Abstract
Detailed biochemical investigations of renal function were made on 75 male workers exposed to cadmium and an equal number of referents matched for age, sex, and employment status. The exposed group consisted of current and retired workers who had been employed in the manufacture of copper-cadmium alloy at a single factory in the United Kingdom for periods of up to 39 years and for whom cumulative cadmium exposure indices could be calculated. In vivo measurements of liver and kidney cadmium burden were made on exposed and referent workers using a transportable neutron activation analysis facility. Significant increases in the urinary excretion of albumin, retinol binding protein, beta 2 microglobulin, N-acetylglucosaminidase (NAG), alkaline phosphatase, gamma-glutamyl transferase and significant decreases in the renal reabsorption of calcium, urate, and phosphate were found in the exposed group compared with the referent group. Measures of glomerular filtration rate (GFR) (creatinine clearance, serum creatinine, and beta 2 microglobulin) indicated a reduction in GFR in the exposed population. Many of these tubular and glomerular function indicators were significantly correlated with both cumulative exposure index and liver cadmium burden. Using cumulative exposure index and liver cadmium as estimates of dose, a two phase linear regression model was applied to identify an inflection point signifying a threshold level above which changes in renal function occur. Many biochemical variables fitted this model; urinary total protein, retinol binding protein, albumin, and beta 2 microglobulin gave similar inflection points at cumulative exposure levels of about 1100 y.micrograms/m3 whereas changes in the tubular reabsorption of urate and phosphate occurred at higher cumulative exposure indices. Measures of GFR, although fitting the threshold model did not give well defined inflection points. Fewer variables fitted the two phase model using liver cadmium; those that did gave threshold levels in the range 20.3-55.1 ppm. When cadmium workers with cumulative exposure indices of less than 1100 y.micrograms/m3 were compared with their respective referents only serum beta 2 microglobulin and urinary NAG were significantly increased in the exposed group and these differences were not related to the degree of cadmium exposure.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. G., Harrison J. F., Scott P. The development of cadmium-induced proteinuria, impaired renal function, and osteomalacia in alkaline battery workers. Q J Med. 1969 Oct;38(152):425–443. [PubMed] [Google Scholar]
- BONNELL J. A. Emphysema and proteinuria in men casting copper-cadmium alloys. Br J Ind Med. 1955 Jul;12(3):181–195. doi: 10.1136/oem.12.3.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernard A. M., Lauwerys R. R. Retinol binding protein in urine: a more practical index than urinary beta 2-microglobulin for the routine screening of renal tubular function. Clin Chem. 1981 Oct;27(10):1781–1782. [PubMed] [Google Scholar]
- Bernard A. Evaluation of renal dysfunction induced by cadmium in man by determination of enzymes and specific proteins in urine. Arch Toxicol Suppl. 1980;4:223–232. doi: 10.1007/978-3-642-67729-8_47. [DOI] [PubMed] [Google Scholar]
- Chantler C., Barratt T. M. Estimation of glomerular filtration rate from plasma clearance of 51-chromium edetic acid. Arch Dis Child. 1972 Aug;47(254):613–617. doi: 10.1136/adc.47.254.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elinder C. G., Edling C., Lindberg E., Kågedal B., Vesterberg O. beta 2-Microglobulinuria among workers previously exposed to cadmium: follow-up and dose-response analyses. Am J Ind Med. 1985;8(6):553–564. doi: 10.1002/ajim.4700080607. [DOI] [PubMed] [Google Scholar]
- Ellis K. J., Cohn S. H., Smith T. J. Cadmium inhalation exposure estimates: their significance with respect to kidney and liver cadmium burden. J Toxicol Environ Health. 1985;15(1):173–187. doi: 10.1080/15287398509530644. [DOI] [PubMed] [Google Scholar]
- Epstein M. Effects of aging on the kidney. Fed Proc. 1979 Feb;38(2):168–171. [PubMed] [Google Scholar]
- Falck F. Y., Jr, Fine L. J., Smith R. G., McClatchey K. D., Annesley T., England B., Schork A. M. Occupational cadmium exposure and renal status. Am J Ind Med. 1983;4(4):541–549. doi: 10.1002/ajim.4700040408. [DOI] [PubMed] [Google Scholar]
- Farrow S. C. Monitoring the health effects of unemployment. J R Coll Physicians Lond. 1983 Apr;17(2):99–105. [PMC free article] [PubMed] [Google Scholar]
- Friedman S. A., Raizner A. E., Rosen H., Solomon N. A., Sy W. Functional defects in the aging kidney. Ann Intern Med. 1972 Jan;76(1):41–45. doi: 10.7326/0003-4819-76-1-41. [DOI] [PubMed] [Google Scholar]
- Gompertz D., Chettle D. R., Fletcher J. G., Mason H., Perkins J., Scott M. C., Smith N. J., Topping M. D., Blindt M. Renal dysfunction in cadmium smelters: relation to in-vivo liver and kidney cadmium concentrations. Lancet. 1983 May 28;1(8335):1185–1187. doi: 10.1016/s0140-6736(83)92465-0. [DOI] [PubMed] [Google Scholar]
- Goren M. P., Li J. T. The Coomassie Brilliant Blue method underestimates drug-induced tubular proteinuria. Clin Chem. 1986 Feb;32(2):386–388. [PubMed] [Google Scholar]
- Ibsen H., Sederberg-Olsen P. Changes in glomerular filtration rate during long-term treatment with propranolol in patients with arterial hypertension. Clin Sci. 1973 Feb;44(2):129–134. doi: 10.1042/cs0440129. [DOI] [PubMed] [Google Scholar]
- Järup L., Rogenfelt A., Elinder C. G., Nogawa K., Kjellström T. Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand J Work Environ Health. 1983 Aug;9(4):327–331. doi: 10.5271/sjweh.2404. [DOI] [PubMed] [Google Scholar]
- Kampmann J., Siersbaek-Nielsen K., Kristensen M., Hansen J. M. Rapid evaluation of creatinine clearance. Acta Med Scand. 1974 Dec;196(6):517–520. doi: 10.1111/j.0954-6820.1974.tb01053.x. [DOI] [PubMed] [Google Scholar]
- Lauwerys R. R., Buchet J. P., Roels H. A., Brouwers J., Stanescu D. Epidemiological survey of workers exposed to cadmium. Arch Environ Health. 1974 Mar;28(3):145–148. doi: 10.1080/00039896.1974.10666455. [DOI] [PubMed] [Google Scholar]
- Maack T., Johnson V., Kau S. T., Figueiredo J., Sigulem D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int. 1979 Sep;16(3):251–270. doi: 10.1038/ki.1979.128. [DOI] [PubMed] [Google Scholar]
- Maruhn D., Fuchs I., Mues G., Bock K. D. Normal limits of urinary excretion of eleven enzymes. Clin Chem. 1976 Oct;22(10):1567–1574. [PubMed] [Google Scholar]
- McLellan J. S., Thomas B. J., Fremlin J. H., Harvey T. C. Cadmium-its in vivo detection in man. Phys Med Biol. 1975 Jan;20(1):88–95. doi: 10.1088/0031-9155/20/1/008. [DOI] [PubMed] [Google Scholar]
- Nomiyama K., Nomiyama H. Tissue metallothioneins in rabbits chronically exposed to cadmium, with special reference to the critical concentration of cadmium in the renal cortex. Dev Toxicol Environ Sci. 1982;9:47–67. [PubMed] [Google Scholar]
- STANBURY S. W. Some aspects of disordered renal tubular function. Adv Intern Med. 1958;9:231–282. [PubMed] [Google Scholar]
- Schnermann J., Levine D. Z. Tubular control of glomerular filtration rate in single nephrons. Can J Physiol Pharmacol. 1975 Jun;53(3):325–329. doi: 10.1139/y75-047. [DOI] [PubMed] [Google Scholar]
- Scott M. C., Chettle D. R. In vivo elemental analysis in occupational medicine. Scand J Work Environ Health. 1986 Apr;12(2):81–96. doi: 10.5271/sjweh.2162. [DOI] [PubMed] [Google Scholar]
- Smith T. J., Anderson R. J., Reading J. C. Chronic cadmium exposures associated with kidney function effects. Am J Ind Med. 1980;1(3-4):319–337. doi: 10.1002/ajim.4700010309. [DOI] [PubMed] [Google Scholar]
- Spencer K., Price C. P. Kinetic immunoturbidimetry: the estimation of albumin. Clin Chim Acta. 1979 Jul 16;95(2):263–276. doi: 10.1016/0009-8981(79)90368-1. [DOI] [PubMed] [Google Scholar]
- Squibb K. S., Pritchard J. B., Fowler B. A. Cadmium-Metallothionein nephropathy: relationships between ultrastructural/biochemical alterations and intracellular cadmium binding. J Pharmacol Exp Ther. 1984 Apr;229(1):311–321. [PubMed] [Google Scholar]
- Stewart M., Hughes E. G. Urinary beta 2 microglobulin in the biological monitoring of cadmium workers. Br J Ind Med. 1981 May;38(2):170–174. doi: 10.1136/oem.38.2.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Topping M. D., Forster H. W., Dolman C., Luczynska C. M., Bernard A. M. Measurement of urinary retinol-binding protein by enzyme-linked immunosorbent assay, and its application to detection of tubular proteinuria. Clin Chem. 1986 Oct;32(10):1863–1866. [PubMed] [Google Scholar]
- Wibell L., Evrin P. E., Berggård I. Serum 2 -microglobulin in renal disease. Nephron. 1973;10(5):320–331. doi: 10.1159/000180203. [DOI] [PubMed] [Google Scholar]