Abstract
Background
Genetic factors play a crucial role in the pathogenesis of Parkinson's disease (PD). However, no comprehensive study has described genetic alterations in Vietnamese patients diagnosed with PD. This study aimed to identify genetic causes and their association with clinical phenotypes in a Vietnamese PD cohort.
Methods
A total of 83 patients with early‐onset PD (disease onset before the age of 50) were recruited for genetic analysis using a combination of multiplex ligation‐dependent probe amplification and next‐generation sequencing for a panel of 20 PD‐associated genes.
Results
It was found that 37 out of 83 patients carried genetic alterations, with 24 pathogenic/likely pathogenic/risk variants and 25 variants of uncertain significance. The pathogenic/likely pathogenic/risk variants were mostly detected in LRRK2, PRKN, and GBA, while the variants of uncertain significance were identified in 12 different genes that were studied. The most common genetic alteration was LRRK2 c.4883G>C (p.Arg1628Pro), and patients with PD carrying this variant were found to have a distinct phenotype. Participants carrying pathogenic/likely pathogenic/risk variants had a significantly higher rate of a family history of PD.
Conclusion
These results provide a further understanding of genetic alterations associated with PD in a South‐East Asian population.
Keywords: genetic, multiplex ligation‐dependent probe amplification, next‐generation sequencing, Parkinson's disease, Vietnam
![]()
1. INTRODUCTION
Parkinson's disease (PD) is one of the most common neurodegenerative diseases and is characterized clinically by bradykinesia, resting tremor, rigidity, and posture instability (De Lau & Breteler, 2006; Kalia & Lang, 2015). The disease is estimated to affect 0.3% of the general population, and its prevalence increases with age (Pringsheim et al., 2014). The pathophysiology of PD is determined mainly by the progressive loss of dopaminergic neurons in the substantia nigra; this is a complex process influenced by both environmental and genetic factors. To date, more than 20 genes have been found to be associated with PD, and most of the genetic alterations impact early‐onset PD (EOPD), which is generally defined as disease onset before the age of 50 (Alcalay et al., 2010; Lin et al., 2019; Selvaraj & Piramanayagam, 2019). Many studies have been conducted to identify the causative genetic factors behind EOPD, as this information provides biological insights into disease pathophysiology and even helps to identify potential treatment targets (Alcalay et al., 2010; Cristina et al., 2020; Lin et al., 2019). In line with other genetic diseases, the genetic causes of PD may differ between ethnicities; therefore, expanding the molecular understanding of PD in diverse populations is crucial. The Vietnamese population has been shown to have a distinct genetic profile in terms of variant distribution and disease association (M. D. Do et al., 2021; Do et al., 2020; Tran et al., 2021; Truong et al., 2022); however, very little information regarding the genetic causes of PD has been published. In two recent studies, only three causative genes for EOPD were examined, mainly due to the limitations of the sequencing technique (Giang et al., 2017; Ton et al., 2020). Furthermore, there have been no investigations into the genetic rearrangements in PD, although they have been reported to be a potential causative factor in EOPD. Therefore, this study was designed to identify the genetic causes of EOPD by using a combination of multiplex ligation‐dependent probe amplification (MLPA) and next‐generation sequencing (NGS) for a panel of 20 PD‐associated genes: SNCA, PRKN, GBA1, PINK1, DJ‐1, LRRK2, ATP13A2, VPS35, UCHL1, PLA2G6, FBXO7, DNAJC6, SYNJ1, HTRA2, EIF4G1, DNAJC13, CHCHD2, VPS13C, GCH1, and MAPT.
2. MATERIALS AND METHODS
2.1. Subjects
A total of 83 unrelated patients diagnosed with PD before the age of 50 were recruited for this study. The study protocol was approved by the Ethical Committee of the University of Medicine and Pharmacy at Ho Chi Minh City (approval number 352/DHYD‐HDDD). The diagnosis of PD was based on the International Parkinson and Movement Disorder Society Clinical Diagnostic Criteria for Parkinson's disease (Postuma et al., 2015), with examinations by two independent Movement disorder neurologists from Movement disorder unit, Neurology Department, University Medical Center, Ho Chi Minh City. MDS‐Unified Parkinson's Disease Rating Scale (MDS‐UPDRS) and Hoehn‐Yahr scale were used to measure the progression, severity, and stage of the disease. Cognitive screening was further evaluated by Mini‐Mental State Examination (MMSE), and Montreal Cognitive Assessment (MoCA). Patients provided written informed consent upon participating in the study. Demographic and clinical information on all the participants was documented. Two milliliters of peripheral blood was collected from each patient by EDTA Vacutainer (Becton Dickinson, NJ, USA), and genomic DNA was subsequently extracted from blood samples by QIAamp DNA Blood Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer's instruction.
2.2. Genetic analysis
2.2.1. Multiplex ligation‐dependent probe amplification
A SALSA MLPA Probemix P051‐D2 and P052‐D2 Parkinson kit (MRC‐Holland, Amsterdam, the Netherlands) were used to determine genetic rearrangements. These two kits contain probes for detecting deletions or duplication in SNCA, PARK2, UCHL1, PINK1, DJ‐1, ATP13A2, LRRK2, GCH1 genes, and the presence of two‐point mutations, SNCA p.Ala30Pro and LRRK2 p.Gly2019Ser. Fifty nanograms of gDNA was denatured and allowed to hybridize with two sets of Probemix at 60°C for 18h. Ligase enzymes were added and incubated at 54°C for 15min. The solution was subsequently amplified by PCR and electrophoresis was performed by ABI 3500 (Applied Biosystems, Waltham, MA, USA). Genetic rearrangement was analyzed using Coffalyser software. Based on the fluorescence intensity, dosage quotients (DQ) for each probe were calculated. Samples were taken to be duplications when DQ>1.3 and deletions when DQ<0.65.
2.2.2. Next‐generation sequencing
The gDNA with a concentration equal to or greater than 3.0ng/μL was fragmented into 100–250 base pairs and purified. NEBNext® Ultra™ II DNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, USA) was used to prepare the NGS library following the manufacturer's instructions. Equal amounts of libraries were pooled together and hybridized with xGen Lockdown probes for 20 genes: SNCA, PRKN, GBA1, PINK1, DJ‐1, LRRK2, ATP13A2, VPS35, UCHL1, PLA2G6, FBXO7, DNAJC6, SYNJ1, HTRA2, EIF4G1, DNAJC13, CHCHD2, VPS13C, GCH1, and MAPT (IDT Corporation, NJ, USA). The concentration was diluted to 2 nM measured by a Qubit 4 fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). The sequencing process was performed by MiniSeq High output kits v2 (150 cycles) (Illumina, San Diego, CA, USA) on an Illumina MiniSeq system (Illumina) with a calculated minimum coverage of 40X. Basespace sequencing hub (Illumina) was used to identify genetic variants, which were designated following the recommendations of the American College of Medical Genetics (ACMG) and ClinVar (Landrum et al., 2018; Richards et al., 2015).
2.2.3. Direct sequencing
Pathogenic mutations identified by NGS were subsequently confirmed by direct sequencing. Appropriate primers were designed, and the protocol used for direct sequencing was as described previously (M. D. Do et al., 2020; Kiet et al., 2019; Mai et al., 2019).
2.3. Statistical analysis
The clinical characteristics of the studied population were statistically analyzed using Student's t‐test for comparing two mean values, ANOVA one‐way test for comparing differences between the means of the groups, and Chi‐square test and Fisher's exact test for testing independence. A p‐value<.05 was considered statistically significant.
3. RESULTS
3.1. Clinical characteristics of patients with EOPD
The mean age of patients recruited in this cohort was 48.9 with a mean age of onset of PD of 43.1; 44.6% of patients were female. Most of the patients were non‐smokers, and only 12 out of 83 patients had a family history of PD. The clinical characteristics of patients with PD are summarized in Table 1, including Hoehn‐Yahr stage and MDS‐UPDRS score. Patients carrying both VUS and pathogenic/likely pathogenic/risk variants were stratified into pathogenic/likely pathogenic/risk group. The percentages of patients in the pathogenic/likely pathogenic/risk, VUS, and unidentified groups are illustrated in Figure 1a. The statistical analysis found no significant difference between the three groups of participants in all variables except for a family history of PD; patients carrying pathogenic/likely pathogenic/risk variants had a significantly higher rate of family history of PD.
TABLE 1.
Clinical characteristics of patients with early‐onset Parkinson's disease (EOPD)
| Characteristics | Total N=83 | P/LP/R N=18 | VUS N=19 | Unidentified N=46 | p‐Value a |
|---|---|---|---|---|---|
| Age, (mean±SD) | 48.93±7.70 | 46.50±7.43 | 50.84±6.30 | 49.11±8.21 | .22 |
| Age of onset, (mean±SD) | 43.14±5.97 | 41.55±6.10 | 44.00±5.32 | 43.41±6.18 | .42 |
| Gender, N (%) | |||||
| Male | 46 (55.42) | 12 (66.67) | 12 (63.16) | 22 (47.82) | .29 |
| Female | 37 (44.58) | 6 (33.33) | 7 (36.84) | 24 (52.17) | |
| Smoking, N (%) | |||||
| Often | 3 (3.61) | 2 (11.11) | 0 | 1 (2.17) | .18 |
| Used to | 22 (26.51) | 4 (22.22) | 8 (42.11) | 10 (21.78) | |
| No | 58 (69.88) | 12 (66.67) | 11 (57.89) | 35 (76.08) | |
| Exposure to pesticides, N (%) | |||||
| Yes | 28 (33.73) | 5 (27.78) | 6 (31.58) | 17 (36.95) | .76 |
| No | 55 (66.27) | 13 (72.22) | 13 (68.42) | 29 (63.05) | |
| Family history of PD, N (%) | |||||
| Yes | 12 (14.45) | 5 (27.78) | 0 | 7 (15.22) | .03 b |
| No | 71 (85.54) | 13 (72.22) | 19 (100.00) | 39 (84.78) | |
| Hoehn‐Yahr stage, N (%) | |||||
| 1 | 15 (18.07) | 5 (25.00) | 3 (15.79) | 7 (15.22) | .86 |
| 2 | 46 (55.42) | 8 (50.00) | 11 (57.89) | 27 (58.70) | |
| 3 | 21 (25.31) | 5 (22.00) | 5 (26.32) | 11 (23.91) | |
| 4 | 1 (1.20) | 0 | 0 | 1 (2.17) | |
| MDS‐UPDRS part I (mean±SD) | 7.55±4.68 | 6.55±3.84 | 7.47±5.24 | 7.98±4.77 | .55 |
| MDS‐UPDRS part II (mean±SD) | 11.05±6.10 | 11.06±6.54 | 11.95±6.70 | 10.67±5.75 | .75 |
| MDS‐UPDRS part III (mean±SD) | 29.77±14.93 | 29.39±17.59 | 26.21±16.36 | 31.39±13.20 | .44 |
| MDS‐UPDRS part IV (mean±SD) | 3.11±3.48 | 3.22±3.94 | 3.68 ± 3.59 | 2.82±3.29 | .66 |
Abbreviations: EOPD, early‐onset Parkinson's disease; MDS‐UPDRS, MDS‐Unified Parkinson's Disease Rating Scale; P/LP/R, pathogenic/likely pathogenic/risk variant; PD, Parkinson's disease; VUS, variant of uncertain significance.
p‐Value for statistical analysis between three groups (P/LP/R, VUS, and Unidentified).
Statistically significant.
FIGURE 1.

Distribution of genetic alterations in studied population. (a) Percentage of patients harboring genetic alterations in 20 genes (N=83). (b) Distribution of pathogenic alleles detected by genes (N=24). (c) Distribution of VUS alleles detected by genes (N=25). P/LP/R: pathogenic/likely pathogenic/risk variant; VUS, variant of uncertain significance.
3.2. Molecular characteristics of patients with EOPD
The molecular detection for genetic changes in this cohort of patients by using the combination of MLPA and NGS was 44.6% (37 out of 83), while in 46 individuals (55.4%) we could not detect any alterations within the targeted genes.
3.3. Pathogenic/likely pathogenic/risk variants
Among 24 pathogenic/likely pathogenic/risk variants identified in this cohort, the most prevalent altered alleles were detected in LRRK2, PRKN, and GBA with frequencies of 38%, 29%, and 17%, respectively (Figure 1b). The details of pathogenic/likely pathogenic/risk variants are presented in Table 2.
TABLE 2.
Pathogenic/likely pathogenic/risk factor mutations and variant of uncertain significance (VUS) identified in patients with early‐onset Parkinson's disease (EOPD)
| Patient ID | Gender | Onset age | Family history | MDS‐UPDRS | Gene | Transmission | dbSNP | Transcript | Variant | ACMG Classification | ClinVar classification | Genetic diagnosis |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PD043 | F | 41 | N | 6‐15‐21‐12 | PRKN | Hom | – | NM_004562.3 | Exon 5 deletion | PVS1, PS3, PS4 | Not reported | Disease causing |
| PD099 | M | 33 | N | 2‐6‐12‐0 | PRKN | Het | – | NM_004562.3 | Exon 6 duplication | PVS1, PS3, PS4 | Not reported | Disease causing |
| PRKN | Het | – | NM_004562.3 | Exon 2 deletion | PVS1, PS3, PS4 | Not reported | ||||||
| LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | ||||||
| PD149 | F | 41 | Y | 9‐20‐33‐2 | PRKN | Hom | – | NM_004562.3 | Exon 4 deletion | PVS1, PS3, PS4 | Not reported | Disease causing |
| MAPT | Het | rs63750756 | NM_016835.5 | c.1788T>G (p.Asn596Lys) | PS1, PS3, PS4 | Pathogenic | ||||||
| LRRK2 | Hom | – | NM_198578.4 | Exon 49 deletion | BP6 | Not reported | ||||||
| PD199 | F | 48 | Y | 11‐9‐13‐0 | VPS35 | Het | rs188286943 | NM_018206.5 | c.1858G>A (p.Asp620Asn) | PS1, PS3, PS4 | Pathogenic | Disease causing |
| PD041 | M | 50 | N | 10‐16‐52‐11 | GBA | Het | rs104886460 | NM_000157.4 | g.9069G>A (splice site mutation) | PVS1, PS3 | Pathogenic/Likely pathogenic | Risk factor |
| PD068 | M | 30 | N | 16‐20‐67‐0 | PRKN | Het | – | NM_004562.3 | Exon 3 deletion | PVS1, PS3, PS4 | Not reported |
Carrier Risk factor |
| GBA | Het | rs421016 | NM_000157.4 | c.1448T>C (p.Leu483Pro) | PP2, PP4 | Pathogenic | ||||||
| PD091 | M | 48 | N | 7‐15‐20‐5 | GBA | Het | rs421016 | NM_000157.4 | c.1448T>C (p.Leu483Pro) | PP2, PP4 | Pathogenic | Risk factor |
| PD158 | M | 40 | N | 3‐22‐31‐3 | GBA | Het | rs80356772 | NM_000157.4 | c.1505G>A (p.Arg502His) | PS2, PP1, PP4 | Pathogenic/Likely pathogenic | Risk factor |
| PD019 | M | 44 | N | 8‐6‐30‐2 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD023 | F | 41 | Y | 8‐4‐25‐3 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD061 | F | 36 | N | 0‐1‐17‐0 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD072 | F | 48 | N | 4‐8‐24‐0 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD080 | M | 38 | N | 1‐4‐25‐0 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD109 | M | 41 | N | 6‐7‐12‐0 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD123 | M | 49 | N | 5‐11‐26‐0 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD142 | M | 39 | Y | 8‐6‐10‐6 | LRRK2 | Het | rs33949390 | NM_198578.4 | c.4883G>C (p.Arg1628Pro) | BS1, BP4, BP6, PP5 | Conflicting interpretations of pathogenicity | Risk factor |
| PD018 | M | 33 | Y | 7‐9‐43‐8 | PLA2G6 | Het | rs121908685 | NM_003560.4 | c.238G>A (p.Ala80Thr) | PM1, PM3 | Pathogenic | Carrier |
| PD156 | M | 48 | N | 7‐20‐68‐6 | PINK1 | Het | – | NM_032409.3 | Exon 1 deletion | PVS1, PS3, PS4 | Not reported | Carrier |
| PD021 | F | 50 | N | 8‐4‐25‐3 | DNAJC13 | Het | – | NM_015268.4 | c.5396T>C (p.lle1799Thr) | BP1 | Not reported | – |
| PD041 | M | 50 | N | 10‐16‐52‐11 | ATP13A2 | Het | rs199661793 | NM_022089.4 | c.745G>A (p.Ala249Thr) | BP1 | VUS | – |
| PD044 | F | 47 | N | 4‐11‐21‐4 | ATP13A2 | Het | rs202166353 | NM_022089.4 | c.3040G>A (p.Gly1014Ser) | BP1 | VUS | – |
| PD049 | M | 48 | N | 11‐11‐9‐0 | DNAJC6 | Het | rs145175543 | NM_014787.4 | c.2044A>G (p.Ser682Gly) | BP1 | VUS | – |
| PD056 | M | 46 | N | 3‐4‐18‐0 | MAPT | Het | rs151115928 | NM_016835.5 | c.418C>T (p.Pro140Ser) | BP1 | Benign | – |
| EIF4G1 | Het | rs200529085 | NM_182917.4 | c.3545C>G (p.Ala1182Gly) | BP1 | Not reported | – | |||||
| PINK1 | Het | rs35813094 | NM_032409.3 | c.1023G>A (p.Met341lle) | BP1 | Not reported | – | |||||
| PD063 | F | 40 | N | 7‐14‐16‐6 | DJ‐1 | Het | rs770946447 | NM_007262.5 | c.103G>A (p.Val35lle) | BP1 | VUS | – |
| PD080 | M | 38 | N | 1‐4‐25‐0 | PINK1 | Het | – | NM_032409.3 | c.1390C>T (p.Arg464Cys) | BP1 | Not reported | – |
| PD089 | F | 47 | N | 6‐5‐11‐0 | PRKN | Het | rs552077922 | NM_004562.3 | c.271G>A (p.Ala91Thr) | BP1 | Not reported | – |
| PD091 | M | 48 | N | 7‐15‐20‐5 | ATP13A2 | Het | rs772243999 | NM_022089.4 | c.2557C>T (p.Arg853Cys) | BP1 | VUS | – |
| PD092 | M | 26 | N | 2‐4‐15‐0 | ATP13A2 | Het | rs377186549 | NM_022089.4 | c.1202G>A (p.Cys401Tyr) | BP1 | VUS | – |
| PD096 | F | 44 | N | 6‐16‐7‐7 | DNAJC6 | Het | rs145175543 | NM_014787.4 | c.2044A>G (p.Ser682Gly) | BP1 | VUS | – |
| PD098 | M | 48 | N | 5‐6‐23‐3 | DNAJC6 | Het | rs145175543 | NM_014787.4 | c.2044A>G (p.Ser682Gly) | BP1 | VUS | – |
| PD103 | M | 46 | N | 6‐6‐15‐2 | GCH1 | Het | rs756782285 | NM_000161.3 | c.170G>A (p.Arg57Gln) | BP1 | Not reported | – |
| PD110 | M | 50 | N | 5‐8‐27‐0 | VPS13C | Het | rs568860952 | NM_020821.3 | c.7559C>G (p.Ala2520Gly) | BP1 | Not reported | – |
| PD140 | F | 47 | N | 7‐14‐59‐3 | EIF4G1 | Het | rs200529085 | NM_182917.4 | c.3545C>G (p.Ala1182Gly) | BP1 | Not reported | – |
| PD148 | M | 40 | N | 15‐14‐24‐10 | FBXO7 | Het | rs548204763 | NM_012179.4 | c.587A>G (p.Asn196Ser) | BP1 | VUS | – |
| PD150 | F | 37 | N | 7‐23‐46‐8 | LRRK2 | Het | rs281865042 | NM_198578.4 | c.1847A>G (p.Lys616Arg) | BP1 | Not reported | – |
| PD158 | M | 40 | N | 3‐22‐31‐3 | EIF4G1 | Het | rs143014570 | NM_182917.4 | c.1331C>T (p.Thr444Met) | BP1 | Not reported | – |
| PD168 | M | 42 | N | 22‐25‐58‐9 | DNAJC13 | Het | rs553930800 | NM_015268.4 | c.5646G>C (p.Met1882lle) | BP1 | Not reported | – |
| PD183 | M | 50 | N | 14‐19‐32‐8 | VPS13C | Het | rs11629598 | NM_020821.3 | c.4354A>G (p.lle1452Val) | BP1 | Not reported | – |
| PD192 | M | 48 | N | 12‐23‐40‐7 | EIF4G1 | Het | rs112809828 | NM_182917.4 | c.3988A>G (p.Met1330Val) | BP1 | Not reported | – |
| PD193 | M | 33 | N | 2‐9‐47‐3 | EIF4G1 | Het | rs746958243 | NM_182917.4 | c.1223C>G (p.Pro408Arg) | BP1 | Not reported | – |
| PD210 | M | 37 | N | 4‐9‐21‐0 | LRRK2 | Het | rs202157354 | NM_198578.4 | c.158A>G (P.Lys53Arg) | BP1 | VUS | – |
Abbreviations: ACMG, American College of Medical Genetics; F, female; Hom/Het, homogenous/heterogenous; M, male; Family history, Y (yes)/N (no); MDS‐UPDRS, MDS‐Unified Parkinson's Disease Rating Scale (part 1‐part 2‐part 3‐part4).
Alterations of LRRK2 were the most prevalent in the 83 patients with EOPD. Nine patients had LRRK2 c.4883G>C (p.Arg1628Pro), one with the c.1847A>G (p.Lys616Arg) (PD150), one with c.158A>G (p.Lys53Arg) (PD210), and one with homozygous deletion of exon 49 (PD149). When compared with the unidentified group, patients with PD carrying LRRK2 c.4883G>C (p.Arg1628Pro) had a younger age of onset and significantly lower MDS‐UPDRS scores in all four parts recorded (Table 3).
TABLE 3.
Comparison of clinical characteristics between LRRK2 c.4883G>C and unidentified patients with Parkinson's disease (PD)
| Characteristics | LRRK2 Arg1628Pro N=9 | Unidentified N=46 | p‐Value |
|---|---|---|---|
| Age of onset (mean±SD) | 41.00±5.29 | 43.41±6.18 | .24 |
| Gender, N (%) | |||
| Male | 6 (66.67) | 22 (47.82) | .30 |
| Female | 3 (33.33) | 24 (52.17) | |
| Family history of PD, N (%) | |||
| Yes | 2 (22.22) | 7 (15.22) | .60 |
| No | 7 (77.78) | 39 (84.78) | |
| MDS‐UPDRS part I (mean±SD) | 4.67±3.12 | 7.98±4.77 | .02 a |
| MDS‐UPDRS part II (mean±SD) | 5.89±2.80 | 10.67±5.75 | .001 a |
| MDS‐UPDRS part III (mean±SD) | 20.11±7.41 | 31.39±13.20 | .001 a |
| MDS‐UPDRS part IV (mean±SD) | 1.22±2.11 | 2.82±3.29 | .03 a |
Abbreviation: MDS‐UPDRS, MDS‐Unified Parkinson's Disease Rating Scale.
Statistically significant.
Mutations of PRKN in four patients were all large genetic arrangements, including deletions of exon 2, 3, 4, 5, and duplication of exon 6. Two patients had homozygous PRKN deletion (PD43: exon 5, PD149: exon 4). Patient PD 99 was confirmed to have compound heterozygous rearrangements in PRKN by genetic analysis in his family (data not shown).
Our study identified four male GBA1‐related patients with EOPD, including heterozygous splice‐site (g.9069G>A), c.1448T>C (p.Leu483Pro), and c.1505G>A (p.Arg502His). These patients had no family history of PD, and we found that the g.9069G>A carrier (PD41) rapidly progressed to Hoehn‐Yahr stage 3 with motor complications after 6 years of disease.
Furthermore, two heterozygous missense mutations were found in PLA2G6 (c.238G>A, p.Ala80Thr) and VPS35 (c.1858G>A, p.Asp620Asn), which have been reported as pathogenic. The heterozygous PINK1 deletion of exon 1 (PD156) was found in a recently diagnosed 48‐year‐old male with depressed mood; MDS‐UPDRS score 7‐20‐68‐6 each part, respectively, and cognitive impairment (MoCA of 23).
Patient PD68 carrying PRKN deletion of exon 3 and GBA1 p.Leu483Pro had earliest disease onset at the age of 30, and highly pronounced disturbances in mood, motor symptoms (MDS‐UPDRS each part were 16‐20‐67‐12, respectively).
3.4. Variant of uncertain significance
Twenty‐five variant of uncertain significance (VUS) were identified according to ACMG criteria in 23 patients with PD (27.7% of the participants). The details of these variants are listed in Table 2. All the variants were missense heterozygous. The distribution of variants by genes is shown in Figure 1c. These variants were identified mainly in the EIF4G1, ATP13A2, DNAJC13, and DNAJC6 genes. No genetic alterations were identified in SNCA, UCHL1, SYNJ11, HTRA2, and CHCHD2.
4. DISCUSSION
The development of NGS in Vietnam has allowed comprehensive genetic studies of multiple pathogenic conditions (M. D. Do et al., January, 2022; H. T. Nguyen et al., 2020; H.‐N. Nguyen et al., 2021; Nguyen‐Le, 2022). Analyzing the spectrum of PD‐related genes in different ethnicities is becoming important to the understanding of the genetic mechanism underlying the disease. In this study, we determined the mutational spectrum of 20 known PD‐associated genes in a cohort of Kinh Vietnamese patients diagnosed with EOPD, and identified 37 out of 83 (45%) patients carrying variants in LRRK2, PRKN, EIF4G1, ATP13A2, GBA1, DNAJC6, PINK1, DNAJC13, MAPT, VPS13C, DJ‐1, FBXO7, GCH1, PLA2G6, and VPS35.
The LRRK2 gene (leucine‐rich repeat kinase 2) encodes Lrrk2 containing ARM (armadillo repeat motifs), ANK (ankyrin repeat), LRR (leucine‐rich repeat), ROC (Ras of complex proteins; GTPase), COR (C‐terminal of ROC), MAP‐KKK (mitogen‐activated kinase kinase kinase), and WD40 domains (Gasser, 2011). It is the best‐known cause of autosomal dominant PD, accounting for 5% of familial and 1% of sporadic cases (Kestenbaum & Alcalay, 2017). The p.Gly2019Ser mutation located in the MAP‐KKK kinase domain is common in Caucasians, accounting for 1% of sporadic cases (Bardien et al., 2011; Haugarvoll & Wszolek, 2009), while p.Gly2385Arg and p.Arg1628Pro mutations are risk variants found in 3%–4% of healthy individuals and 6%−8% of patients with PD in some Asian populations (Ross et al., 2008). The LRRK2 p.Arg1628Pro variant is mostly identified as a secondary susceptibility genetic factor, especially in patients of Chinese descent, conferring a twofold risk of developing PD, with typical late‐onset L‐dopa‐responsive clinical phenotype in carriers (Cao et al., 2007; Liang et al., 2018; Ross et al., 2008; Zhao et al., 2020). Penetrance of LRRK2 is age‐dependent and widely variably, with estimated rate ranging from 30% to 74% (Ozelius et al., 2006; Schneider & Alcalay, 2020). Our present study found that the proportion of patients carrying the LRRK2 variants was 15% (12 out of 83), higher compared to either Korean (8.6%; six out of 70) or Chinese population (9.2%; 22 out of 240) (Li et al., 2020; Youn et al., 2019). Interestingly, we found that LRRK2 p.Arg1628Pro was the most frequent variant in Vietnamese patients with EOPD, whereas this variant was described mostly in patients with late‐onset PD (Li et al., 2020; S.‐Y. Lim et al., 2019; Zhang et al., 2017). Arginine in codon 1628 is in the COR domain of the Lrrk2 protein and highly conserved across species, emphasizing the importance of this residue to protein function. It is postulated that the substitution of a neutral nonpolar proline at this position may cause a conformational alteration misleading to Lrrk2 dimerization (Ross et al., 2008). Further studies to elucidate how LRRK2 p.Arg1628Pro could trigger the onset of PD are required to fully understand whether it was a risk variant or a pathogenic mutation with low penetrance in Asian. In this study, we described that LRRK2 variants carriers had identical clinical features of idiopathic PD similar to previous reports (Alcalay et al., 2009; Gan‐Or et al., 2015; Liang et al., 2018; Pulkes et al., 2014). Lysine 616 is one among the conserved amino acid of Lrrk2. The missense LRRK2 p.Lys616Arg mutation was first identified in a Chinese family as dominant in a late‐onset form of PD, with slow progression and no reported motor complications (Wang et al., 2010). The patient carrying this variant in our study (PD150) exhibited distinct clinical manifestations. Further studies on LRRK2 variants are needed to explain its role in the pathophysiology of PD.
Parkin plays critical role as ubiquitin ligase E3, protecting against toxicity and oxidative stress (Castelo Rueda et al., 2021). Mutated PRKN was previously reported to be the most common genetic cause of early onset typical PD (Kitada et al., 1998). More than 130 variants have been described, mostly related to copy number variants either large deletions or duplications of entire exons. The mutation frequency of PRKN occurs various on different populations (Kilarski et al., 2012; Li et al., 2020; Lin et al., 2019). We reported herein six PRKN variant carriers (7%), including deletion, duplication, and point mutation. Exon deletion expanding from exon 2 to exon 5 was the most observed type, similar to previous studies (Guo et al., 2015; Jiang et al., 2020). No family history of disease was detected in most of these cases. Intriguingly, we showed that those three out of five patients carrying PRKN variants had cognitive impairment (MoCA score less than 26), which was unusual as other findings.
The microtubule‐associated protein tau (MAPT) plays an important role in tubulin polymerization, stabilization of microtubules, and maintaining cellular processes. MAPT p.Asn596Lys has been reported in patients diagnosed with pallido‐ponto‐nigral degeneration (Clark et al., 1998; Yasuda et al., 1999) and has been confirmed as a pathogenic mutation. The patient carrying PRKN deletion of exon 4, LRRK2 deletion of exon 49, and MAPT p.Asn596Lys had dominant motor disturbances (high MDS‐UPDRS score of part III), but without the presence of apathy as previously reported (Espay & Litvan, 2011; Yang et al., 2015).
Variants in the glucocerebrosidase gene (GBA1) are common and important genetic susceptibility factors for PD (J. Do et al., 2019). We identified four heterozygous carriers with the frequency of 5%, as relevant to J. L. Lim et al. (2022), including one carried g.9069G>A (c.115+1G>A), one carried p.Arg502His, and two carried p.Leu483Pro. Notably, these rare variants had been identified as being pathogenic in Gaucher disease and as genetic risk factors for PD in the heterozygous state (Malek et al., 2018). GBA1‐related patients with PD have earlier age at onset, higher prevalence of the postural instability, gait‐difficulty phenotype, worse motor symptoms, more frequent non‐motor symptoms, rapid progression, and reduced survival compared with non‐GBA1‐mutated patients with PD (Brockmann et al., 2015; Malek et al., 2018; Maple‐Grødem et al., 2021; Stoker et al., 2020). GBA1 p.Leu483Pro is among the three most common variants in patients with PD (Guadagnolo et al., 2021; Huang et al., 2011; J. L. Lim et al., 2022; Petrucci et al., 2020; Ren et al., 2022; Wu et al., 2007), whereas the splice‐site variant g.9069G>A (c.115+1G>A) has previously been identified in both PD subjects and asymptomatic carriers (Aslam et al., 2021; Sato et al., 2005). Compared with patients who did not carry a GBA1 mutation, those with GBA1 mutations were male and presented earlier onset and cognitive changes (MoCA: 24.25±3.77) (Sidransky et al., 2009) but no family history was detected. From our observation, the presence of GBA1 variants (especially GBA1 p.Leu483Pro) may accelerate the disease progression (Cilia et al., 2016; Liu et al., 2016). Previous experimental data have shown that GCase and α‐synuclein form a bidirectional pathogenic loop (Mazzulli et al., 2011) in which the functional loss of GCase caused by the GBA1 variant integrates the degradation of lysosomal α‐syn, leading to the accumulation of α‐syn; α‐syn aggregation inhibits the lysosomal activity of GCase. However, the association between the severity of the GBA1 variant and GCase activity level has not been elucidated (Petrucci et al., 2020). Therefore, the effect of GBA1 variants on PD pathogenesis is crucial for detailed investigation.
PINK1 mutations are the second most common cause of EOPD and autosomal recessive PD. The frequency of PINK1 genetic alterations in our study was 3.6% (three out of 83). The heterozygous PINK1 deletion of exon 1 carrier (PD156) had appropriate features as previously reported (Guadagnolo et al., 2021), especially the depression mood and cognitive impairment (MoCA score: 23 points).
The two known mutants on PLA2G6 p.Ala80Thr and VPS35 p.Asp620Asn were identified in our cohort with the frequency of 1.2% (one out of 83 for each) presented similar characteristics as previously reported (Agarwal et al., 2012, Magrinelli et al., 2022; Yoshino et al., 2022), except the early age at onset.
In conclusion, seven patients (8.4%) carried pathogenic or likely pathogenic variants in known PD genes in our patients with EOPD. Additionally, 13.3% of patients (11/83) carried risk variants in either LRRK2 or GBA1, and 19 patients (22.9%) had rare variants of uncertain significance. Our findings contribute a primary understanding of the genetic spectrum of Vietnamese EOPD, indicating that specific pathogenic/likely pathogenic variants may underlie different phenotypic manifestations, and the pathogenicity of numerous either rare variants or high‐risk variants should be further considered. However, our data have some limitations: (i) the sample size was relatively small; (ii) the number of subjects carrying variants of different severity may conceal additional significant differences; and (iii) we were unable to obtain data on the longitudinal progression of motor and key non‐motor symptoms, which will be necessary for future research.
AUTHOR CONTRIBUTIONS
Thao Phuong Mai and Minh Duc Do designed the study. Tai Ngoc Tran and Tuan Van Le recruited the patients. An Bac Luong, Linh Hoang Gia Le, Niem Thanh Van Vo, Khuong Thai Le, and Hoang Anh Vu performed the genetic sequencing. Minh Duc Do, Thao Phuong Mai, Tai Ngoc Tran, Thuc‐Nhi Nguyen Le, and Hoang Anh Vu analyzed the data. Thao Phuong Mai and Minh Duc Do wrote the manuscript.
CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.
PEER REVIEW
The peer review history for this article is available at https://publons.com/publon/10.1002/brb3.2950.
Do, M. D. , Tran, T. N. , Luong, A. B. , Le, L. H. G. , Van Le, T. , Le, K. T. , Van Vo, N. T. , Le, T.‐N. N. , Vu, H. A. , & Mai, T. P. (2023). Clinical and genetic analysis of Vietnamese patients diagnosed with early‐onset Parkinson's disease. Brain and Behavior, 13, e2954. 10.1002/brb3.2950
Minh Duc Do and Tai Ngoc Tran contributed equally as first authors.
DATA AVAILABILITY STATEMENT
Raw data supporting the conclusion of this manuscript are available upon request, contact drmaithao@ump.edu.vn.
REFERENCES
- Agarwal, P. , Hogarth, P. , Hayflick, S. , Macleod, P. , Kuriakose, R. , Mckenzie, J. , Heffernan, N. , Dinelle, K. , Sossi, V. , & Stoessl, A. J. (2012). Imaging striatal dopaminergic function in phospholipase A2 group VI‐related Parkinsonism. Movement Disorders, 27(13), 1698–1699. 10.1002/mds.25160 [DOI] [PubMed] [Google Scholar]
- Alcalay, R. N. , Caccappolo, E. , Mejia‐Santana, H. , Tang, M. X. , Rosado, L. , Ross, B. M. , Verbitsky, M. , Kisselev, S. , Louis, E. D. , Comella, C. , Colcher, A. , Jennings, D. , Nance, M. A. , Bressman, S. B. , Scott, W. K. , Tanner, C. , Mickel, S. , Andrews, H. , Waters, C. , … Clark, L. N. (2010). Frequency of known mutations in early‐onset Parkinson disease: Implication for genetic counseling: The consortium on risk for early onset Parkinson disease study. Archives of Neurology, 67(9), 1116–1122. 10.1001/archneurol.2010.194 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alcalay, R. N. , Mejia‐Santana, H. , Tang, M. X. , Rosado, L. , Verbitsky, M. , Kisselev, S. , Ross, B. M. , Louis, E. D. , Comella, C. L. , Colcher, A. , Jennings, D. , Nance, M. A. , Bressman, S. , Scott, W. K. , Tanner, C. , Mickel, S. F. , Andrews, H. F. , Waters, C. H. , Fahn, S. , … Marder, K. S. (2009). Motor phenotype of LRRK2 G2019S carriers in early‐onset Parkinson disease. Archives of Neurology, 66(12), 1517–1522. 10.1001/archneurol.2009.267 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aslam, M. , Kandasamy, N. , Ullah, A. , Paramasivam, N. , Öztürk, M. A. , Naureen, S. , Arshad, A. , Badshah, M. , Khan, K. , Wajid, M. , Abbasi, R. , Ilyas, M. , Eils, R. , Schlesner, M. , Wade, R. C. , Ahmad, N. , & Von Engelhardt, J. (2021). Putative second hit rare genetic variants in families with seemingly GBA‐associated Parkinson's disease. NPJ Genomic Medicine, 6(1), 2. 10.1038/s41525-020-00163-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bardien, S. , Lesage, S. , Brice, A. , & Carr, J. (2011). Genetic characteristics of leucine‐rich repeat kinase 2 (LRRK2) associated Parkinson's disease. Parkinsonism & Related Disorders, 17(7), 501–508. 10.1016/j.parkreldis.2010.11.008 [DOI] [PubMed] [Google Scholar]
- Brockmann, K. , Srulijes, K. , Pflederer, S. , Hauser, A.‐K. , Schulte, C. , Maetzler, W. , Gasser, T. , & Berg, D. (2015). GBA‐associated Parkinson's disease: Reduced survival and more rapid progression in a prospective longitudinal study. Movement Disorders, 30(3), 407–411. 10.1002/mds.26071 [DOI] [PubMed] [Google Scholar]
- Cao, L. , Zhang, T. , Xiao, Q. , Wang, Y. , Bai, L. , Lu, G. Q. , Ma, J. F. , Zhang, J. , Ding, J. Q. , & Chen, S. D. (2007). The prevalence of LRRK2 Gly2385Arg variant in Chinese Han population with Parkinson's disease. Movement Disorders, 22(16), 2439–2443. 10.1002/mds.21763 [DOI] [PubMed] [Google Scholar]
- Castelo Rueda, M. P. , Raftopoulou, A. , Gögele, M. , Borsche, M. , Emmert, D. , Fuchsberger, C. , Hantikainen, E. M. , Vukovic, V. , Klein, C. , Pramstaller, P. P. , Pichler, I. , & Hicks, A. A. (2021). Frequency of Heterozygous Parkin (PRKN) variants and penetrance of Parkinson's disease risk markers in the population‐based CHRIS cohort. Frontiers in Neurology, 12, 706145. 10.3389/fneur.2021.706145 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cilia, R. , Tunesi, S. , Marotta, G. , Cereda, E. , Siri, C. , Tesei, S. , Zecchinelli, A. L. , Canesi, M. , Mariani, C. B. , Meucci, N. , Sacilotto, G. , Zini, M. , Barichella, M. , Magnani, C. , Duga, S. , Asselta, R. , Soldà, G. , Seresini, A. , Seia, M. , … Goldwurm, S. (2016). Survival and dementia in GBA‐associated Parkinson's disease: The mutation matters. Annals of Neurology, 80(5), 662–673. 10.1002/ana.24777 [DOI] [PubMed] [Google Scholar]
- Clark, L. N. , Poorkaj, P. , Wszolek, Z. , Geschwind, D. H. , Nasreddine, Z. S. , Miller, B. , Li, D. , Payami, H. , Awert, F. , Markopoulou, K. , Andreadis, A. , D'souza, I. , Lee, V. M.‐Y. , Reed, L. , Trojanowski, J. Q. , Zhukareva, V. , Bird, T. , Schellenberg, G. , & Wilhelmsen, K. C. (1998). Pathogenic implications of mutations in the tau gene in pallido‐ponto‐nigral degeneration and related neurodegenerative disorders linked to chromosome 17. PNAS, 95(22), 13103–13107. 10.1073/pnas.95.22.13103 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cristina, T.‐P. , Pablo, M. , Teresa, P. M. , Lydia, V.‐D. , Irene, A.‐R. , Araceli, A.‐C. , Inmaculada, B.‐B. , Marta, B.‐T. , Dolores, B.‐R. , José, C.‐A. M. , Rocío, G.‐R. , José, G.‐R. P. , Ismael, H.‐F. , Silvia, J. , Labrador, M. A.‐E. , Lydia, L.‐M. , Carlos, M.‐C. J. , Posada, I. J. , Ana, R.‐S. , … Gómez‐Garre, P. (2020). A genetic analysis of a Spanish population with early onset Parkinson's disease. PLoS One, 15(9):e0238098. 10.1371/journal.pone.0238098 [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Lau, L. M. , & Breteler, M. M. (2006). Epidemiology of Parkinson's disease. Lancet Neurology, 5(6), 525–535. 10.1016/S1474-4422(06)70471-9 [DOI] [PubMed] [Google Scholar]
- Do, J. , Mckinney, C. , Sharma, P. , & Sidransky, E. (2019). Glucocerebrosidase and its relevance to Parkinson disease. Molecular Neurodegeneration, 14(1), 36. 10.1186/s13024-019-0336-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Do, M. D. , Le, L. G. H. , Nguyen, V. T. , Dang, T. N. , Nguyen, N. H. , Vu, H. A. , & Mai, T. P. (2020). High‐Resolution HLA typing of HLA‐A, ‐B, ‐C, ‐DRB1, and ‐DQB1 in Kinh Vietnamese by using next‐generation sequencing. Frontiers in Genetics, 11, 383. 10.3389/fgene.2020.00383 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Do, M. D. , Mai, T. P. , Do, A. D. , Nguyen, Q. D. , Le, N. H. , Le, L. G. H. , Hoang, V. A , Le, A. N. , Le, H. Q. , Richette, P. , Resche‐Rigon, M. , & Bardin, T. (2020). Risk factors for cutaneous reactions to allopurinol in Kinh Vietnamese: Results from a case‐control study. Arthritis Research & Therapy, 22(1), 182. 10.1186/s13075-020-02273-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Do, M. D. , Nguyen, T. H. , Le, K. T. , Le, L. H. G. , Nguyen, B. H. , Le, K. T. , Doan, T. P. T. , Ho, C. Q. , Nguyen, H.‐N. , Tran, T. D. , & Vu, H. A. (2022). Molecular characteristics of young‐onset colorectal cancer in Vietnamese patients. Asia‐Pacific Journal of Clinical Oncology, 18, 678–685. 10.1111/ajco.13749 [DOI] [PubMed] [Google Scholar]
- Do, M. D. , Pham, D. V. , Le, L. P. , Gia Le, L. H. , Minh Tran, L. B. , Dang Huynh, M. D. , Do, Q. M. , Vu, H. A. , Nguyen, N. H. , & Mai, T. P. (2021). Recurrent PROC and novel PROS1 mutations in Vietnamese patients diagnosed with idiopathic deep venous thrombosis. International Journal of Laboratory Hematology, 43(2), 266–272. 10.1111/ijlh.13345 [DOI] [PubMed] [Google Scholar]
- Espay, A. J. , & Litvan, I. (2011). The clinical overlap. Journal of Molecular Neuroscience, 45(3), 343. 10.1007/s12031-011-9632-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gan‐Or, Z. , Leblond, C. S. , Mallett, V. , Orr‐Urtreger, A. , Dion, P. A. , & Rouleau, G. A. (2015). LRRK2 mutations in Parkinson disease; a sex effect or lack thereof? A meta‐analysis. Parkinsonism & Related Disorders, 21(7), 778–782. 10.1016/j.parkreldis.2015.05.002 [DOI] [PubMed] [Google Scholar]
- Gasser, T. (2011). Genetic basis of Parkinson's disease: Inheritance, penetrance, and expression. The Application of Clinical Genetics, 4, 67–80. 10.2147/TACG.S11639 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giang, H. T , Hieu, N. D. , Hoai Thu, N. T. , Nghia, V. X. , & Bich Thuy, V. T. (2017). Mutation analysis of DJ‐1 gene in Vietnamese Parkinson's disease patients. Vietnam Journal of Biotechnology, 15(4), 617–623. 10.15625/1811-4989/15/4/13399 [DOI] [Google Scholar]
- Guadagnolo, D. , Piane, M. , Torrisi, M. R. , Pizzuti, A. , & Petrucci, S. (2021). Genotype‐phenotype correlations in monogenic Parkinson disease: A review on clinical and molecular findings. Frontiers in Neurology, 12, 648588. 10.3389/fneur.2021.648588 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guo, J.‐F , Dong, X‐L. , Xu, Q. , Li, N. , Yan, X.‐X. , Xia, K. , & Tang, B.‐S. (2015). Exon dosage analysis of parkin gene in Chinese sporadic Parkinson's disease. Neuroscience Letters, 604, 47–51. 10.1016/j.neulet.2015.07.046 [DOI] [PubMed] [Google Scholar]
- Haugarvoll, K. , & Wszolek, Z. K. (2009). Clinical features of LRRK2 parkinsonism. Parkinsonism & Related Disorders, 15, S205–S208. 10.1016/S1353-8020(09)70815-6 [DOI] [PubMed] [Google Scholar]
- Huang, C.‐L. , Wu‐Chou, Y.‐H. , Lai, S.‐C. , Chang, H.‐C. , Yeh, T.‐H. , Weng, Y.‐H. , Chen, R.‐S. , Huang, Y.‐Z. , & Lu, C.‐S. (2011). Contribution of glucocerebrosidase mutation in a large cohort of sporadic Parkinson's disease in Taiwan. European Journal of Neurology, 18(10), 1227–1232. 10.1111/j.1468-1331.2011.03362.x [DOI] [PubMed] [Google Scholar]
- Jiang, Y. , Yu, M. , Chen, J. , Zhou, H. , Sun, W. , Sun, Y. , Li, F. , Wei, L. , Pinkhardt, E. H. , Zhang, L. , Yuan, Y. , & Wang, Z. (2020). Parkin is the most common causative gene in a cohort of mainland Chinese patients with sporadic early‐onset Parkinson's disease. Brain and Behavior, 10(9), e01765. 10.1002/brb3.1765 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalia, L. V. , & Lang, A. E. (2015). Parkinson's disease. The Lancet, 386(9996), 896–912. 10.1016/S0140-6736(14)61393-3 [DOI] [PubMed] [Google Scholar]
- Kestenbaum, M. , & Alcalay, R. N. (2017). Clinical features of LRRK2 carriers with Parkinson's disease. In Rideout H.J. (Ed.) Leucine‐rich repeat kinase 2 (LRRK2). Advances in neurobiology (31–48). Springer International Publishing. 10.1007/978-3-319-49969-7_2 [DOI] [PubMed] [Google Scholar]
- Kiet, N. C. , Khuong, L. T. , Minh, D. D. , Vinh, N. T. , Quan, N. H. M. , Xinh, P. T. , Trang, N. N. C. , Luan, N. T. , Khai, N. M. , & Vu, H. A. (2019). Spectrum of mutations in the RB1 gene in Vietnamese patients with retinoblastoma. Molecular Vision, 25, 215–221. [PMC free article] [PubMed] [Google Scholar]
- Kilarski, L. L. , Pearson, J. P. , Newsway, V. , Majounie, E. , Knipe, M. D. W. , Misbahuddin, A. , Chinnery, P. F. , Burn, D. J. , Clarke, C. E. , Marion, M.‐H. , Lewthwaite, A. J. , Nicholl, D. J. , Wood, N. W. , Morrison, K. E. , Williams‐Gray, C. H. , Evans, J. R. , Sawcer, S. J. , Barker, R. A. , Wickremaratchi, M. M. , … Morris, H. R. (2012). Systematic review and UK‐based study of PARK2 (parkin), PINK1, PARK7 (DJ‐1) and LRRK2 in early‐onset Parkinson's disease. Movement Disorders, 27(12), 1522–1529. 10.1002/mds.25132 [DOI] [PubMed] [Google Scholar]
- Kitada, T. , Asakawa, S. , Hattori, N. , Matsumine, H. , Yamamura, Y. , Minoshima, S. , Yokochi, M. , Mizuno, Y. , & Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676), 605–608. 10.1038/33416 [DOI] [PubMed] [Google Scholar]
- Landrum, M. J. , Lee, J. M. , Benson, M. , Brown, G. R. , Chao, C. , Chitipiralla, S. , Gu, B. , Hart, J. , Hoffman, D. , Jang, W. , Karapetyan, K. , Katz, K. , Liu, C. , Maddipatla, Z. , Malheiro, A. , Mcdaniel, K. , Ovetsky, M. , Riley, G. , Zhou, G. , … Maglott, D. R. (2018). ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Research, 46(D1), D1062–D1067. 10.1093/nar/gkx1153 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li, N. , Wang, L. , Zhang, J. , Tan, E.‐K. , Li, J. , Peng, J. , Duan, L. , Chen, C. , Zhou, D. , He, L. , & Peng, R. (2020). Whole‐exome sequencing in early‐onset Parkinson's disease among ethnic Chinese. Neurobiology of Aging, 90, 150.e5–150.e11. 10.1016/j.neurobiolaging.2019.12.023 [DOI] [PubMed] [Google Scholar]
- Liang, D. , Shu, L. , Pan, H. , Xu, Q. , Guo, J. , Yan, X. , Tang, B. , & Sun, Q. (2018). Clinical characteristics of PD patients with LRRK2 G2385R and R1628P variants. Neuroscience Letters, 685, 185–189. 10.1016/j.neulet.2018.08.015 [DOI] [PubMed] [Google Scholar]
- Lim, J. L. , Lohmann, K. , Tan, A. H , Tay, Y. W , Ibrahim, K. A. , Abdul Aziz, Z. , Mawardi, A. S. , Puvanarajah, S. D. , Lim, T. T. , Looi, I. , Ooi, J. C. E. , Chia, Y. K. , Muthusamy, K. A. , Bauer, P. , Rolfs, A. , Klein, C. , Ahmad‐Annuar, A. , & Lim, S.‐Y. (2022). Glucocerebrosidase (GBA) gene variants in a multi‐ethnic Asian cohort with Parkinson's disease: Mutational spectrum and clinical features. Journal of Neural Transmission, 129(1), 37–48. 10.1007/s00702-021-02421-0 [DOI] [PubMed] [Google Scholar]
- Lim, S.‐Y. , Tan, A. H , Ahmad‐Annuar, A. , Klein, C. , Tan, L. C. S. , Rosales, R. L. , Bhidayasiri, R. , Wu, Y.‐R. , Shang, H.‐F. , Evans, A. H. , Pal, P. K. , Hattori, N. , Tan, C. T. , Jeon, B. , Tan, E.‐K. , & Lang, A. E. (2019). Parkinson's disease in the Western Pacific Region. Lancet Neurology, 18(9), 865–879. 10.1016/S1474-4422(19)30195-4 [DOI] [PubMed] [Google Scholar]
- Lin, C.‐H. , Chen, P.‐L. , Tai, C.‐H. , Lin, H.‐I. , Chen, C.‐S. , Chen, M.‐L. , & Wu, R.‐M. (2019). A clinical and genetic study of early‐onset and familial parkinsonism in Taiwan: An integrated approach combining gene dosage analysis and next‐generation sequencing. Movement Disorders, 34(4), 506–515. 10.1002/mds.27633 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu, G. , Boot, B. , Locascio, J. J. , Jansen, I. E. , Winder‐Rhodes, S. , Eberly, S. , Elbaz, A. , Brice, A. , Ravina, B. , Van Hilten, J. J. , Cormier‐Dequaire, F. , Corvol, J.‐C. , Barker, R. A. , Heutink, P. , Marinus, J. , Williams‐Gray, C. H. , Scherzer, C. R. , Scherzer, C. , Hyman, B. T. , … Nalls, M. A. (2016). Specifically neuropathic Gaucher's mutations accelerate cognitive decline in Parkinson's. Annals of Neurology, 80(5), 674–685. 10.1002/ana.24781 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magrinelli, F. , Mehta, S. , Di Lazzaro, G. , Latorre, A. , Edwards, M. J. , Balint, B. , Basu, P. , Kobylecki, C. , Groppa, S. , Hegde, A. , Mulroy, E. , Estevez‐Fraga, C. , Arora, A. , Kumar, H. , Schneider, S. A. , Lewis, P. A. , Jaunmuktane, Z. , Revesz, T. , Gandhi, S. , … Bhatia, K. P. (2022). Dissecting the Phenotype and Genotype of PLA2G6‐Related Parkinsonism. Movement Disorders, 37(1), 148–161. 10.1002/mds.28807 [DOI] [PubMed] [Google Scholar]
- Mai, P.‐T. , Le, D.‐T. , Nguyen, T.‐T. , Le Gia, H.‐L. , Nguyen Le, T.‐H. , Le, M. , & Do, D.‐M. (2019). Novel GDAP1 mutation in a Vietnamese family with Charcot‐Marie‐Tooth disease. BioMed Research International, 2019, 1. 10.1155/2019/7132494 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malek, N. , Weil, R. S. , Bresner, C. , Lawton, M. A. , Grosset, K. A. , Tan, M. , Bajaj, N. , Barker, R. A. , Burn, D. J. , Foltynie, T. , Hardy, J. , Wood, N. W. , Ben‐Shlomo, Y. , Williams, N. W. , Grosset, D. G. , & Morris, H. R. (2018). Features of GBA‐associated Parkinson's disease at presentation in the UK tracking Parkinson's study. Journal of Neurology, Neurosurgery, and Psychiatry, 89(7), 702–709. 10.1136/jnnp-2017-317348 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maple‐Grødem, J. , Dalen, I. , Tysnes, O.‐B. , Macleod, A. D. , Forsgren, L. , Counsell, C. E. , & Alves, G. (2021). Association of GBA genotype with motor and functional decline in patients with newly diagnosed Parkinson disease. Neurology, 96(7), e1036–e1044. 10.1212/WNL.0000000000011411 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mazzulli, J. R. , Xu, Y.‐H. , Sun, Y. , Knight, A. L. , Mclean, P. J. , Caldwell, G. A. , Sidransky, E. , Grabowski, G. A. , & Krainc, D. (2011). Gaucher disease glucocerebrosidase and α‐synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146(1), 37–52. 10.1016/j.cell.2011.06.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen, H.‐N. , Cao, N.‐P. T. , Van Nguyen, T.‐C. , Le, K. N. D. , Nguyen, D. T. , Nguyen, Q.‐T. T. , Nguyen, T.‐H. T. , Van Nguyen, C. , Le, H. T , Nguyen, M.‐L. T. , Nguyen, T. V. , Tran, V. U , Luong, B. A. , Le, L. G. H. , Ho, Q. C. , Pham, H.‐A. T. , Vo, B. T. , Nguyen, L. T. , Dang, A.‐T. H. , … Tran, L. S (2021). Liquid biopsy uncovers distinct patterns of DNA methylation and copy number changes in NSCLC patients with different EGFR‐TKI resistant mutations. Scientific Reports, 11(1), 16436. 10.1038/s41598-021-95985-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nguyen, H. T. , Tran, D. H. , Ngo, Q. D. , Pham, H.‐A. T. , Tran, T.‐T. , Tran, V.‐U , Pham, T.‐V. N. , Le, T. K. , Le, N‐A. T , Nguyen, N. M. , Vo, B. T. , Nguyen, L. T. , Nguyen, T.‐C. V. , Bui, Q. T. N. , Nguyen, H.‐N. , Luong, B. A. , Le, L. G. H. , Do, D. M. , Do, T.‐T. T. , … Nguyen, H.‐N. (2020). Evaluation of a liquid biopsy protocol using ultra‐deep massive parallel sequencing for detecting and quantifying circulation tumor DNA in colorectal cancer patients. Cancer Investigation, 38(2), 85–93. 10.1080/07357907.2020.1713350 [DOI] [PubMed] [Google Scholar]
- Nguyen‐Le, T.‐H. , Do, M. D. , Le, L. H. G. , Nhat, Q. N. N. , Hoang, N. T. T. , Van Le, T. , & Mai, T. P. (2022). Genotype–phenotype characteristics of Vietnamese patients diagnosed with Charcot–Marie–Tooth disease. Brain and Behavior, 12(n/a):e2744. 10.1002/brb3.2744 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozelius, L. J. , Senthil, G. , Saunders‐Pullman, R. , Ohmann, E. , Deligtisch, A. , Tagliati, M. , Hunt, A. L. , Klein, C. , Henick, B. , Hailpern, S. M. , Lipton, R. B. , Soto‐Valencia, J. , Risch, N. , & Bressman, S. B. (2006). LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews. New England Journal of Medicine, 354(4), 424–425. 10.1056/NEJMc055509 [DOI] [PubMed] [Google Scholar]
- Petrucci, S. , Ginevrino, M. , Trezzi, I. , Monfrini, E. , Ricciardi, L. , Albanese, A. , Avenali, M. , Barone, P. , Bentivoglio, A. R. , Bonifati, V. , Bove, F. , Bonanni, L. , Brusa, L. , Cereda, C. , Cossu, G. , Criscuolo, C. , Dati, G. , De Rosa, A. , Eleopra, R. , … Volpe, G. (2020). GBA‐related Parkinson's disease: Dissection of genotype–phenotype correlates in a large Italian Cohort. Movement Disorders, 35(11), 2106–2111. 10.1002/mds.28195 [DOI] [PubMed] [Google Scholar]
- Postuma, R. B. , Berg, D. , Stern, M. , Poewe, W. , Olanow, C. W , Oertel, W. , Obeso, J. , Marek, K. , Litvan, I. , Lang, A. E. , Halliday, G. , Goetz, C. G. , Gasser, T. , Dubois, B. , Chan, P. , Bloem, B. R. , Adler, C. H. , & Deuschl, G. (2015). MDS clinical diagnostic criteria for Parkinson's disease. Movement Disorders, 30(12), 1591–1601. 10.1002/mds.26424 [DOI] [PubMed] [Google Scholar]
- Pringsheim, T. , Jette, N. , Frolkis, A. , & Steeves, T. D. L. (2014). The prevalence of Parkinson's disease: A systematic review and meta‐analysis. Movement Disorders, 29(13), 1583–1590. 10.1002/mds.25945 [DOI] [PubMed] [Google Scholar]
- Pulkes, T. , Papsing, C. , Thakkinstian, A. , Pongpakdee, S. , Kulkantrakorn, K. , Hanchaiphiboolkul, S. , Tiamkao, S. , & Boonkongchuen, P. (2014). Confirmation of the association between LRRK2 R1628P variant and susceptibility to Parkinson's disease in the Thai population. Parkinsonism & Related Disorders, 20(9), 1018–1021. 10.1016/j.parkreldis.2014.06.013 [DOI] [PubMed] [Google Scholar]
- Ren, J. , Zhang, R. , Pan, C. , Xu, J. , Sun, H. , Hua, P. , Zhang, L. , Zhang, W. , Xu, P. , Ma, C. , & Liu, W. (2022). Prevalence and genotype–phenotype correlations of GBA‐related Parkinson disease in a large Chinese cohort. European Journal of Neurology, 29(4), 1017–1024. 10.1111/ene.15230 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richards, S. , Aziz, N. , Bale, S. , Bick, D. , Das, S. , Gastier‐Foster, J. , Grody, W. W. , Hegde, M. , Lyon, E. , Spector, E. , Voelkerding, K. , & Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genetics in Medicine, 17(5), 405–424. 10.1038/gim.2015.30 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ross, O. A. , Wu, Y.‐R. , Lee, M.‐C. , Funayama, M. , Chen, M.‐L. , Soto, A. I. , Mata, I. F. , Lee‐Chen, G.‐J. , Chen, C. M. , Tang, M. , Zhao, Y. , Hattori, N. , Farrer, M. J. , Tan, E.‐K. , & Wu, R.‐M. (2008). Analysis of Lrrk2 R1628P as a risk factor for Parkinson's disease. Annals of Neurology, 64(1), 88–92. 10.1002/ana.21405 [DOI] [PubMed] [Google Scholar]
- Sato, C. , Morgan, A. , Lang, A. E. , Salehi‐Rad, S. , Kawarai, T. , Meng, Y. , Ray, P. N. , Farrer, L. A. , St George‐Hyslop, P. , & Rogaeva, E. (2005). Analysis of the glucocerebrosidase gene in Parkinson's disease. Movement Disorders, 20(3), 367–370. 10.1002/mds.20319 [DOI] [PubMed] [Google Scholar]
- Schneider, S. A. , & Alcalay, R. N. (2020). Precision medicine in Parkinson's disease: Emerging treatments for genetic Parkinson's disease. Journal of Neurology, 267(3), 860–869. 10.1007/s00415-020-09705-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selvaraj, S. , & Piramanayagam, S. (2019). Impact of gene mutation in the development of Parkinson's disease. Genes & Diseases, 6(2), 120–128. 10.1016/j.gendis.2019.01.004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sidransky, E. , Nalls, M. A. , Aasly, J. O. , Aharon‐Peretz, J. , Annesi, G. , Barbosa, E. R. , Bar‐Shira, A. , Berg, D. , Bras, J. , Brice, A. , Chen, C.‐M. , Clark, L. N. , Condroyer, C. , De Marco, E. V. , Dürr, A. , Eblan, M. J. , Fahn, S. , Farrer, M. J. , Fung, H.‐C. , … Ziegler, S. G. (2009). Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. New England Journal of Medicine, 361(17), 1651–1661. 10.1056/NEJMoa0901281 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stoker, T. B. , Camacho, M. , Winder‐Rhodes, S. , Liu, G. , Scherzer, C. R. , Foltynie, T. , Evans, J. , Breen, D. P. , Barker, R. A. , & Williams‐Gray, C. H. (2020). Impact of GBA1 variants on long‐term clinical progression and mortality in incident Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 91(7), 695–702. 10.1136/jnnp-2020-322857 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ton, N. D. , Thuan, N. D. , Thuong, M. T. H , Ngoc, T. T. B. , Nhung, V. P , Hoa, N. T. T. , Nam, N. H. , Dung, H. T. , Son, N. D. , Ba, N. V. , Bac, N. D. , Tai, T. N. , Dung, L. T. K , Hung, N. T. , Duong, N. T. , Ha, N. H. , & Hai, N. V. (2020). Rare and novel variants of PRKN and PINK1 genes in Vietnamese patients with early‐onset Parkinson's disease. Molecular Genetics & Genomic Medicine, 8(10), e1463. 10.1002/mgg3.1463 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tran, T. T. , Mai, T. P. , Tran, H. C. B , Le, L. H. G. , Vu, H. A. , Tran, T. K. , Hoang, S. V , Chau, H. N. , & Do, M. D. (2021). Association between AGT M235T and left ventricular mass in Vietnamese patients diagnosed with essential hypertension. Frontiers in Cardiovascular Medicine, 8, 608948. 10.3389/fcvm.2021.608948 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Truong, S. , Tran, N. Q. , Ma, P. T. , Hoang, C. K. , Le, B. H. , Dinh, T. , Tran, L. , Tran, T. V. , Gia Le, L. H. , Vu, H. A. , Mai, T. P. , & Do, M. D. (2022). Association of ADIPOQ single‐nucleotide polymorphisms with the two clinical phenotypes Type 2 diabetes mellitus and metabolic syndrome in a Kinh Vietnamese population. Diabetes, Metabolic Syndrome and Obesity, 15, 307–319. 10.2147/DMSO.S347830 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang, L. , Guo, J.‐F , Nie, L.‐L , Xu, Q. , Zuo, X. , Sun, Q.‐Y , Yan, X.‐X. , & Tang, B.‐S. (2010). A novel LRRK2 mutation in a mainland Chinese patient with familial Parkinson's disease. Neuroscience Letters, 468(3), 198–201. 10.1016/j.neulet.2009.10.080 [DOI] [PubMed] [Google Scholar]
- Wu, Y.‐R. , Chen, C.‐M. , Chao, C.‐Y. , Ro, L.‐S. , Lyu, R.‐K. , Chang, K.‐H. , & Lee‐Chen, G.‐J. (2007). Glucocerebrosidase gene mutation is a risk factor for early onset of Parkinson disease among Taiwanese. Journal of Neurology, Neurosurgery, and Psychiatry, 78(9), 977–979. 10.1136/jnnp.2006.105940 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang, Y. , Tang, B.‐S. , Weng, L. , Li, N. , Shen, L. , Wang, J. , Zuo, C.‐T. , Yan, X.‐X. , Xia, K. , & Guo, J.‐F. (2015). Genetic Identification Is Critical for the Diagnosis of Parkinsonism: A Chinese Pedigree with Early Onset of Parkinsonism. PLoS One, 10(8), e0136245. 10.1371/journal.pone.0136245 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yasuda, M. , Kawamata, T. , Komure, O. , Kuno, S. , D'souza, I. , Poorkaj, P. , Kawai, J. , Tanimukai, S. , Yamamoto, Y. , Hasegawa, H. , Sasahara, M. , Hazama, F. , Schellenberg, G. D. , & Tanaka, C. (1999). A mutation in the microtubule‐associated protein tau in pallido‐nigro‐luysian degeneration. Neurology, 53(4), 864–868. 10.1212/wnl.53.4.864 [DOI] [PubMed] [Google Scholar]
- Yoshino, H. , Li, Y. , Nishioka, K. , Daida, K. , Hayashida, A. , Ishiguro, Y. , Yamada, D. , Izawa, N. , Nishi, K. , Nishikawa, N. , Oyama, G. , Hatano, T. , Nakamura, S. , Yoritaka, A. , Motoi, Y. , Funayama, M. , & Hattori, N. (2022). Genotype‐phenotype correlation of Parkinson's disease with PRKN variants. Neurobiology of Aging, 114, 117–128. 10.1016/j.neurobiolaging.2021.12.014 [DOI] [PubMed] [Google Scholar]
- Youn, J. , Lee, C. , Oh, E. , Park, J. , Kim, J. S , Kim, H.‐T. , Cho, J. W. , Park, W.‐Y. , Jang, W. , & Ki, C.‐S. (2019). Genetic variants of PARK genes in Korean patients with early‐onset Parkinson's disease. Neurobiology of Aging, 75, 224.e9–224.e15. 10.1016/j.neurobiolaging.2018.10.030 [DOI] [PubMed] [Google Scholar]
- Zhang, Y. , Sun, Q. , Yi, M. , Zhou, X. , Guo, J. , Xu, Q. , Tang, B. , & Yan, X. (2017). Genetic analysis of LRRK2 R1628P in Parkinson's disease in Asian populations. Park Dis, 2017, 1. 10.1155/2017/8093124 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao, Y. , Qin, L. , Pan, H. , Liu, Z. , Jiang, L. , He, Y. , Zeng, Q. , Zhou, X. , Zhou, X. , Zhou, Y. , Fang, Z. , Wang, Z. , Xiang, Y. , Yang, H. , Wang, Y. , Zhang, K. , Zhang, R. , He, R. , Zhou, X. , … Tang, B. (2020). The role of genetics in Parkinson's disease: A large cohort study in Chinese mainland population. Brain: A journal of neurology, 143(7), 2220–2234. 10.1093/brain/awaa167 [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Raw data supporting the conclusion of this manuscript are available upon request, contact drmaithao@ump.edu.vn.
