Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1995 Jun;54(6):477–483. doi: 10.1136/ard.54.6.477

Appearance of calpain correlates with arthritis and cartilage destruction in collagen induced arthritic knee joints of mice.

Z Szomor 1, K Shimizu 1, Y Fujimori 1, S Yamamoto 1, T Yamamuro 1
PMCID: PMC1009906  PMID: 7632090

Abstract

OBJECTIVES--To determine the relevance of calpain in murine collagen induced arthritis (CIA) and to correlate the presence of m-calpain with the appearance of arthritis and cartilage destruction. METHODS--The immunohistochemical appearance and localisation of m-calpain at different stages of arthritis were analysed and compared with the histological changes occurring during type II CIA. The arthritic knee joint lavage was also examined for m-calpain by immunoelectrophoretic blotting. RESULTS--Immunohistochemical staining demonstrated a clear positive correlation between the appearance of m-calpain and both a histological grade of arthritis and an acute phase of cartilage destruction. Further development of the disease showed continual presence of m-calpain but with reduced intensity. Intra-articular inflammatory cells (mainly polymorphonuclear leucocytes, synovial lining cells, and sublining fibroblasts) were found to be the most positively stained, but extracellular localisation of m-calpain on the surface of cartilage and synovium, and in the articular cartilage matrix and chondrocyte lacunae, was also observed. In the knee joint lavage obtained at the most intensive stage of acute arthritis, m-calpain was detectable by immunoelectrophoretic blotting. CONCLUSIONS--The findings suggest that m-calpain may act at an early phase of CIA as a matrix proteinase and take part in the destruction of articular cartilage or activate other destructive enzymes.

Full text

PDF
477

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buttle D. J., Handley C. J., Ilic M. Z., Saklatvala J., Murata M., Barrett A. J. Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum. 1993 Dec;36(12):1709–1717. doi: 10.1002/art.1780361210. [DOI] [PubMed] [Google Scholar]
  2. Caulfield J. P., Hein A., Dynesius-Trentham R., Trentham D. E. Morphologic demonstration of two stages in the development of type II collagen-induced arthritis. Lab Invest. 1982 Mar;46(3):321–343. [PubMed] [Google Scholar]
  3. Courtenay J. S., Dallman M. J., Dayan A. D., Martin A., Mosedale B. Immunisation against heterologous type II collagen induces arthritis in mice. Nature. 1980 Feb 14;283(5748):666–668. doi: 10.1038/283666a0. [DOI] [PubMed] [Google Scholar]
  4. Fujimori Y., Nakamura T., Ijiri S., Shimizu K., Yamamuro T. Heterotopic bone formation induced by bone morphogenetic protein in mice with collagen-induced arthritis. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1362–1367. doi: 10.1016/s0006-291x(05)81556-6. [DOI] [PubMed] [Google Scholar]
  5. Fujimori Y., Shimizu K., Suzuki K., Nakagawa Y., Yamamoto S., Yamamuro T. Immunohistochemical demonstration of calcium-dependent cysteine proteinase (calpain) in collagen-induced arthritis in mice. Z Rheumatol. 1994 Mar-Apr;53(2):72–75. [PubMed] [Google Scholar]
  6. Fukui I., Tanaka K., Murachi T. Extracellular appearance of calpain and calpastatin in the synovial fluid of the knee joint. Biochem Biophys Res Commun. 1989 Jul 31;162(2):559–566. doi: 10.1016/0006-291x(89)92347-4. [DOI] [PubMed] [Google Scholar]
  7. Fukui I., Toyohara H., Ito K., Hamakubo T., Murachi T. Molecular and catalytic characterization of intact heterodimeric and derived monomeric calpains isolated under different conditions from pig polymorphonuclear leukocytes. Biochemistry. 1988 May 3;27(9):3260–3267. doi: 10.1021/bi00409a021. [DOI] [PubMed] [Google Scholar]
  8. Goldberg G. I., Wilhelm S. M., Kronberger A., Bauer E. A., Grant G. A., Eisen A. Z. Human fibroblast collagenase. Complete primary structure and homology to an oncogene transformation-induced rat protein. J Biol Chem. 1986 May 15;261(14):6600–6605. [PubMed] [Google Scholar]
  9. Goldenberg D. L., Cohen A. S. Synovial membrane histopathology in the differential diagnosis of rheumatoid arthritis, gout, pseudogout, systemic lupus erythematosus, infectious arthritis and degenerative joint disease. Medicine (Baltimore) 1978 May;57(3):239–252. doi: 10.1097/00005792-197805000-00004. [DOI] [PubMed] [Google Scholar]
  10. Griswold D. E., Hillegass L. M., Meunier P. C., DiMartino M. J., Hanna N. Effect of inhibitors of eicosanoid metabolism in murine collagen-induced arthritis. Arthritis Rheum. 1988 Nov;31(11):1406–1412. doi: 10.1002/art.1780311110. [DOI] [PubMed] [Google Scholar]
  11. Hasty K. A., Pourmotabbed T. F., Goldberg G. I., Thompson J. P., Spinella D. G., Stevens R. M., Mainardi C. L. Human neutrophil collagenase. A distinct gene product with homology to other matrix metalloproteinases. J Biol Chem. 1990 Jul 15;265(20):11421–11424. [PubMed] [Google Scholar]
  12. Hasty K. A., Reife R. A., Kang A. H., Stuart J. M. The role of stromelysin in the cartilage destruction that accompanies inflammatory arthritis. Arthritis Rheum. 1990 Mar;33(3):388–397. doi: 10.1002/art.1780330312. [DOI] [PubMed] [Google Scholar]
  13. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  14. Hibbs M. S., Hasty K. A., Seyer J. M., Kang A. H., Mainardi C. L. Biochemical and immunological characterization of the secreted forms of human neutrophil gelatinase. J Biol Chem. 1985 Feb 25;260(4):2493–2500. [PubMed] [Google Scholar]
  15. Kitahara A., Sasaki T., Kikuchi T., Yumoto N., Yoshimura N., Hatanaka M., Murachi T. Large-scale purification of porcine calpain I and calpain II and comparison of proteolytic fragments of their subunits. J Biochem. 1984 Jun;95(6):1759–1766. [PubMed] [Google Scholar]
  16. Kowanko I. C., Ferrante A. Granulocyte-macrophage colony-stimulating factor augments neutrophil-mediated cartilage degradation and neutrophil adherence. Arthritis Rheum. 1991 Nov;34(11):1452–1460. doi: 10.1002/art.1780341117. [DOI] [PubMed] [Google Scholar]
  17. Lowther D. A., Sriratana A., Bartholomew J. S. The role of serine proteinase in cartilage damage. J Rheumatol. 1987 May;14(Spec No):49–51. [PubMed] [Google Scholar]
  18. Mankin H. J., Dorfman H., Lippiello L., Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971 Apr;53(3):523–537. [PubMed] [Google Scholar]
  19. Mohr W., Pelster B., Wessinghage D. Polymorphonuclear granulocytes in rheumatic tissue destruction. VI. The occurrence of PMNs in menisci of patients with rheumatoid arthritis. Rheumatol Int. 1984;5(1):39–44. doi: 10.1007/BF00541364. [DOI] [PubMed] [Google Scholar]
  20. Mohtai M., Smith R. L., Schurman D. J., Tsuji Y., Torti F. M., Hutchinson N. I., Stetler-Stevenson W. G., Goldberg G. I. Expression of 92-kD type IV collagenase/gelatinase (gelatinase B) in osteoarthritic cartilage and its induction in normal human articular cartilage by interleukin 1. J Clin Invest. 1993 Jul;92(1):179–185. doi: 10.1172/JCI116547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moore A. R., Iwamura H., Larbre J. P., Scott D. L., Willoughby D. A. Cartilage degradation by polymorphonuclear leucocytes: in vitro assessment of the pathogenic mechanisms. Ann Rheum Dis. 1993 Jan;52(1):27–31. doi: 10.1136/ard.52.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murachi T., Tanaka K., Hatanaka M., Murakami T. Intracellular Ca2+-dependent protease (calpain) and its high-molecular-weight endogenous inhibitor (calpastatin). Adv Enzyme Regul. 1980;19:407–424. doi: 10.1016/0065-2571(81)90026-1. [DOI] [PubMed] [Google Scholar]
  23. Nakagawa Y., Shimizu K., Hamamoto T., Suzuki K., Ueda M., Yamamuro T. Calcium-dependent neutral proteinase (calpain) in fracture healing in rats. J Orthop Res. 1994 Jan;12(1):58–69. doi: 10.1002/jor.1100120108. [DOI] [PubMed] [Google Scholar]
  24. Ohno S., Emori Y., Imajoh S., Kawasaki H., Kisaragi M., Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature. 1984 Dec 6;312(5994):566–570. doi: 10.1038/312566a0. [DOI] [PubMed] [Google Scholar]
  25. Okada Y., Shinmei M., Tanaka O., Naka K., Kimura A., Nakanishi I., Bayliss M. T., Iwata K., Nagase H. Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest. 1992 Jun;66(6):680–690. [PubMed] [Google Scholar]
  26. Pelletier J. P., Faure M. P., DiBattista J. A., Wilhelm S., Visco D., Martel-Pelletier J. Coordinate synthesis of stromelysin, interleukin-1, and oncogene proteins in experimental osteoarthritis. An immunohistochemical study. Am J Pathol. 1993 Jan;142(1):95–105. [PMC free article] [PubMed] [Google Scholar]
  27. Pelletier J. P., Mineau F., Faure M. P., Martel-Pelletier J. Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum. 1990 Oct;33(10):1466–1476. doi: 10.1002/art.1780331003. [DOI] [PubMed] [Google Scholar]
  28. Pontremoli S., Melloni E. Extralysosomal protein degradation. Annu Rev Biochem. 1986;55:455–481. doi: 10.1146/annurev.bi.55.070186.002323. [DOI] [PubMed] [Google Scholar]
  29. Sandy J. D., Flannery C. R., Neame P. J., Lohmander L. S. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J Clin Invest. 1992 May;89(5):1512–1516. doi: 10.1172/JCI115742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schalkwijk J., Joosten L. A., van den Berg W. B., van de Putte L. B. Experimental arthritis in C57black/6 normal and beige (Chediak-Higashi) mice: in vivo and in vitro observations on cartilage degradation. Ann Rheum Dis. 1988 Nov;47(11):940–946. doi: 10.1136/ard.47.11.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Suzuki K., Shimizu K., Hamamoto T., Nakagawa Y., Hamakubo T., Yamamuro T. Biochemical demonstration of calpains and calpastatin in osteoarthritic synovial fluid. Arthritis Rheum. 1990 May;33(5):728–732. doi: 10.1002/art.1780330516. [DOI] [PubMed] [Google Scholar]
  32. Suzuki K., Shimizu K., Hamamoto T., Nakagawa Y., Murachi T., Yamamuro T. Characterization of proteoglycan degradation by calpain. Biochem J. 1992 Aug 1;285(Pt 3):857–862. doi: 10.1042/bj2850857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Takano E., Park Y. H., Kitahara A., Yamagata Y., Kannagi R., Murachi T. Distribution of calpains and calpastatin in human blood cells. Biochem Int. 1988 Mar;16(3):391–395. [PubMed] [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Trabandt A., Gay R. E., Fassbender H. G., Gay S. Cathepsin B in synovial cells at the site of joint destruction in rheumatoid arthritis. Arthritis Rheum. 1991 Nov;34(11):1444–1451. doi: 10.1002/art.1780341116. [DOI] [PubMed] [Google Scholar]
  36. Trentham D. E. Collagen arthritis as a relevant model for rheumatoid arthritis. Arthritis Rheum. 1982 Aug;25(8):911–916. doi: 10.1002/art.1780250801. [DOI] [PubMed] [Google Scholar]
  37. Wilhelm S. M., Collier I. E., Kronberger A., Eisen A. Z., Marmer B. L., Grant G. A., Bauer E. A., Goldberg G. I. Human skin fibroblast stromelysin: structure, glycosylation, substrate specificity, and differential expression in normal and tumorigenic cells. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6725–6729. doi: 10.1073/pnas.84.19.6725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamamoto S., Shimizu K., Shimizu K., Suzuki K., Nakagawa Y., Yamamuro T. Calcium-dependent cysteine proteinase (calpain) in human arthritic synovial joints. Arthritis Rheum. 1992 Nov;35(11):1309–1317. doi: 10.1002/art.1780351111. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES