, (NO2, Cl). One oxygen atom of the NO2 in (I) establishes a hydrogen bond with a proton of a symmetry-related phenyl ring.

The different stacking models seem not to correlate with the electronegativity of the ligands, which is generally known to be in decreasing order NO2 > F > OCH3 > Cl (Pauling, 1932).

Morphologies of the four compounds, drawn with WinXMorph (Kaminsky, 2005) are shown in Fig. 3. For (I), the indexed faces are in decreasing order (increasing central distance): pinacoids 〈1 0 1〉, 〈1 0 Inline graphic 〉, sphenoides 〈2 1 2〉, 〈 Inline graphic Inline graphic Inline graphic 〉. For (IV), the face indexing yielded pinacoids 〈1 0 1〉, 〈1 0 Inline graphic 〉, sphenoides 〈5 Inline graphic 2〉, 〈 Inline graphic 1 Inline graphic 〉. This observation was confirmed qualitatively by BFDH (Bravais, Friedel, Donnay–Harker) model simulations (Bravais, 1866; Friedel, 1907; Donnay & Harker, 1937) using WinXMorph (Kaminsky, 2007) where the dominant crystal facets are pinacoids 〈001〉, 〈100〉, 〈10 Inline graphic 〉, and sphenoides 〈1 1 0〉, 〈0 1 1〉, 〈1 Inline graphic 0〉, 〈0 Inline graphic 1〉, 〈1 1 Inline graphic 〉, and 〈1 Inline graphic 1〉 in decreasing order. For (I) and (IV), it is notable that the 〈0 0 1〉, 〈1 0 0〉 and calculated sphenoids were not observed. For compounds (II) and (III), a more prismatic morphology was observed. The BFDH model yields in both cases, in decreasing face-size order: pinacoids 〈0 1 0〉, 〈1 0 0〉, 〈1 0 Inline graphic 〉, sphenoids 〈1 1 0〉, 〈1 Inline graphic 0〉, 〈1 1 Inline graphic 〉, 〈1 Inline graphic Inline graphic 〉. The observed faces in (II) are 〈0 1 Inline graphic 〉, 〈0 1 0〉, 〈0 Inline graphic 0〉, 〈1 0 0〉, 〈2 1 2〉. Compound (III) grew with 〈0 Inline graphic Inline graphic 〉, 〈0 1 Inline graphic 〉, and 〈1 0 0〉 faces.

Figure 3.

Figure 3

The morphologies of the samples used to obtain structures for this report and the result of BFDH calculations based on the structures.

The BFDH model is entirely based on the metrical and space-group symmetry. It does not account for solvent–surface effects. Thus, differences of growth rates due to such effects in the real samples may often distort the habitus, as well as changing the occurrence of faces.

4. Database survey

The structures of this report are not found in the Cambridge Structural Database (CSD version 5.42; Groom et al., 2016). Earlier, we deposited related structures to the CSD, viz. the racemic (RS)-butan-2-yl equivalent structures to (I), (II), and (IV), denoted with a prime: (I′): CCDC 2249338, (II’): 2249339, (IV’): 2249336 (Kaganyuk et al., 2023). Instead of (III′), for which we got only a very low in quality obtained structure, we uploaded the 4-bromo structure (V′), CCDC 2249337. The 4-Cl (IV’) and 4-Br (V′) compounds, both in space group P21/c, exhibit very similar packing to that of (IV), despite the addition of the glide-plane symmetry. The other two crystallize in the triclinic space group P Inline graphic , and only the (RS)-butan-2-yl-4-CH3 phenyl­thio­carbamate crystal builds out the Inline graphic (8) synthon, thus although likely, the thio­carbamates do not always exhibit this feature. A more general search for ‘thio­carbamate’ gave 315 hits, indicating that this substance group has been crystallized moderately often. Via a GOOGLE search (March 2023), ‘phenyl­thio­carbamate’ is found 9,370 times. Most of the compounds incorporate a center of symmetry, which is often compatible with an Inline graphic (8) synthon. In fact, the inter­net delivers over 43,000 results when searching for ‘N—H⋯S R22(8) synthon’ (GOOGLE search, March 2023). The number drops considerably, to 93, in a search for ’ring synthon in phenyl­thio­carbamates’. ‘Ring synthon in chiral phenyl­thio­carbamates’ yields only one reasonable result, already included here (Kaminsky et al., 2010).

5. Synthesis and crystallization

All chemicals were obtained from Sigma Aldrich. Compounds (I), (III), and (IV): 4 ml vials were charged with a stir bar, the aryl iso­thio­cyanate [0.100 g, 0.555 mmol (I), 0.653 mmol (III), 0.590 mmol (IV)] and 2(S)-butanol (82.3 mg, 1.1 mmol). Using a hot oil bath, the reaction was run at 381 K for 24 h. Compound (II): A 4 mL vial was charged with a stir bar and 2(S)-butanol (0.054 g, 0.726 mmol). While stirring, tri­ethyl­amine (0.011 g, 0.109 mmol) was added. After 5 minutes, the aryl iso­thio­cyanate (0.100 g, 0.605 mmol) was added dropwise. The reaction was allowed to continue for 24 h at 358 K. Subsequently, for all four compounds, the vials, after allowing to cool, were covered with filter paper and left in a vacuum oven at 343 K. The crude product was purified by flash column chromatography, and eluted with 1:4 ethyl acetate/hexane. Fractions were collected in 13 × 100 mm test tubes and were spotted for thin layer chromatography to locate the product. The fractions containing the product were rotovaped in a 25 ml round-bottom flask. The solid found in low yields was redissolved in a 1:4 methanol/ethanol solution and crystals grew via slow evaporation. (I): 1H NMR (300 MHz, CDCl3): δ 9.2638 (bs, 1H), 8.1926 (d, J = 7.1 Hz, 2H), 7.5520 (bs, 2H), 5.5528 (m, 1H), 1.7044 (m, 2H), 1.4038 (d, J = 6.3 Hz, 3H), 0.9634 (t, J = 7.4 Hz, 3H). (II): 1H NMR (300 MHz,(CD3)2CO): δ 9.7438 (s, 1H), 7.5813 (m, 2H), 6.9070 (d, J = 9.1 Hz, 2H), 5.4819 (bs, 3H), 3.7847 (s, 3H), 1.7022 (m, 2H), 1.2948 (s, 3H), 0.9184 (t, J = 7.4, 3H). (III): 1H NMR (300 MHz, CDCl3): δ 8.8978 (bs, 1H), 7.2240 (bs, 2H), 7.0147 (t, J = 8.5 Hz, 2H), 5.0768 (m, 1H), 1.7280 (m, 2H), 1.3461 (d, J = 6.5 Hz, 3H), 0.9316 (t, J = 7.5 Hz, 3H). (IV): 1H NMR (300 MHz, CDCl3): δ 8.7150 (bs, 1H), 7.2918 (d, J = 8.6 Hz, 2H), 7.2130 (bs, 2H), 5.5199 (m, 1H), 1.7269 (m, 2H), 1.3640 (d, J = 6.2 Hz, 3H), 0.9472 (t, J = 7.4 Hz, 3H).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 5. Hydrogen atoms on carbon atoms were positioned geometrically, using a riding model, with C—H = 0.95–1.00Å. U iso(H) = 1.2 (1.5 for methyl groups) times U eq(C). The nitro­gen protons were refined positionally, with U iso(H) = 1.2U eq(N). The two phenyl groups of the independent mol­ecules of (III) were optimized to enhance the C—C bond precision with the C—C distance at 1.39 Å (AFIX 66). In (II), one of the two (S)-butan-2-yl moieties appeared threefold disordered, requiring restraint of the displacement parameters with a SIMU 0.01 command. One atom (C8) was constrained to the same displacement parameter for each fraction with EADP. The disordered geometries were linked through a SAME command to the geometry of the ordered moiety of the other mol­ecule, and distances of O1 to C8, C8B and C8C were restrained to be similar (SADI), all with default esds. The occupancies of the three fractions were 0.444 (4), 0.354 (4), and 0.202 (4).

Table 5. Experimental details.

  (I) (II) (III) (IV)
Crystal data
Chemical formula C11H14N2O3S C12H17NO2S C11H14FNOS C11H14ClNOS
M r 254.3 239.32 227.29 243.74
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21 Monoclinic, P21
Temperature (K) 100 100 100 100
a, b, c (Å) 16.052 (2), 4.7635 (6), 16.853 (2) 6.6973 (5), 21.2076 (17), 9.1899 (7) 6.9723 (13), 20.166 (3), 8.2818 (14) 15.4173 (15), 5.0170 (5), 16.2502 (15)
β (°) 101.702 (8) 102.868 (5) 99.403 (13) 105.592 (5)
V3) 1261.9 (3) 1272.49 (17) 1148.8 (3) 1210.7 (2)
Z 4 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.26 0.24 0.27 0.46
Crystal size (mm) 0.6 × 0.12 × 0.06 0.6 × 0.48 × 0.2 0.5 × 0.1 × 0.05 0.6 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker APEXII Bruker APEXII Bruker APEXII Bruker APEXII
Absorption correction Numerical (SADABS; Krause et al., 2015) Numerical (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015) Numerical (SADABS; Krause et al., 2015)
T min, T max 0.959, 1 0.657, 0.745 0.863, 1 0.954, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 37641, 9553, 7648 21043, 7694, 5666 10466, 5263, 2448 46534, 9292, 8469
R int 0.047 0.048 0.171 0.029
(sin θ/λ)max−1) 0.772 0.720 0.650 0.772
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.084, 1.01 0.051, 0.113, 1.01 0.068, 0.143, 0.95 0.027, 0.066, 1.04
No. of reflections 9553 7694 5263 9292
No. of parameters 317 368 257 281
No. of restraints 1 293 2 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.28 0.51, −0.42 0.45, −0.52 0.36, −0.22
Absolute structure Flack x determined using 2891 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 2891 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 2891 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013) Flack x determined using 2891 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.02 (3) 0.03 (4) 0.17 (13) 0.022 (14)

Computer programs: APEX2 and SAINT (Bruker, 2012), SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015), and ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, II, III, IV, New_Global_Publ_Block. DOI: 10.1107/S2056989023002591/zl5044sup1.cif

e-79-00386-sup1.cif (3.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023002591/zl5044Isup5.hkl

e-79-00386-Isup5.hkl (758KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023002591/zl5044IIsup6.hkl

e-79-00386-IIsup6.hkl (611KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989023002591/zl5044IIIsup7.hkl

e-79-00386-IIIsup7.hkl (418.7KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989023002591/zl5044IVsup8.hkl

e-79-00386-IVsup8.hkl (737.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044Isup6.cml

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044IVsup9.cml

CCDC references: 2249641, 2249640, 2249639, 2249638

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The contributions to this study of undergraduate students Crystal Chang, Bao-Chau Ngoc Tran, Tram-Anh Pham, Donald Responte, Dan Darenciang, Joel A. Zazueta, Joey B. Gallegos, Viktoria Pakhnyuk are gratefully acknowledged. We also like to thank the Hooked on Photonics REU program and the MDITR-STC organization at the University of Washington. We are especially indebted to Bart Kahr and Larry Dalton for lab space and Dr Meghana Rawal and Dr Delwin Elder for guidance.

supplementary crystallographic information

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Crystal data

C11H14N2O3S F(000) = 536
Mr = 254.3 Dx = 1.339 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 8016 reflections
a = 16.052 (2) Å θ = 2.5–32.3°
b = 4.7635 (6) Å µ = 0.26 mm1
c = 16.853 (2) Å T = 100 K
β = 101.702 (8)° Prism, yellow
V = 1261.9 (3) Å3 0.6 × 0.12 × 0.06 mm
Z = 4

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Data collection

Bruker APEXII diffractometer 9553 independent reflections
Radiation source: sealed x-ray tube 7648 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
φ or ω oscillation scans θmax = 33.3°, θmin = 1.6°
Absorption correction: numerical (SADABS; Krause et al., 2015) h = −24→24
Tmin = 0.959, Tmax = 1 k = −7→7
37641 measured reflections l = −25→25

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0311P)2 + 0.2393P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
9553 reflections Δρmax = 0.31 e Å3
317 parameters Δρmin = −0.28 e Å3
1 restraint Absolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraints Absolute structure parameter: −0.02 (3)
Primary atom site location: structure-invariant direct methods

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.15331 (12) −0.1677 (4) 0.84542 (12) 0.0152 (4)
C2 0.12449 (12) −0.0015 (4) 0.77677 (12) 0.0174 (4)
H2 0.151144 −0.016729 0.731506 0.021*
C3 0.05799 (13) 0.1841 (4) 0.77393 (13) 0.0180 (4)
H3 0.038254 0.295554 0.727155 0.022*
C4 0.02066 (13) 0.2038 (4) 0.84101 (13) 0.0177 (4)
C5 0.04839 (13) 0.0434 (5) 0.90953 (12) 0.0201 (4)
H5 0.021711 0.061094 0.954713 0.024*
C6 0.11491 (13) −0.1429 (4) 0.91239 (13) 0.0198 (4)
H6 0.134354 −0.253052 0.959486 0.024*
C7 0.27251 (12) −0.5046 (4) 0.89663 (12) 0.0160 (4)
C8 0.39282 (13) −0.4736 (6) 1.07282 (13) 0.0257 (4)
H8A 0.423896 −0.579353 1.119423 0.031*
H8B 0.382833 −0.281755 1.089701 0.031*
H8C 0.426392 −0.468052 1.030338 0.031*
C9 0.30844 (13) −0.6152 (5) 1.04042 (12) 0.0194 (4)
H9 0.318562 −0.810097 1.022493 0.023*
C10 0.24760 (13) −0.6239 (5) 1.09819 (13) 0.0223 (4)
H10A 0.192737 −0.703946 1.069676 0.027*
H10B 0.236767 −0.429797 1.114471 0.027*
C11 0.28090 (15) −0.7970 (5) 1.17392 (13) 0.0251 (5)
H11A 0.235765 −0.819771 1.204789 0.03*
H11B 0.32951 −0.700617 1.207476 0.03*
H11C 0.298872 −0.981959 1.158234 0.03*
C12 0.37889 (12) −1.0550 (4) 0.66160 (12) 0.0145 (4)
C13 0.41365 (12) −1.2037 (4) 0.73232 (12) 0.0162 (4)
H13 0.393993 −1.167115 0.780817 0.019*
C14 0.47613 (12) −1.4027 (4) 0.73227 (12) 0.0161 (4)
H14 0.499536 −1.504145 0.780133 0.019*
C15 0.50388 (11) −1.4511 (4) 0.66101 (12) 0.0143 (3)
C16 0.47042 (12) −1.3078 (4) 0.59063 (12) 0.0171 (4)
H16 0.490499 −1.345659 0.542426 0.021*
C17 0.40740 (12) −1.1085 (4) 0.59036 (12) 0.0168 (4)
H17 0.383929 −1.009483 0.542073 0.02*
C18 0.25910 (11) −0.7200 (4) 0.61245 (11) 0.0144 (3)
C19 0.23833 (14) −0.7059 (6) 0.39684 (13) 0.0263 (4)
H19A 0.199951 −0.630163 0.348897 0.032*
H19B 0.250212 −0.903695 0.387626 0.032*
H19C 0.291683 −0.599465 0.406889 0.032*
C20 0.19702 (12) −0.6818 (4) 0.46925 (11) 0.0164 (4)
H20 0.186765 −0.479585 0.480041 0.02*
C21 0.11459 (13) −0.8446 (5) 0.46106 (14) 0.0230 (4)
H21A 0.101425 −0.87198 0.515435 0.028*
H21B 0.12168 −1.032074 0.437977 0.028*
C22 0.04055 (13) −0.6930 (6) 0.40690 (14) 0.0283 (5)
H22A −0.012029 −0.799175 0.405447 0.034*
H22B 0.051502 −0.677764 0.351929 0.034*
H22C 0.034616 −0.504726 0.428525 0.034*
N1 0.21907 (11) −0.3574 (4) 0.83957 (11) 0.0166 (3)
H1N 0.2270 (15) −0.384 (5) 0.7950 (15) 0.02*
N2 −0.04965 (11) 0.3997 (4) 0.83882 (11) 0.0228 (4)
N3 0.31755 (10) −0.8517 (4) 0.66917 (10) 0.0151 (3)
H3N 0.3146 (15) −0.810 (5) 0.7178 (15) 0.018*
N4 0.56963 (10) −1.6622 (3) 0.66027 (10) 0.0173 (3)
O1 −0.07477 (11) 0.5356 (4) 0.77657 (10) 0.0371 (4)
O2 −0.08002 (10) 0.4226 (4) 0.89972 (10) 0.0296 (4)
O3 0.26222 (9) −0.4523 (3) 0.97083 (8) 0.0185 (3)
O4 0.59552 (10) −1.7972 (3) 0.72206 (9) 0.0257 (4)
O5 0.59525 (9) −1.6972 (4) 0.59691 (9) 0.0246 (3)
O6 0.25984 (9) −0.8002 (3) 0.53765 (8) 0.0168 (3)
S1 0.34368 (3) −0.72622 (11) 0.87190 (3) 0.01983 (11)
S2 0.19349 (3) −0.48150 (11) 0.63883 (3) 0.01827 (10)

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0164 (8) 0.0135 (8) 0.0158 (9) −0.0006 (6) 0.0037 (7) −0.0010 (7)
C2 0.0206 (9) 0.0176 (8) 0.0146 (9) 0.0004 (8) 0.0051 (7) −0.0011 (8)
C3 0.0213 (9) 0.0176 (9) 0.0149 (9) 0.0007 (7) 0.0031 (7) 0.0008 (7)
C4 0.0175 (9) 0.0178 (9) 0.0177 (10) 0.0016 (7) 0.0033 (7) −0.0020 (7)
C5 0.0214 (9) 0.0240 (10) 0.0162 (9) 0.0038 (8) 0.0065 (7) 0.0018 (8)
C6 0.0212 (10) 0.0227 (9) 0.0163 (10) 0.0034 (8) 0.0056 (8) 0.0025 (8)
C7 0.0182 (8) 0.0147 (8) 0.0156 (9) −0.0001 (7) 0.0044 (7) −0.0013 (7)
C8 0.0221 (10) 0.0343 (11) 0.0200 (10) −0.0017 (10) 0.0025 (8) 0.0020 (10)
C9 0.0218 (10) 0.0208 (9) 0.0149 (9) 0.0033 (8) 0.0018 (7) 0.0019 (8)
C10 0.0243 (10) 0.0236 (10) 0.0194 (10) −0.0026 (8) 0.0055 (8) −0.0013 (8)
C11 0.0336 (12) 0.0241 (10) 0.0170 (10) −0.0061 (9) 0.0039 (9) −0.0004 (8)
C12 0.0130 (8) 0.0148 (8) 0.0152 (9) −0.0002 (6) 0.0019 (7) −0.0013 (7)
C13 0.0188 (8) 0.0174 (8) 0.0126 (9) 0.0019 (7) 0.0038 (7) −0.0005 (8)
C14 0.0179 (9) 0.0173 (8) 0.0129 (9) 0.0024 (7) 0.0026 (7) 0.0005 (7)
C15 0.0129 (8) 0.0134 (8) 0.0166 (9) 0.0022 (6) 0.0028 (6) 0.0003 (7)
C16 0.0171 (9) 0.0206 (9) 0.0148 (9) 0.0018 (7) 0.0059 (7) −0.0004 (7)
C17 0.0187 (9) 0.0185 (8) 0.0133 (9) 0.0038 (7) 0.0037 (7) 0.0017 (7)
C18 0.0129 (8) 0.0150 (7) 0.0151 (9) −0.0006 (7) 0.0023 (6) 0.0009 (8)
C19 0.0225 (10) 0.0397 (12) 0.0163 (10) −0.0003 (10) 0.0032 (8) 0.0027 (10)
C20 0.0166 (8) 0.0179 (9) 0.0134 (9) 0.0017 (7) −0.0001 (7) 0.0022 (7)
C21 0.0200 (10) 0.0252 (10) 0.0221 (11) −0.0021 (8) 0.0002 (8) 0.0034 (9)
C22 0.0172 (9) 0.0370 (13) 0.0285 (12) 0.0020 (9) −0.0010 (8) −0.0010 (11)
N1 0.0215 (8) 0.0175 (8) 0.0116 (8) 0.0042 (6) 0.0051 (6) −0.0007 (6)
N2 0.0224 (9) 0.0266 (9) 0.0201 (9) 0.0061 (7) 0.0057 (7) 0.0007 (8)
N3 0.0165 (8) 0.0176 (7) 0.0110 (8) 0.0028 (6) 0.0021 (6) −0.0008 (6)
N4 0.0175 (8) 0.0161 (7) 0.0178 (8) 0.0023 (6) 0.0025 (6) −0.0002 (6)
O1 0.0385 (9) 0.0461 (10) 0.0284 (9) 0.0228 (9) 0.0113 (7) 0.0145 (9)
O2 0.0305 (9) 0.0396 (9) 0.0209 (8) 0.0139 (7) 0.0104 (7) −0.0004 (7)
O3 0.0234 (7) 0.0201 (7) 0.0118 (6) 0.0052 (6) 0.0030 (5) −0.0001 (6)
O4 0.0313 (8) 0.0245 (8) 0.0205 (8) 0.0126 (6) 0.0032 (6) 0.0050 (6)
O5 0.0247 (7) 0.0294 (8) 0.0224 (8) 0.0089 (7) 0.0107 (6) −0.0004 (7)
O6 0.0168 (6) 0.0209 (7) 0.0119 (6) 0.0046 (5) 0.0007 (5) 0.0001 (5)
S1 0.0218 (2) 0.0214 (2) 0.0165 (2) 0.0062 (2) 0.00440 (18) −0.0007 (2)
S2 0.0180 (2) 0.0205 (2) 0.0167 (2) 0.00655 (19) 0.00423 (18) 0.0005 (2)

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Geometric parameters (Å, º)

C1—C6 1.396 (3) C13—C14 1.380 (3)
C1—C2 1.401 (3) C13—H13 0.95
C1—N1 1.408 (2) C14—C15 1.382 (3)
C2—C3 1.379 (3) C14—H14 0.95
C2—H2 0.95 C15—C16 1.379 (3)
C3—C4 1.386 (3) C15—N4 1.460 (2)
C3—H3 0.95 C16—C17 1.387 (3)
C4—C5 1.381 (3) C16—H16 0.95
C4—N2 1.459 (3) C17—H17 0.95
C5—C6 1.382 (3) C18—O6 1.320 (2)
C5—H5 0.95 C18—N3 1.350 (2)
C6—H6 0.95 C18—S2 1.669 (2)
C7—O3 1.318 (2) C19—C20 1.507 (3)
C7—N1 1.348 (2) C19—H19A 0.98
C7—S1 1.669 (2) C19—H19B 0.98
C8—C9 1.512 (3) C19—H19C 0.98
C8—H8A 0.98 C20—O6 1.481 (2)
C8—H8B 0.98 C20—C21 1.516 (3)
C8—H8C 0.98 C20—H20 1
C9—O3 1.475 (2) C21—C22 1.525 (3)
C9—C10 1.513 (3) C21—H21A 0.99
C9—H9 1 C21—H21B 0.99
C10—C11 1.522 (3) C22—H22A 0.98
C10—H10A 0.99 C22—H22B 0.98
C10—H10B 0.99 C22—H22C 0.98
C11—H11A 0.98 N1—H1N 0.80 (2)
C11—H11B 0.98 N2—O2 1.227 (2)
C11—H11C 0.98 N2—O1 1.229 (2)
C12—C17 1.392 (3) N3—H3N 0.85 (2)
C12—C13 1.401 (3) N4—O4 1.223 (2)
C12—N3 1.405 (2) N4—O5 1.231 (2)
C6—C1—C2 119.58 (18) C13—C14—H14 120.7
C6—C1—N1 124.81 (18) C15—C14—H14 120.7
C2—C1—N1 115.58 (17) C16—C15—C14 121.78 (18)
C3—C2—C1 120.96 (19) C16—C15—N4 119.32 (17)
C3—C2—H2 119.5 C14—C15—N4 118.90 (17)
C1—C2—H2 119.5 C15—C16—C17 119.87 (19)
C2—C3—C4 118.36 (19) C15—C16—H16 120.1
C2—C3—H3 120.8 C17—C16—H16 120.1
C4—C3—H3 120.8 C16—C17—C12 119.32 (18)
C5—C4—C3 121.68 (18) C16—C17—H17 120.3
C5—C4—N2 119.43 (18) C12—C17—H17 120.3
C3—C4—N2 118.89 (18) O6—C18—N3 113.71 (17)
C4—C5—C6 120.01 (19) O6—C18—S2 125.43 (14)
C4—C5—H5 120 N3—C18—S2 120.85 (15)
C6—C5—H5 120 C20—C19—H19A 109.5
C5—C6—C1 119.41 (19) C20—C19—H19B 109.5
C5—C6—H6 120.3 H19A—C19—H19B 109.5
C1—C6—H6 120.3 C20—C19—H19C 109.5
O3—C7—N1 113.22 (17) H19A—C19—H19C 109.5
O3—C7—S1 125.47 (15) H19B—C19—H19C 109.5
N1—C7—S1 121.30 (15) O6—C20—C19 105.04 (15)
C9—C8—H8A 109.5 O6—C20—C21 108.67 (15)
C9—C8—H8B 109.5 C19—C20—C21 114.00 (18)
H8A—C8—H8B 109.5 O6—C20—H20 109.7
C9—C8—H8C 109.5 C19—C20—H20 109.7
H8A—C8—H8C 109.5 C21—C20—H20 109.7
H8B—C8—H8C 109.5 C20—C21—C22 111.86 (18)
O3—C9—C8 108.78 (18) C20—C21—H21A 109.2
O3—C9—C10 103.89 (16) C22—C21—H21A 109.2
C8—C9—C10 115.33 (17) C20—C21—H21B 109.2
O3—C9—H9 109.5 C22—C21—H21B 109.2
C8—C9—H9 109.5 H21A—C21—H21B 107.9
C10—C9—H9 109.5 C21—C22—H22A 109.5
C9—C10—C11 113.06 (18) C21—C22—H22B 109.5
C9—C10—H10A 109 H22A—C22—H22B 109.5
C11—C10—H10A 109 C21—C22—H22C 109.5
C9—C10—H10B 109 H22A—C22—H22C 109.5
C11—C10—H10B 109 H22B—C22—H22C 109.5
H10A—C10—H10B 107.8 C7—N1—C1 131.41 (18)
C10—C11—H11A 109.5 C7—N1—H1N 112.9 (18)
C10—C11—H11B 109.5 C1—N1—H1N 115.7 (18)
H11A—C11—H11B 109.5 O2—N2—O1 123.36 (19)
C10—C11—H11C 109.5 O2—N2—C4 118.18 (18)
H11A—C11—H11C 109.5 O1—N2—C4 118.46 (18)
H11B—C11—H11C 109.5 C18—N3—C12 130.92 (18)
C17—C12—C13 119.81 (17) C18—N3—H3N 114.0 (16)
C17—C12—N3 124.28 (18) C12—N3—H3N 115.0 (16)
C13—C12—N3 115.89 (17) O4—N4—O5 123.50 (17)
C14—C13—C12 120.70 (18) O4—N4—C15 118.46 (17)
C14—C13—H13 119.6 O5—N4—C15 118.04 (16)
C12—C13—H13 119.6 C7—O3—C9 121.03 (16)
C13—C14—C15 118.51 (18) C18—O6—C20 119.80 (15)

(S)-2-Butyl N-(4-nitrophenyl)thiocarbamate (I) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···S2 0.80 (2) 2.62 (2) 3.3762 (19) 159 (2)
N3—H3N···S1 0.85 (2) 2.57 (2) 3.4095 (18) 166 (2)
C2—H2···S2 0.95 2.87 3.592 (2) 134
C13—H13···S1 0.95 2.81 3.611 (2) 142
C5—H5···O2i 0.95 2.53 3.203 (3) 128

Symmetry code: (i) −x, y−1/2, −z+2.

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Crystal data

C12H17NO2S F(000) = 512
Mr = 239.32 Dx = 1.249 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 21109 reflections
a = 6.6973 (5) Å θ = 1.9–30.8°
b = 21.2076 (17) Å µ = 0.24 mm1
c = 9.1899 (7) Å T = 100 K
β = 102.868 (5)° Needle, colorless
V = 1272.49 (17) Å3 0.6 × 0.48 × 0.2 mm
Z = 4

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Data collection

Bruker APEXII diffractometer 7694 independent reflections
Radiation source: sealed x-ray tube 5666 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ or ω oscillation scans θmax = 30.8°, θmin = 1.9°
Absorption correction: numerical (SADABS; Krause et al., 2015) h = −9→9
Tmin = 0.657, Tmax = 0.745 k = −30→30
21043 measured reflections l = −13→13

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.051 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.037P)2 + 0.3946P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
7694 reflections Δρmax = 0.51 e Å3
368 parameters Δρmin = −0.42 e Å3
293 restraints Absolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraints Absolute structure parameter: 0.03 (4)
Primary atom site location: structure-invariant direct methods

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.3234 (5) 0.72968 (17) 0.0597 (4) 0.0242 (8)
C2 0.2356 (5) 0.72153 (15) −0.0890 (4) 0.0245 (7)
H2 0.094609 0.710973 −0.119493 0.029*
C3 0.3544 (6) 0.72883 (15) −0.1957 (4) 0.0233 (7)
H3 0.295113 0.722886 −0.298681 0.028*
C4 0.5579 (5) 0.74471 (18) −0.1494 (4) 0.0269 (7)
C5 0.6459 (5) 0.7519 (2) 0.0015 (4) 0.0333 (8)
H5 0.787173 0.761973 0.032826 0.04*
C6 0.5286 (5) 0.7444 (2) 0.1060 (4) 0.0340 (8)
H6 0.58849 0.749394 0.209183 0.041*
S1 0.02973 (14) 0.74842 (5) 0.39257 (10) 0.0343 (2)
C7 0.1630 (5) 0.76439 (17) 0.2634 (4) 0.0278 (8)
O1 0.2409 (4) 0.81978 (12) 0.2408 (3) 0.0355 (6)
C8 0.444 (2) 0.9025 (7) 0.378 (3) 0.041 (2) 0.444 (4)
H8A 0.523678 0.868668 0.436354 0.061* 0.444 (4)
H8B 0.445317 0.939758 0.441278 0.061* 0.444 (4)
H8C 0.504598 0.913242 0.293399 0.061* 0.444 (4)
C9 0.229 (2) 0.8810 (7) 0.321 (2) 0.034 (2) 0.444 (4)
H9A 0.165251 0.873017 0.408306 0.041* 0.444 (4)
C10 0.1038 (14) 0.9302 (4) 0.2216 (12) 0.0382 (19) 0.444 (4)
H10A 0.093609 0.968145 0.282145 0.046* 0.444 (4)
H10B 0.177813 0.942314 0.143912 0.046* 0.444 (4)
C11 −0.1086 (17) 0.9096 (6) 0.1463 (15) 0.057 (3) 0.444 (4)
H11A −0.100617 0.874981 0.077258 0.086* 0.444 (4)
H11B −0.182427 0.945155 0.090835 0.086* 0.444 (4)
H11C −0.181371 0.895306 0.221737 0.086* 0.444 (4)
C8B 0.393 (3) 0.9101 (8) 0.374 (3) 0.041 (2) 0.354 (4)
H8D 0.368205 0.949443 0.422835 0.061* 0.354 (4)
H8E 0.426634 0.919652 0.277802 0.061* 0.354 (4)
H8F 0.508114 0.887578 0.437639 0.061* 0.354 (4)
C9B 0.204 (3) 0.8694 (9) 0.349 (2) 0.034 (3) 0.354 (4)
H9B 0.1939 0.848955 0.445096 0.041* 0.354 (4)
C10B 0.0088 (18) 0.9043 (5) 0.2850 (13) 0.035 (2) 0.354 (4)
H10C −0.108465 0.875614 0.282587 0.042* 0.354 (4)
H10D −0.004249 0.939951 0.351796 0.042* 0.354 (4)
C11B −0.003 (2) 0.9293 (5) 0.1310 (13) 0.039 (3) 0.354 (4)
H11D −0.131226 0.952741 0.097632 0.058* 0.354 (4)
H11E 0.001174 0.894153 0.062582 0.058* 0.354 (4)
H11F 0.113275 0.957498 0.131893 0.058* 0.354 (4)
C8C 0.366 (4) 0.9172 (10) 0.333 (4) 0.041 (2) 0.202 (4)
H8G 0.33353 0.955948 0.380465 0.061* 0.202 (4)
H8H 0.395751 0.927403 0.235543 0.061* 0.202 (4)
H8I 0.486429 0.897102 0.396154 0.061* 0.202 (4)
C9C 0.187 (4) 0.8727 (15) 0.311 (5) 0.035 (3) 0.202 (4)
H9C 0.154489 0.861448 0.408593 0.042* 0.202 (4)
C10C −0.005 (3) 0.8952 (9) 0.201 (3) 0.036 (3) 0.202 (4)
H10E 0.026609 0.899442 0.10069 0.043* 0.202 (4)
H10F −0.113085 0.862847 0.193378 0.043* 0.202 (4)
C11C −0.083 (3) 0.9564 (8) 0.243 (3) 0.041 (4) 0.202 (4)
H11G −0.197989 0.970331 0.163991 0.062* 0.202 (4)
H11H 0.026427 0.98791 0.257494 0.062* 0.202 (4)
H11I −0.129624 0.951219 0.336395 0.062* 0.202 (4)
C12 0.6008 (6) 0.7513 (2) −0.3988 (4) 0.0370 (9)
H12A 0.555585 0.707954 −0.424741 0.055*
H12B 0.703873 0.763344 −0.454402 0.055*
H12C 0.483348 0.779874 −0.424448 0.055*
C13 −0.2448 (5) 0.59142 (17) 0.4748 (4) 0.0265 (8)
C14 −0.1540 (5) 0.59857 (18) 0.6239 (4) 0.0275 (8)
H14 −0.011877 0.607781 0.652848 0.033*
C15 −0.2673 (5) 0.59251 (17) 0.7318 (4) 0.0269 (8)
H15 −0.204178 0.597542 0.834465 0.032*
C16 −0.4754 (5) 0.57890 (15) 0.6877 (4) 0.0224 (7)
C17 −0.5672 (5) 0.57305 (19) 0.5371 (4) 0.0272 (7)
H17 −0.709852 0.564724 0.507514 0.033*
C18 −0.4541 (5) 0.57916 (18) 0.4312 (4) 0.0265 (8)
H18 −0.517786 0.575071 0.328341 0.032*
C19 −0.0790 (5) 0.55447 (17) 0.2769 (4) 0.0264 (8)
C20 0.1078 (9) 0.4170 (3) 0.3247 (7) 0.081 (2)
H20A 0.217303 0.447506 0.323526 0.122*
H20B 0.140773 0.376905 0.282401 0.122*
H20C 0.094917 0.410283 0.427702 0.122*
C21 −0.0908 (7) 0.44190 (19) 0.2334 (6) 0.0484 (12)
H21 −0.073927 0.452727 0.130872 0.058*
C22 −0.2657 (10) 0.3961 (2) 0.2227 (6) 0.0655 (17)
H22A −0.227219 0.355534 0.183068 0.079*
H22B −0.287127 0.38815 0.324243 0.079*
C23 −0.4637 (10) 0.4183 (3) 0.1252 (6) 0.0695 (18)
H23A −0.506915 0.457378 0.166255 0.104*
H23B −0.569058 0.385928 0.121697 0.104*
H23C −0.444471 0.426172 0.024169 0.104*
C24 −0.5110 (6) 0.5739 (2) 0.9395 (4) 0.0342 (8)
H24A −0.401411 0.5425 0.965042 0.051*
H24B −0.615316 0.565495 0.996758 0.051*
H24C −0.453949 0.616142 0.96361 0.051*
N1 0.2009 (5) 0.72059 (15) 0.1684 (3) 0.0284 (7)
H1N 0.157 (6) 0.684 (2) 0.170 (5) 0.034*
N2 −0.1264 (5) 0.59976 (16) 0.3643 (3) 0.0286 (7)
H2N −0.084 (6) 0.637 (2) 0.354 (4) 0.034*
O2 0.6872 (3) 0.75506 (13) −0.2435 (3) 0.0330 (6)
O3 −0.1487 (4) 0.49852 (11) 0.3056 (3) 0.0317 (6)
O4 −0.6018 (4) 0.57030 (13) 0.7839 (3) 0.0295 (5)
S2 0.05382 (13) 0.56943 (4) 0.14638 (10) 0.0289 (2)

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0204 (18) 0.0272 (17) 0.0252 (19) 0.0030 (13) 0.0060 (15) −0.0071 (13)
C2 0.0197 (17) 0.0241 (16) 0.0278 (18) 0.0014 (13) 0.0014 (14) −0.0046 (13)
C3 0.0241 (18) 0.0236 (16) 0.0215 (17) 0.0011 (13) 0.0034 (14) −0.0012 (13)
C4 0.0185 (16) 0.0309 (17) 0.0314 (18) 0.0028 (14) 0.0058 (15) −0.0042 (16)
C5 0.0150 (16) 0.045 (2) 0.037 (2) 0.0016 (16) −0.0006 (15) −0.0153 (19)
C6 0.0239 (18) 0.049 (2) 0.0251 (17) 0.0073 (18) −0.0022 (15) −0.0143 (18)
S1 0.0292 (5) 0.0490 (5) 0.0236 (4) 0.0062 (4) 0.0037 (4) −0.0097 (4)
C7 0.0172 (16) 0.039 (2) 0.0231 (17) 0.0055 (14) −0.0038 (14) −0.0080 (14)
O1 0.0320 (14) 0.0382 (14) 0.0362 (15) 0.0014 (11) 0.0073 (12) −0.0150 (12)
C8 0.046 (6) 0.027 (4) 0.052 (4) −0.002 (4) 0.018 (5) 0.001 (3)
C9 0.040 (5) 0.036 (5) 0.030 (5) 0.001 (4) 0.016 (4) −0.009 (4)
C10 0.042 (4) 0.031 (4) 0.043 (4) 0.001 (3) 0.015 (4) −0.005 (3)
C11 0.040 (6) 0.052 (6) 0.076 (7) 0.000 (5) 0.006 (6) 0.012 (6)
C8B 0.046 (6) 0.027 (4) 0.052 (4) −0.002 (4) 0.018 (5) 0.001 (3)
C9B 0.038 (5) 0.030 (5) 0.036 (6) 0.005 (4) 0.009 (5) −0.011 (4)
C10B 0.042 (5) 0.029 (4) 0.036 (5) 0.002 (4) 0.013 (4) −0.005 (4)
C11B 0.045 (7) 0.028 (5) 0.042 (6) −0.001 (5) 0.009 (6) 0.008 (5)
C8C 0.046 (6) 0.027 (4) 0.052 (4) −0.002 (4) 0.018 (5) 0.001 (3)
C9C 0.040 (6) 0.032 (5) 0.036 (6) −0.001 (5) 0.015 (5) −0.006 (5)
C10C 0.041 (6) 0.032 (6) 0.037 (6) 0.004 (5) 0.015 (6) −0.003 (5)
C11C 0.046 (9) 0.024 (7) 0.057 (9) −0.002 (7) 0.019 (8) −0.004 (7)
C12 0.032 (2) 0.042 (2) 0.039 (2) 0.0034 (19) 0.0139 (18) −0.0048 (19)
C13 0.0198 (18) 0.038 (2) 0.0214 (17) 0.0015 (14) 0.0032 (15) −0.0062 (14)
C14 0.0148 (16) 0.044 (2) 0.0235 (18) −0.0006 (15) 0.0032 (14) −0.0062 (15)
C15 0.0209 (18) 0.0382 (19) 0.0199 (17) 0.0017 (14) 0.0005 (14) −0.0058 (14)
C16 0.0208 (16) 0.0229 (17) 0.0259 (16) 0.0030 (13) 0.0105 (14) −0.0036 (14)
C17 0.0145 (15) 0.0330 (17) 0.0331 (18) 0.0001 (15) 0.0034 (14) −0.0046 (17)
C18 0.0202 (17) 0.036 (2) 0.0225 (16) −0.0008 (14) 0.0025 (14) −0.0049 (15)
C19 0.0166 (16) 0.043 (2) 0.0185 (16) 0.0067 (14) 0.0013 (13) −0.0011 (14)
C20 0.080 (4) 0.071 (4) 0.109 (5) 0.046 (3) 0.058 (4) 0.041 (4)
C21 0.070 (3) 0.031 (2) 0.057 (3) 0.013 (2) 0.041 (3) 0.0039 (19)
C22 0.121 (5) 0.023 (2) 0.070 (3) −0.001 (2) 0.060 (4) 0.002 (2)
C23 0.100 (5) 0.047 (3) 0.073 (4) −0.036 (3) 0.044 (4) −0.017 (3)
C24 0.036 (2) 0.042 (2) 0.0289 (18) 0.0073 (19) 0.0168 (17) 0.0025 (18)
N1 0.0259 (17) 0.0364 (17) 0.0223 (15) 0.0022 (13) 0.0041 (13) −0.0085 (13)
N2 0.0248 (16) 0.0391 (17) 0.0242 (16) −0.0037 (13) 0.0100 (14) −0.0074 (13)
O2 0.0199 (12) 0.0426 (15) 0.0380 (14) −0.0018 (11) 0.0099 (11) −0.0088 (13)
O3 0.0351 (15) 0.0343 (14) 0.0300 (14) 0.0062 (11) 0.0163 (12) 0.0007 (11)
O4 0.0233 (12) 0.0393 (13) 0.0291 (12) 0.0005 (12) 0.0128 (10) −0.0018 (12)
S2 0.0233 (4) 0.0415 (5) 0.0231 (4) −0.0021 (4) 0.0079 (3) −0.0047 (4)

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Geometric parameters (Å, º)

C1—C2 1.373 (5) C9C—C10C 1.52 (2)
C1—C6 1.380 (5) C9C—H9C 1
C1—N1 1.440 (4) C10C—C11C 1.486 (18)
C2—C3 1.402 (5) C10C—H10E 0.99
C2—H2 0.95 C10C—H10F 0.99
C3—C4 1.376 (5) C11C—H11G 0.98
C3—H3 0.95 C11C—H11H 0.98
C4—O2 1.371 (4) C11C—H11I 0.98
C4—C5 1.390 (5) C12—O2 1.417 (4)
C5—C6 1.378 (5) C12—H12A 0.98
C5—H5 0.95 C12—H12B 0.98
C6—H6 0.95 C12—H12C 0.98
S1—C7 1.671 (4) C13—C14 1.378 (5)
C7—O1 1.320 (4) C13—C18 1.394 (5)
C7—N1 1.337 (4) C13—N2 1.432 (4)
O1—C9C 1.38 (4) C14—C15 1.382 (5)
O1—C9B 1.50 (2) C14—H14 0.95
O1—C9 1.51 (2) C15—C16 1.392 (5)
C8—C9 1.490 (13) C15—H15 0.95
C8—H8A 0.98 C16—O4 1.365 (4)
C8—H8B 0.98 C16—C17 1.389 (5)
C8—H8C 0.98 C17—C18 1.366 (5)
C9—C10 1.512 (14) C17—H17 0.95
C9—H9A 1 C18—H18 0.95
C10—C11 1.501 (13) C19—O3 1.323 (4)
C10—H10A 0.99 C19—N2 1.335 (4)
C10—H10B 0.99 C19—S2 1.674 (4)
C11—H11A 0.98 C20—C21 1.502 (7)
C11—H11B 0.98 C20—H20A 0.98
C11—H11C 0.98 C20—H20B 0.98
C8B—C9B 1.508 (16) C20—H20C 0.98
C8B—H8D 0.98 C21—O3 1.466 (5)
C8B—H8E 0.98 C21—C22 1.508 (7)
C8B—H8F 0.98 C21—H21 1
C9B—C10B 1.504 (16) C22—C23 1.501 (8)
C9B—H9B 1 C22—H22A 0.99
C10B—C11B 1.497 (13) C22—H22B 0.99
C10B—H10C 0.99 C23—H23A 0.98
C10B—H10D 0.99 C23—H23B 0.98
C11B—H11D 0.98 C23—H23C 0.98
C11B—H11E 0.98 C24—O4 1.426 (4)
C11B—H11F 0.98 C24—H24A 0.98
C8C—C9C 1.51 (2) C24—H24B 0.98
C8C—H8G 0.98 C24—H24C 0.98
C8C—H8H 0.98 N1—H1N 0.82 (4)
C8C—H8I 0.98 N2—H2N 0.86 (4)
C2—C1—C6 120.8 (3) O1—C9C—H9C 110.8
C2—C1—N1 119.3 (3) C8C—C9C—H9C 110.8
C6—C1—N1 119.9 (3) C10C—C9C—H9C 110.8
C1—C2—C3 119.9 (3) C11C—C10C—C9C 113 (2)
C1—C2—H2 120.1 C11C—C10C—H10E 109
C3—C2—H2 120.1 C9C—C10C—H10E 109
C4—C3—C2 119.2 (3) C11C—C10C—H10F 109
C4—C3—H3 120.4 C9C—C10C—H10F 109
C2—C3—H3 120.4 H10E—C10C—H10F 107.8
O2—C4—C3 124.5 (3) C10C—C11C—H11G 109.5
O2—C4—C5 115.2 (3) C10C—C11C—H11H 109.5
C3—C4—C5 120.4 (3) H11G—C11C—H11H 109.5
C6—C5—C4 120.1 (3) C10C—C11C—H11I 109.5
C6—C5—H5 119.9 H11G—C11C—H11I 109.5
C4—C5—H5 119.9 H11H—C11C—H11I 109.5
C5—C6—C1 119.6 (3) O2—C12—H12A 109.5
C5—C6—H6 120.2 O2—C12—H12B 109.5
C1—C6—H6 120.2 H12A—C12—H12B 109.5
O1—C7—N1 112.1 (3) O2—C12—H12C 109.5
O1—C7—S1 125.7 (3) H12A—C12—H12C 109.5
N1—C7—S1 122.1 (3) H12B—C12—H12C 109.5
C7—O1—C9C 119.8 (15) C14—C13—C18 120.0 (3)
C7—O1—C9B 112.9 (7) C14—C13—N2 120.0 (3)
C7—O1—C9 128.6 (7) C18—C13—N2 119.9 (3)
C9—C8—H8A 109.5 C13—C14—C15 120.8 (3)
C9—C8—H8B 109.5 C13—C14—H14 119.6
H8A—C8—H8B 109.5 C15—C14—H14 119.6
C9—C8—H8C 109.5 C14—C15—C16 118.9 (3)
H8A—C8—H8C 109.5 C14—C15—H15 120.5
H8B—C8—H8C 109.5 C16—C15—H15 120.5
C8—C9—O1 106.4 (12) O4—C16—C17 115.6 (3)
C8—C9—C10 111.3 (12) O4—C16—C15 124.3 (3)
O1—C9—C10 112.3 (12) C17—C16—C15 120.1 (3)
C8—C9—H9A 108.9 C18—C17—C16 120.6 (3)
O1—C9—H9A 108.9 C18—C17—H17 119.7
C10—C9—H9A 108.9 C16—C17—H17 119.7
C11—C10—C9 114.8 (10) C17—C18—C13 119.6 (3)
C11—C10—H10A 108.6 C17—C18—H18 120.2
C9—C10—H10A 108.6 C13—C18—H18 120.2
C11—C10—H10B 108.6 O3—C19—N2 112.5 (3)
C9—C10—H10B 108.6 O3—C19—S2 125.5 (3)
H10A—C10—H10B 107.5 N2—C19—S2 122.0 (3)
C10—C11—H11A 109.5 C21—C20—H20A 109.5
C10—C11—H11B 109.5 C21—C20—H20B 109.5
H11A—C11—H11B 109.5 H20A—C20—H20B 109.5
C10—C11—H11C 109.5 C21—C20—H20C 109.5
H11A—C11—H11C 109.5 H20A—C20—H20C 109.5
H11B—C11—H11C 109.5 H20B—C20—H20C 109.5
C9B—C8B—H8D 109.5 O3—C21—C20 109.0 (4)
C9B—C8B—H8E 109.5 O3—C21—C22 106.1 (3)
H8D—C8B—H8E 109.5 C20—C21—C22 112.8 (4)
C9B—C8B—H8F 109.5 O3—C21—H21 109.6
H8D—C8B—H8F 109.5 C20—C21—H21 109.6
H8E—C8B—H8F 109.5 C22—C21—H21 109.6
C10B—C9B—O1 110.0 (12) C23—C22—C21 114.0 (4)
C10B—C9B—C8B 114.0 (14) C23—C22—H22A 108.8
O1—C9B—C8B 104.2 (14) C21—C22—H22A 108.8
C10B—C9B—H9B 109.5 C23—C22—H22B 108.8
O1—C9B—H9B 109.5 C21—C22—H22B 108.8
C8B—C9B—H9B 109.5 H22A—C22—H22B 107.6
C11B—C10B—C9B 113.7 (11) C22—C23—H23A 109.5
C11B—C10B—H10C 108.8 C22—C23—H23B 109.5
C9B—C10B—H10C 108.8 H23A—C23—H23B 109.5
C11B—C10B—H10D 108.8 C22—C23—H23C 109.5
C9B—C10B—H10D 108.8 H23A—C23—H23C 109.5
H10C—C10B—H10D 107.7 H23B—C23—H23C 109.5
C10B—C11B—H11D 109.5 O4—C24—H24A 109.5
C10B—C11B—H11E 109.5 O4—C24—H24B 109.5
H11D—C11B—H11E 109.5 H24A—C24—H24B 109.5
C10B—C11B—H11F 109.5 O4—C24—H24C 109.5
H11D—C11B—H11F 109.5 H24A—C24—H24C 109.5
H11E—C11B—H11F 109.5 H24B—C24—H24C 109.5
C9C—C8C—H8G 109.5 C7—N1—C1 125.5 (3)
C9C—C8C—H8H 109.5 C7—N1—H1N 121 (3)
H8G—C8C—H8H 109.5 C1—N1—H1N 113 (3)
C9C—C8C—H8I 109.5 C19—N2—C13 125.6 (3)
H8G—C8C—H8I 109.5 C19—N2—H2N 119 (3)
H8H—C8C—H8I 109.5 C13—N2—H2N 116 (3)
O1—C9C—C8C 107 (3) C4—O2—C12 116.9 (3)
O1—C9C—C10C 102 (2) C19—O3—C21 120.2 (3)
C8C—C9C—C10C 115 (2) C16—O4—C24 117.1 (3)

(S)-2-Butyl N-(4-methoxyphenyl)thiocarbamate (II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···S2 0.82 (4) 2.53 (4) 3.347 (3) 171 (4)
N2—H2N···S1 0.86 (4) 2.47 (4) 3.314 (3) 165 (4)
C12—H12B···S1i 0.98 2.86 3.793 (4) 158
C24—H24B···S2ii 0.98 2.86 3.819 (4) 167
C18—H18···S2iii 0.95 2.98 3.730 (4) 136
C10B—H10C···S1 0.99 2.96 3.445 (11) 112

Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y, z+1; (iii) x−1, y, z.

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Crystal data

C11H14FNOS F(000) = 480
Mr = 227.29 Dx = 1.314 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 1312 reflections
a = 6.9723 (13) Å θ = 2.7–18.9°
b = 20.166 (3) Å µ = 0.27 mm1
c = 8.2818 (14) Å T = 100 K
β = 99.403 (13)° Prism, colourless
V = 1148.8 (3) Å3 0.5 × 0.1 × 0.05 mm
Z = 4

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Data collection

Bruker APEXII diffractometer 5263 independent reflections
Radiation source: sealed x-ray tube 2448 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.171
φ or ω oscillation scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −9→9
Tmin = 0.863, Tmax = 1 k = −26→26
10466 measured reflections l = −10→10

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0402P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max < 0.001
5263 reflections Δρmax = 0.45 e Å3
257 parameters Δρmin = −0.52 e Å3
2 restraints Absolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraints Absolute structure parameter: 0.17 (13)
Primary atom site location: structure-invariant direct methods

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8966 (7) 0.6722 (3) 0.5978 (6) 0.021 (2)
C2 1.0905 (8) 0.6846 (3) 0.6605 (5) 0.023 (2)
H2 1.130829 0.688684 0.775314 0.028*
C3 1.2256 (6) 0.6911 (3) 0.5552 (7) 0.024 (2)
H3 1.35816 0.699572 0.598067 0.029*
C4 1.1666 (7) 0.6852 (4) 0.3872 (6) 0.023 (2)
C5 0.9726 (8) 0.6727 (3) 0.3245 (5) 0.022 (2)
H5 0.932364 0.66869 0.209695 0.027*
C6 0.8376 (6) 0.6663 (3) 0.4298 (7) 0.022 (2)
H6 0.70503 0.657801 0.386939 0.027*
C7 0.7286 (12) 0.6991 (4) 0.8282 (12) 0.019 (2)
C8 1.0523 (12) 0.8141 (4) 1.0396 (12) 0.032 (3)
H8A 1.116505 0.772014 1.073864 0.048*
H8B 1.065696 0.84452 1.133121 0.048*
H8C 1.112971 0.833823 0.952221 0.048*
C9 0.8394 (12) 0.8018 (4) 0.9774 (11) 0.019 (2)
H9 0.775524 0.782224 1.06603 0.023*
C10 0.7329 (12) 0.8630 (4) 0.9100 (11) 0.025 (2)
H10A 0.801429 0.881895 0.824864 0.03*
H10B 0.740265 0.896099 0.999075 0.03*
C11 0.5181 (11) 0.8534 (4) 0.8352 (12) 0.034 (3)
H11A 0.50897 0.826147 0.736278 0.051*
H11B 0.458106 0.896705 0.80698 0.051*
H11C 0.450137 0.831193 0.914735 0.051*
C12 0.1978 (7) 0.5306 (3) 0.9155 (6) 0.019 (2)
C13 0.0041 (8) 0.5172 (3) 0.8542 (5) 0.023 (2)
H13 −0.036579 0.511975 0.739728 0.027*
C14 −0.1301 (6) 0.5113 (3) 0.9604 (7) 0.023 (2)
H14 −0.262522 0.502042 0.918484 0.028*
C15 −0.0706 (8) 0.5188 (3) 1.1279 (7) 0.023 (2)
C16 0.1231 (9) 0.5323 (3) 1.1892 (5) 0.025 (2)
H16 0.163773 0.537508 1.303733 0.029*
C17 0.2573 (6) 0.5382 (3) 1.0831 (7) 0.021 (2)
H17 0.38972 0.547441 1.124978 0.026*
C18 0.3719 (11) 0.5013 (4) 0.6901 (11) 0.014 (2)
C19 0.4944 (12) 0.3531 (4) 0.6560 (11) 0.028 (2)
H19A 0.605381 0.383457 0.678678 0.042*
H19B 0.5244 0.317553 0.583497 0.042*
H19C 0.468179 0.333968 0.758962 0.042*
C20 0.3174 (12) 0.3908 (4) 0.5742 (11) 0.023 (2)
H20 0.344348 0.410563 0.469454 0.028*
C21 0.1363 (12) 0.3495 (4) 0.5410 (11) 0.026 (2)
H21A 0.112572 0.330173 0.645849 0.031*
H21B 0.160071 0.312194 0.468958 0.031*
C22 −0.0480 (12) 0.3853 (4) 0.4618 (12) 0.031 (3)
H22A −0.080503 0.419931 0.535926 0.047*
H22B −0.155415 0.353511 0.440115 0.047*
H22C −0.0265 0.40553 0.358697 0.047*
N1 0.7567 (10) 0.6619 (4) 0.7012 (9) 0.0215 (19)
N2 0.3377 (10) 0.5404 (3) 0.8108 (9) 0.0188 (18)
O1 0.8371 (7) 0.7537 (3) 0.8418 (7) 0.0201 (14)
O2 0.2729 (8) 0.4444 (3) 0.6850 (7) 0.0220 (15)
F1 1.2980 (7) 0.6908 (2) 0.2885 (7) 0.0307 (14)
F2 −0.2026 (7) 0.5147 (3) 1.2271 (7) 0.0310 (13)
S1 0.5732 (3) 0.67758 (11) 0.9542 (3) 0.0232 (6)
S2 0.5266 (3) 0.52266 (12) 0.5636 (3) 0.0237 (6)
H1N 0.682 (11) 0.628 (3) 0.681 (10) 0.028*
H2N 0.384 (10) 0.580 (3) 0.832 (10) 0.028*

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.026 (5) 0.017 (5) 0.020 (5) 0.000 (4) 0.005 (4) −0.003 (5)
C2 0.022 (5) 0.024 (5) 0.024 (5) 0.005 (4) 0.004 (4) −0.006 (5)
C3 0.017 (5) 0.028 (6) 0.026 (6) 0.002 (4) 0.001 (4) −0.002 (5)
C4 0.020 (5) 0.020 (5) 0.032 (6) 0.003 (4) 0.012 (5) −0.001 (5)
C5 0.019 (5) 0.016 (5) 0.032 (6) −0.002 (4) 0.005 (4) 0.005 (5)
C6 0.015 (5) 0.019 (5) 0.031 (6) −0.003 (4) 0.001 (4) −0.004 (5)
C7 0.014 (5) 0.018 (5) 0.024 (6) −0.001 (4) 0.000 (4) 0.001 (4)
C8 0.021 (6) 0.031 (6) 0.039 (7) −0.003 (4) −0.007 (5) 0.001 (5)
C9 0.021 (5) 0.015 (5) 0.022 (5) −0.004 (4) 0.004 (4) −0.005 (4)
C10 0.027 (5) 0.019 (5) 0.028 (6) 0.005 (4) 0.003 (4) −0.005 (4)
C11 0.014 (5) 0.038 (6) 0.046 (7) 0.011 (4) −0.001 (5) 0.006 (5)
C12 0.015 (5) 0.017 (5) 0.027 (5) −0.007 (4) 0.006 (4) −0.004 (5)
C13 0.010 (5) 0.019 (5) 0.038 (6) 0.007 (4) 0.000 (4) 0.003 (5)
C14 0.022 (5) 0.020 (6) 0.027 (6) 0.001 (4) 0.000 (5) 0.000 (5)
C15 0.024 (6) 0.025 (6) 0.023 (6) 0.000 (5) 0.014 (5) 0.010 (5)
C16 0.034 (6) 0.018 (5) 0.020 (5) 0.003 (4) −0.001 (5) −0.010 (4)
C17 0.017 (5) 0.022 (5) 0.025 (5) −0.001 (4) 0.000 (4) −0.003 (4)
C18 0.014 (5) 0.019 (5) 0.010 (5) 0.002 (4) 0.002 (4) 0.002 (4)
C19 0.024 (6) 0.028 (6) 0.032 (6) 0.012 (4) 0.004 (5) −0.003 (5)
C20 0.024 (5) 0.023 (5) 0.022 (6) −0.004 (4) 0.006 (4) −0.008 (4)
C21 0.026 (5) 0.025 (5) 0.028 (6) −0.008 (4) 0.009 (4) −0.005 (5)
C22 0.022 (6) 0.031 (6) 0.038 (7) −0.001 (4) −0.001 (5) 0.002 (5)
N1 0.018 (5) 0.023 (5) 0.026 (5) −0.007 (3) 0.011 (4) −0.006 (4)
N2 0.015 (4) 0.016 (4) 0.027 (5) −0.003 (3) 0.010 (4) −0.005 (4)
O1 0.017 (3) 0.017 (3) 0.026 (4) −0.007 (2) 0.004 (3) 0.000 (3)
O2 0.030 (4) 0.013 (3) 0.023 (4) 0.000 (3) 0.003 (3) −0.007 (3)
F1 0.026 (3) 0.039 (4) 0.031 (3) −0.002 (3) 0.016 (2) 0.003 (3)
F2 0.028 (3) 0.035 (3) 0.033 (3) −0.001 (3) 0.012 (2) −0.002 (3)
S1 0.0187 (13) 0.0246 (13) 0.0264 (14) −0.0067 (10) 0.0038 (10) −0.0008 (12)
S2 0.0196 (13) 0.0255 (13) 0.0264 (15) −0.0052 (10) 0.0046 (10) −0.0018 (12)

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Geometric parameters (Å, º)

C1—C2 1.39 C12—C17 1.39
C1—C6 1.39 C12—N2 1.421 (8)
C1—N1 1.414 (8) C13—C14 1.39
C2—C3 1.39 C13—H13 0.95
C2—H2 0.95 C14—C15 1.39
C3—C4 1.39 C14—H14 0.95
C3—H3 0.95 C15—F2 1.333 (6)
C4—F1 1.329 (6) C15—C16 1.39
C4—C5 1.39 C16—C17 1.39
C5—C6 1.39 C16—H16 0.95
C5—H5 0.95 C17—H17 0.95
C6—H6 0.95 C18—N2 1.325 (10)
C7—O1 1.329 (9) C18—O2 1.335 (9)
C7—N1 1.332 (11) C18—S2 1.678 (9)
C7—S1 1.680 (9) C19—C20 1.512 (10)
C8—C9 1.510 (10) C19—H19A 0.98
C8—H8A 0.98 C19—H19B 0.98
C8—H8B 0.98 C19—H19C 0.98
C8—H8C 0.98 C20—O2 1.483 (10)
C9—O1 1.483 (10) C20—C21 1.501 (11)
C9—C10 1.500 (11) C20—H20 1
C9—H9 1 C21—C22 1.526 (11)
C10—C11 1.536 (10) C21—H21A 0.99
C10—H10A 0.99 C21—H21B 0.99
C10—H10B 0.99 C22—H22A 0.98
C11—H11A 0.98 C22—H22B 0.98
C11—H11B 0.98 C22—H22C 0.98
C11—H11C 0.98 N1—H1N 0.86 (5)
C12—C13 1.39 N2—H2N 0.86 (5)
C2—C1—C6 120 C14—C13—H13 120
C2—C1—N1 121.7 (5) C12—C13—H13 120
C6—C1—N1 118.2 (5) C13—C14—C15 120
C1—C2—C3 120 C13—C14—H14 120
C1—C2—H2 120 C15—C14—H14 120
C3—C2—H2 120 F2—C15—C16 121.0 (5)
C4—C3—C2 120 F2—C15—C14 119.0 (5)
C4—C3—H3 120 C16—C15—C14 120
C2—C3—H3 120 C15—C16—C17 120
F1—C4—C5 120.8 (5) C15—C16—H16 120
F1—C4—C3 119.2 (5) C17—C16—H16 120
C5—C4—C3 120 C16—C17—C12 120
C6—C5—C4 120 C16—C17—H17 120
C6—C5—H5 120 C12—C17—H17 120
C4—C5—H5 120 N2—C18—O2 112.3 (7)
C5—C6—C1 120 N2—C18—S2 122.1 (6)
C5—C6—H6 120 O2—C18—S2 125.6 (7)
C1—C6—H6 120 C20—C19—H19A 109.5
O1—C7—N1 112.2 (8) C20—C19—H19B 109.5
O1—C7—S1 125.2 (7) H19A—C19—H19B 109.5
N1—C7—S1 122.5 (7) C20—C19—H19C 109.5
C9—C8—H8A 109.5 H19A—C19—H19C 109.5
C9—C8—H8B 109.5 H19B—C19—H19C 109.5
H8A—C8—H8B 109.5 O2—C20—C21 105.3 (7)
C9—C8—H8C 109.5 O2—C20—C19 109.1 (7)
H8A—C8—H8C 109.5 C21—C20—C19 113.8 (8)
H8B—C8—H8C 109.5 O2—C20—H20 109.5
O1—C9—C10 108.2 (7) C21—C20—H20 109.5
O1—C9—C8 104.7 (7) C19—C20—H20 109.5
C10—C9—C8 113.0 (7) C20—C21—C22 116.1 (7)
O1—C9—H9 110.2 C20—C21—H21A 108.3
C10—C9—H9 110.2 C22—C21—H21A 108.3
C8—C9—H9 110.2 C20—C21—H21B 108.3
C9—C10—C11 115.9 (7) C22—C21—H21B 108.3
C9—C10—H10A 108.3 H21A—C21—H21B 107.4
C11—C10—H10A 108.3 C21—C22—H22A 109.5
C9—C10—H10B 108.3 C21—C22—H22B 109.5
C11—C10—H10B 108.3 H22A—C22—H22B 109.5
H10A—C10—H10B 107.4 C21—C22—H22C 109.5
C10—C11—H11A 109.5 H22A—C22—H22C 109.5
C10—C11—H11B 109.5 H22B—C22—H22C 109.5
H11A—C11—H11B 109.5 C7—N1—C1 126.9 (7)
C10—C11—H11C 109.5 C7—N1—H1N 116 (6)
H11A—C11—H11C 109.5 C1—N1—H1N 117 (6)
H11B—C11—H11C 109.5 C18—N2—C12 127.2 (7)
C13—C12—C17 120 C18—N2—H2N 126 (6)
C13—C12—N2 121.8 (5) C12—N2—H2N 106 (6)
C17—C12—N2 118.1 (5) C7—O1—C9 122.8 (7)
C14—C13—C12 120 C18—O2—C20 119.1 (7)

(S)-2-Butyl N-(4-fluorophenyl)thiocarbamate (III) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1N···S2 0.86 (5) 2.51 (5) 3.341 (8) 164 (8)
N2—H2N···S1 0.86 (5) 2.50 (5) 3.336 (7) 165 (7)
C8—H8A···F1i 0.98 2.59 3.494 (10) 154

Symmetry code: (i) x, y, z+1.

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Crystal data

C11H14ClNOS F(000) = 512
Mr = 243.74 Dx = 1.337 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 9275 reflections
a = 15.4173 (15) Å θ = 2.6–33.1°
b = 5.0170 (5) Å µ = 0.46 mm1
c = 16.2502 (15) Å T = 100 K
β = 105.592 (5)° Prsm, colourless
V = 1210.7 (2) Å3 0.6 × 0.12 × 0.11 mm
Z = 4

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Data collection

Bruker APEXII diffractometer 9292 independent reflections
Radiation source: sealed x-ray tube 8469 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ or ω oscillation scans θmax = 33.3°, θmin = 2.1°
Absorption correction: numerical (SADABS; Krause et al., 2015) h = −23→23
Tmin = 0.954, Tmax = 1 k = −7→7
46534 measured reflections l = −24→25

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.027 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.1769P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
9292 reflections Δρmax = 0.36 e Å3
281 parameters Δρmin = −0.22 e Å3
1 restraint Absolute structure: Flack x determined using 2891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
0 constraints Absolute structure parameter: 0.022 (14)
Primary atom site location: structure-invariant direct methods

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Special details

Experimental. Crystals were mounted on a CryoloopTM (0.2–0.3mm, Hampton Research) with Paratone (R) oil. Between 7 to 12 data sets were collected to cover full Ewald spheres to a resolution of better than 0.75 Å. Crystals were held at 100 K with a Cryostream cooler, mounted to a Bruker APEXII single crystal X-ray diffractometer, Mo radiation (Bruker 2012), equipped with a fine-focus X-ray tube, Miracol X-ray optical collimator, and CCD detector. Crystal-to-detector distance was 40 mm and the exposure times were between 20 to 120 seconds per frame for all sets, pending on sample size. The scan widths were 0.5°. Crystal data, data collection, and structure refinement details are summarized in Table 5. The data were integrated and scaled using SAINT, SADABS within the APEX2 software package by Bruker (2012). Data work-up was done with SAINT (Bruker, 2012). Structures were solved with SHELXS (Sheldrick, 2008), and refined with SHELXL (Sheldrick 2015).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.35185 (9) 0.0662 (3) 0.14953 (8) 0.0139 (2)
C2 0.41945 (10) 0.0839 (4) 0.10745 (9) 0.0190 (3)
H2A 0.467553 0.206748 0.126558 0.023*
C3 0.41621 (10) −0.0787 (4) 0.03751 (10) 0.0192 (3)
H3 0.461955 −0.066932 0.008467 0.023*
C4 0.34615 (10) −0.2577 (3) 0.01033 (9) 0.0166 (3)
C5 0.27962 (11) −0.2816 (4) 0.05240 (10) 0.0205 (3)
H5 0.232416 −0.407588 0.033739 0.025*
C6 0.28265 (10) −0.1197 (3) 0.12206 (10) 0.0187 (3)
H6 0.23729 −0.135039 0.151438 0.022*
C7 0.40912 (9) 0.3612 (3) 0.27658 (9) 0.0143 (3)
C8 0.58731 (11) 0.2067 (4) 0.41659 (10) 0.0234 (3)
H8A 0.533102 0.191469 0.436836 0.035*
H8B 0.63713 0.274749 0.46281 0.035*
H8C 0.60323 0.030984 0.398713 0.035*
C9 0.56953 (10) 0.3964 (3) 0.34164 (9) 0.0152 (3)
H9 0.555206 0.577305 0.3603 0.018*
C10 0.64685 (10) 0.4172 (3) 0.30082 (10) 0.0183 (3)
H10A 0.658195 0.239034 0.279654 0.022*
H10B 0.701819 0.471755 0.344903 0.022*
C11 0.62976 (12) 0.6144 (4) 0.22712 (11) 0.0246 (3)
H11A 0.578675 0.553323 0.180904 0.037*
H11B 0.68351 0.627046 0.206055 0.037*
H11C 0.616089 0.790011 0.246922 0.037*
C12 0.15284 (10) 0.8652 (3) 0.36586 (9) 0.0139 (3)
C13 0.08213 (10) 0.8722 (3) 0.40427 (9) 0.0177 (3)
H13 0.03196 0.756607 0.384976 0.021*
C14 0.08536 (10) 1.0489 (4) 0.47084 (9) 0.0188 (3)
H14 0.037264 1.054228 0.497095 0.023*
C15 0.15837 (10) 1.2168 (3) 0.49896 (9) 0.0156 (3)
C16 0.22863 (10) 1.2164 (3) 0.46032 (10) 0.0173 (3)
H16 0.278113 1.334668 0.479234 0.021*
C17 0.22527 (9) 1.0408 (3) 0.39386 (9) 0.0163 (3)
H17 0.272809 1.03958 0.366869 0.02*
C18 0.09692 (9) 0.5412 (3) 0.24559 (8) 0.0143 (2)
C19 −0.11540 (12) 0.3508 (5) 0.25809 (12) 0.0303 (4)
H19A −0.07721 0.226643 0.298634 0.045*
H19B −0.170239 0.25891 0.226207 0.045*
H19C −0.131607 0.50161 0.289328 0.045*
C20 −0.06464 (10) 0.4518 (4) 0.19644 (10) 0.0196 (3)
H20 −0.043938 0.297952 0.16748 0.024*
C21 −0.11786 (11) 0.6453 (4) 0.13017 (11) 0.0285 (4)
H21A −0.133859 0.802766 0.159794 0.034*
H21B −0.174639 0.558583 0.098314 0.034*
C22 −0.06701 (14) 0.7390 (6) 0.06654 (13) 0.0423 (6)
H22A −0.011127 0.827881 0.097427 0.063*
H22B −0.104658 0.864221 0.02596 0.063*
H22C −0.052677 0.58506 0.035482 0.063*
N1 0.34513 (8) 0.2393 (3) 0.21636 (8) 0.0161 (2)
H1 0.2928 (13) 0.275 (5) 0.2178 (12) 0.019*
N2 0.15996 (8) 0.6818 (3) 0.30193 (8) 0.0148 (2)
H2 0.2126 (13) 0.652 (4) 0.3009 (12) 0.018*
O1 0.49217 (6) 0.2959 (2) 0.27480 (6) 0.0150 (2)
O2 0.01363 (7) 0.5970 (2) 0.24906 (7) 0.0169 (2)
S1 0.38309 (2) 0.57287 (9) 0.34614 (2) 0.02056 (8)
S2 0.12456 (2) 0.32279 (9) 0.17890 (2) 0.01850 (8)
Cl1 0.34068 (3) −0.45232 (9) −0.07979 (2) 0.02263 (8)
Cl2 0.16375 (3) 1.43009 (8) 0.58491 (2) 0.02094 (8)

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0125 (5) 0.0154 (6) 0.0131 (5) 0.0004 (6) 0.0022 (4) −0.0009 (6)
C2 0.0149 (6) 0.0245 (8) 0.0182 (6) −0.0054 (6) 0.0053 (5) −0.0064 (6)
C3 0.0157 (6) 0.0250 (8) 0.0178 (6) −0.0024 (6) 0.0059 (5) −0.0054 (6)
C4 0.0165 (6) 0.0171 (7) 0.0147 (6) 0.0016 (5) 0.0017 (5) −0.0034 (5)
C5 0.0186 (7) 0.0201 (8) 0.0231 (7) −0.0055 (6) 0.0063 (6) −0.0069 (6)
C6 0.0166 (7) 0.0210 (8) 0.0202 (6) −0.0041 (6) 0.0075 (5) −0.0038 (6)
C7 0.0133 (6) 0.0161 (7) 0.0135 (6) −0.0012 (5) 0.0037 (5) −0.0010 (5)
C8 0.0242 (8) 0.0261 (8) 0.0168 (7) −0.0033 (7) 0.0002 (6) 0.0043 (6)
C9 0.0127 (6) 0.0160 (7) 0.0147 (6) −0.0015 (5) −0.0001 (5) −0.0016 (5)
C10 0.0143 (6) 0.0180 (7) 0.0216 (7) −0.0024 (6) 0.0032 (5) 0.0014 (6)
C11 0.0266 (8) 0.0219 (9) 0.0266 (8) −0.0034 (6) 0.0092 (6) 0.0035 (6)
C12 0.0137 (6) 0.0148 (7) 0.0124 (6) 0.0009 (5) 0.0023 (5) −0.0007 (5)
C13 0.0151 (6) 0.0216 (8) 0.0176 (6) −0.0042 (5) 0.0061 (5) −0.0040 (6)
C14 0.0168 (6) 0.0228 (7) 0.0181 (6) −0.0011 (6) 0.0070 (5) −0.0046 (6)
C15 0.0175 (6) 0.0149 (6) 0.0135 (6) 0.0021 (5) 0.0024 (5) −0.0015 (5)
C16 0.0152 (6) 0.0175 (7) 0.0185 (6) −0.0023 (6) 0.0031 (5) −0.0029 (6)
C17 0.0141 (6) 0.0180 (7) 0.0175 (6) −0.0015 (6) 0.0053 (5) −0.0018 (6)
C18 0.0134 (6) 0.0161 (6) 0.0129 (5) −0.0006 (5) 0.0028 (4) 0.0004 (5)
C19 0.0210 (8) 0.0366 (11) 0.0354 (9) −0.0074 (8) 0.0112 (7) −0.0048 (9)
C20 0.0119 (6) 0.0239 (8) 0.0218 (7) −0.0025 (6) 0.0023 (5) −0.0080 (6)
C21 0.0180 (7) 0.0377 (11) 0.0254 (8) 0.0058 (7) −0.0017 (6) −0.0054 (7)
C22 0.0366 (11) 0.0611 (16) 0.0255 (9) 0.0153 (11) 0.0020 (8) 0.0125 (10)
N1 0.0107 (5) 0.0209 (6) 0.0167 (6) −0.0008 (5) 0.0037 (4) −0.0051 (5)
N2 0.0107 (5) 0.0181 (6) 0.0161 (5) −0.0008 (5) 0.0044 (4) −0.0038 (5)
O1 0.0113 (4) 0.0179 (5) 0.0146 (4) −0.0005 (4) 0.0017 (3) −0.0031 (4)
O2 0.0109 (4) 0.0210 (6) 0.0179 (5) −0.0004 (4) 0.0025 (4) −0.0059 (4)
S1 0.01572 (15) 0.0266 (2) 0.01970 (16) −0.00029 (16) 0.00542 (12) −0.00983 (16)
S2 0.01356 (15) 0.02352 (19) 0.01815 (16) 0.00004 (15) 0.00376 (12) −0.00788 (15)
Cl1 0.02137 (17) 0.02587 (19) 0.01964 (16) 0.00053 (16) 0.00377 (13) −0.00968 (16)
Cl2 0.02176 (17) 0.02132 (18) 0.01908 (16) 0.00135 (15) 0.00432 (13) −0.00738 (14)

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Geometric parameters (Å, º)

C1—C2 1.3945 (19) C12—C17 1.399 (2)
C1—C6 1.397 (2) C12—N2 1.4138 (19)
C1—N1 1.4160 (19) C13—C14 1.389 (2)
C2—C3 1.389 (2) C13—H13 0.95
C2—H2A 0.95 C14—C15 1.382 (2)
C3—C4 1.383 (2) C14—H14 0.95
C3—H3 0.95 C15—C16 1.390 (2)
C4—C5 1.382 (2) C15—Cl2 1.7436 (16)
C4—Cl1 1.7432 (16) C16—C17 1.384 (2)
C5—C6 1.384 (2) C16—H16 0.95
C5—H5 0.95 C17—H17 0.95
C6—H6 0.95 C18—O2 1.3301 (17)
C7—O1 1.3296 (17) C18—N2 1.3425 (18)
C7—N1 1.3364 (19) C18—S2 1.6747 (16)
C7—S1 1.6763 (15) C19—C20 1.515 (2)
C8—C9 1.512 (2) C19—H19A 0.98
C8—H8A 0.98 C19—H19B 0.98
C8—H8B 0.98 C19—H19C 0.98
C8—H8C 0.98 C20—O2 1.4708 (18)
C9—O1 1.4698 (17) C20—C21 1.517 (3)
C9—C10 1.516 (2) C20—H20 1
C9—H9 1 C21—C22 1.530 (3)
C10—C11 1.521 (2) C21—H21A 0.99
C10—H10A 0.99 C21—H21B 0.99
C10—H10B 0.99 C22—H22A 0.98
C11—H11A 0.98 C22—H22B 0.98
C11—H11B 0.98 C22—H22C 0.98
C11—H11C 0.98 N1—H1 0.83 (2)
C12—C13 1.395 (2) N2—H2 0.829 (19)
C2—C1—C6 119.55 (14) C14—C13—H13 120.1
C2—C1—N1 123.74 (14) C12—C13—H13 120.1
C6—C1—N1 116.58 (12) C15—C14—C13 120.14 (13)
C3—C2—C1 119.78 (15) C15—C14—H14 119.9
C3—C2—H2A 120.1 C13—C14—H14 119.9
C1—C2—H2A 120.1 C14—C15—C16 120.93 (14)
C4—C3—C2 119.74 (14) C14—C15—Cl2 119.89 (12)
C4—C3—H3 120.1 C16—C15—Cl2 119.18 (12)
C2—C3—H3 120.1 C17—C16—C15 118.89 (14)
C5—C4—C3 121.20 (14) C17—C16—H16 120.6
C5—C4—Cl1 119.48 (12) C15—C16—H16 120.6
C3—C4—Cl1 119.31 (12) C16—C17—C12 120.93 (13)
C4—C5—C6 119.16 (15) C16—C17—H17 119.5
C4—C5—H5 120.4 C12—C17—H17 119.5
C6—C5—H5 120.4 O2—C18—N2 112.99 (13)
C5—C6—C1 120.55 (14) O2—C18—S2 125.57 (11)
C5—C6—H6 119.7 N2—C18—S2 121.44 (11)
C1—C6—H6 119.7 C20—C19—H19A 109.5
O1—C7—N1 113.38 (13) C20—C19—H19B 109.5
O1—C7—S1 125.26 (11) H19A—C19—H19B 109.5
N1—C7—S1 121.35 (11) C20—C19—H19C 109.5
C9—C8—H8A 109.5 H19A—C19—H19C 109.5
C9—C8—H8B 109.5 H19B—C19—H19C 109.5
H8A—C8—H8B 109.5 O2—C20—C19 105.68 (13)
C9—C8—H8C 109.5 O2—C20—C21 107.36 (14)
H8A—C8—H8C 109.5 C19—C20—C21 113.99 (14)
H8B—C8—H8C 109.5 O2—C20—H20 109.9
O1—C9—C8 108.35 (12) C19—C20—H20 109.9
O1—C9—C10 106.11 (11) C21—C20—H20 109.9
C8—C9—C10 113.72 (13) C20—C21—C22 113.51 (15)
O1—C9—H9 109.5 C20—C21—H21A 108.9
C8—C9—H9 109.5 C22—C21—H21A 108.9
C10—C9—H9 109.5 C20—C21—H21B 108.9
C9—C10—C11 113.53 (13) C22—C21—H21B 108.9
C9—C10—H10A 108.9 H21A—C21—H21B 107.7
C11—C10—H10A 108.9 C21—C22—H22A 109.5
C9—C10—H10B 108.9 C21—C22—H22B 109.5
C11—C10—H10B 108.9 H22A—C22—H22B 109.5
H10A—C10—H10B 107.7 C21—C22—H22C 109.5
C10—C11—H11A 109.5 H22A—C22—H22C 109.5
C10—C11—H11B 109.5 H22B—C22—H22C 109.5
H11A—C11—H11B 109.5 C7—N1—C1 130.59 (13)
C10—C11—H11C 109.5 C7—N1—H1 114.2 (15)
H11A—C11—H11C 109.5 C1—N1—H1 115.2 (15)
H11B—C11—H11C 109.5 C18—N2—C12 131.16 (13)
C13—C12—C17 119.34 (13) C18—N2—H2 115.1 (14)
C13—C12—N2 124.73 (14) C12—N2—H2 113.7 (14)
C17—C12—N2 115.86 (13) C7—O1—C9 119.61 (11)
C14—C13—C12 119.74 (14) C18—O2—C20 121.44 (12)

(S)-2-Butyl N-(4-chlorophenyl)thiocarbamate (IV) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S2 0.83 (2) 2.511 (19) 3.3163 (13) 163.0 (18)
N2—H2···S1 0.829 (19) 2.563 (19) 3.3645 (13) 162.8 (17)
C6—H6···S2 0.95 2.99 3.5961 (17) 123
C17—H17···S1 0.95 2.97 3.6122 (16) 127
C2—H2A···O1 0.95 2.38 2.8539 (18) 111
C13—H13···O2 0.95 2.29 2.8197 (19) 114

Funding Statement

Funding for this research was provided by: National Science Foundation (grant No. 0840520).

References

  1. Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Bravais, A. (1866). Du Cristal Considéré Comme un Simple Assemblage de Points. In Étude Cristallographiques. Paris: Gauthier-Villars.
  4. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bull, H. B. & Breese, K. (1978). Biopolymers, 17, 2121–2131.
  6. Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.
  7. Du, Y., Grodowitz, M. J. & Chen, J. (2020). Biomolecules, 10, 716–726. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Friedel, G. (1907). Bull. Soc. Fr. Mineral. 22, 326–455.
  10. Ghosh, A. K. & Brindisi, M. (2015). J. Med. Chem. 58, 2895–2940. [DOI] [PMC free article] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Kaganyuk, M., Responte, D., Daranciang, D. & Kaminsky, W. (2023). CSD Communications (refcodes HEZYIY, HEZYOE, HEZYUK and HEZZAR). CCDC, Cambridge, England.
  13. Kaminsky, W. (2005). J. Appl. Cryst. 38, 566–567.
  14. Kaminsky, W. (2007). J. Appl. Cryst. 40, 382–385.
  15. Kaminsky, W., Responte, D., Daranciang, D., Gallegos, J. B., Ngoc Tran, B. C. & Pham, T. (2010). Molecules, 15, 554–569. [DOI] [PMC free article] [PubMed]
  16. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  17. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  18. Pauling, L. (1932). J. Am. Chem. Soc. 54, 3570–3582.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  21. Thorley, K. J. & McCulloch, I. (2018). J. Mater. Chem. C6, 12413–12421.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II, III, IV, New_Global_Publ_Block. DOI: 10.1107/S2056989023002591/zl5044sup1.cif

e-79-00386-sup1.cif (3.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023002591/zl5044Isup5.hkl

e-79-00386-Isup5.hkl (758KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989023002591/zl5044IIsup6.hkl

e-79-00386-IIsup6.hkl (611KB, hkl)

Structure factors: contains datablock(s) III. DOI: 10.1107/S2056989023002591/zl5044IIIsup7.hkl

e-79-00386-IIIsup7.hkl (418.7KB, hkl)

Structure factors: contains datablock(s) IV. DOI: 10.1107/S2056989023002591/zl5044IVsup8.hkl

e-79-00386-IVsup8.hkl (737.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044Isup6.cml

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044IIsup7.cml

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044IIIsup8.cml

Supporting information file. DOI: 10.1107/S2056989023002591/zl5044IVsup9.cml

CCDC references: 2249641, 2249640, 2249639, 2249638

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES