Skip to main content
British Journal of Industrial Medicine logoLink to British Journal of Industrial Medicine
. 1983 May;40(2):224–228.

Antipyrine clearance during occupational exposure to styrene.

M Døssing
PMCID: PMC1009178  PMID: 6131688

Abstract

Animal experiments have indicated that styrene, which is a widely used organic solvent, may induce the microsomal enzyme function of the liver. Thirteen workers with long-term exposure to styrene in a polyester plant were investigated. They worked at air concentrations about the maximal allowed time-weighted average concentration of styrene in most Western countries (50 ppm). The clearance of antipyrine was determined from saliva concentrations before and after three weeks free of exposure and then again three weeks after returning to work. Thirteen matched controls were investigated with similar intervals and methods. No significant differences were found between the half life, apparent volume of distribution, or clearance of antipyrine either within the groups or between the groups. The data exclude (95% confidence limit) the possibility that occupational exposure to styrene at concentrations about 50 ppm stimulates the microsomal enzyme function of the liver to a degree compatible with an increase in antipyrine clearance of more than 2 ml x min-1 (3%). While the first antipyrine estimation was carried out under medical supervision, the workers themselves managed to perform the antipyrine test correctly after verbal and written instructions. This has broadened the application of the antipyrine test.

Full text

PDF
224

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvares A. P., Fischbein A., Anderson K. E., Kappas A. Alterations in drug metabolism in workers exposed to polychlorinated biphenyls. Clin Pharmacol Ther. 1977 Aug;22(2):140–146. doi: 10.1002/cpt1977222140. [DOI] [PubMed] [Google Scholar]
  2. Alvares A. P., Fischbein A., Sassa S., Anderson K. E., Kappas A. Lead intoxication: effects on cytochrome P-450-mediated hepatic oxidations. Clin Pharmacol Ther. 1976 Feb;19(2):183–190. doi: 10.1002/cpt1976192183. [DOI] [PubMed] [Google Scholar]
  3. Alvares A. P., Kappas A., Eiseman J. L., Anderson K. E., Pantuck C. B., Pantuck E. J., Hsiao K. C., Garland W. A., Conney A. H. Intraindividual variation in drug disposition. Clin Pharmacol Ther. 1979 Oct;26(4):407–419. doi: 10.1002/cpt1979264407. [DOI] [PubMed] [Google Scholar]
  4. Ballinger B., Browning M., O'Malley K., Stevenson I. H. Drug-metabolizing capacity in states of drug dependence and withdrawal. Br J Pharmacol. 1972 Aug;45(4):638–643. doi: 10.1111/j.1476-5381.1972.tb08122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burke M. D. Cytochrome P-450: a pharmacological necessity or a biochemical curiosity? Biochem Pharmacol. 1981 Feb 1;30(3):181–187. doi: 10.1016/0006-2952(81)90076-9. [DOI] [PubMed] [Google Scholar]
  6. Duvaldestin P., Mazze R. I., Nivoche Y., Desmonts J. M. Occupational exposure to halothane results in enzyme induction in anesthetists. Anesthesiology. 1981 Jan;54(1):57–60. doi: 10.1097/00000542-198101000-00011. [DOI] [PubMed] [Google Scholar]
  7. Døssing M., Andreasen P. B. Ethanol and antipyrine clearance. Clin Pharmacol Ther. 1981 Jul;30(1):101–104. doi: 10.1038/clpt.1981.133. [DOI] [PubMed] [Google Scholar]
  8. Engström J. Styrene in subcutaneous adipose tissue after experimental and industrial exposure. Scand J Work Environ Health. 1978;4 (Suppl 2):119–120. [PubMed] [Google Scholar]
  9. Farrell G. C., Cooksley W. G., Powell L. W. Enhancement of hepatic drug metabolism by glutethimide in patients with liver disease. Eur J Clin Pharmacol. 1979 Sep;16(2):113–117. doi: 10.1007/BF00563117. [DOI] [PubMed] [Google Scholar]
  10. Harman A. W., Frewin D. B., Priestly B. G. Induction of microsomal drug metabolism in man and in the rat by exposure to petroleum. Br J Ind Med. 1981 Feb;38(1):91–97. doi: 10.1136/oem.38.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hotz P., Guillemin M. P., Lob M. Study of some hepatic effects (induction and toxicity) caused by occupational exposure to styrene in the polyester industry. Scand J Work Environ Health. 1980 Sep;6(3):206–215. doi: 10.5271/sjweh.2614. [DOI] [PubMed] [Google Scholar]
  12. Kolmodin B., Azarnoff D. L., Sjöqvist F. Effect of environmental factors on drug metabolism: decreased plasma half-life of antipyrine in workers exposed to chlorinated hydrocarbon insecticides. Clin Pharmacol Ther. 1969 Sep-Oct;10(5):638–642. doi: 10.1002/cpt1969105638. [DOI] [PubMed] [Google Scholar]
  13. Lai A. A., Levy R. H., Cutler R. E. Time-course of interaction between carbamazepine and clonazepam in normal man. Clin Pharmacol Ther. 1978 Sep;24(3):316–323. doi: 10.1002/cpt1978243316. [DOI] [PubMed] [Google Scholar]
  14. Lorimer W. V., Lilis R., Nicholson W. J., Anderson H., Fischbein A., Daum S., Rom W., Rice C., Selikoff I. J. Clinical studies of styrene workers: initial findings. Environ Health Perspect. 1976 Oct;17:171–181. doi: 10.1289/ehp.7617171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parkki M. G., Marniemi J., Vainio H. Action of styrene and its metabolites sytrene oxide and styrene glycol on activities of xenobiotic biotransformation enzymes in rat liver in vivo. Toxicol Appl Pharmacol. 1976 Oct;38(1):59–70. doi: 10.1016/0041-008x(76)90160-5. [DOI] [PubMed] [Google Scholar]
  16. Prescott L. F., Adjepon-Yamoah K. K., Roberts E. Rapid gas-liquid chromatographic estimation of antipyrine in plasma. J Pharm Pharmacol. 1973 Mar;25(3):205–207. doi: 10.1111/j.2042-7158.1973.tb10625.x. [DOI] [PubMed] [Google Scholar]
  17. Ramsey J. C., Young J. D. Pharmacokinetics of inhaled styrene in rats and humans. Scand J Work Environ Health. 1978;4 (Suppl 2):84–91. [PubMed] [Google Scholar]
  18. Riester E. F., Pantuck E. J., Pantuck C. B., Passananti G. T., Vesell E. S., Conney A. H. Antipyrine metabolism during the menstrual cycle. Clin Pharmacol Ther. 1980 Sep;28(3):384–391. doi: 10.1038/clpt.1980.177. [DOI] [PubMed] [Google Scholar]
  19. Vainio H., Zitting A. Interaction of styrene and acetone with drug biotransformation enzymes in rat liver. Scand J Work Environ Health. 1978;4 (Suppl 2):47–52. [PubMed] [Google Scholar]
  20. Vesell E. S. The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther. 1979 Sep;26(3):275–286. doi: 10.1002/cpt1979263275. [DOI] [PubMed] [Google Scholar]
  21. Vestal R. E., Norris A. H., Tobin J. D., Cohen B. H., Shock N. W., Andres R. Antipyrine metabolism in man: influence of age, alcohol, caffeine, and smoking. Clin Pharmacol Ther. 1975 Oct;18(4):425–432. doi: 10.1002/cpt1975184425. [DOI] [PubMed] [Google Scholar]
  22. Walter E., Staiger C., de Vries J., Zimmermann R., Weber E. Induction of drug metabolizing enzymes by sulfinpyrazone. Eur J Clin Pharmacol. 1981;19(5):353–358. doi: 10.1007/BF00544586. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Industrial Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES