Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1995 Aug;54(8):662–669. doi: 10.1136/ard.54.8.662

In vivo model of cartilage degradation--effects of a matrix metalloproteinase inhibitor.

E H Karran 1, T J Young 1, R E Markwell 1, G P Harper 1
PMCID: PMC1009964  PMID: 7677443

Abstract

OBJECTIVES--To develop a model of cartilage degradation that (i) enables the testing of synthetic, small molecular weight matrix metalloproteinase (MMP) inhibitors as agents to prevent cartilage erosion, (ii) permits the direct assay of the principal constituents of the extracellular matrix (collagen and proteoglycan) in both the non-calcified articular cartilage and the calcified cartilage compartments, and (iii) is mediated by a chronic, granulomatous tissue that closely apposes intact articular cartilage, and in this respect resembles the pannus-cartilage junction of rheumatoid arthritis. METHODS--Femoral head cartilage was obtained from donor rats, wrapped in cotton and implanted subcutaneously into recipient animals. After a two stage papain digestion procedure, the proteoglycan and collagen contents were measured by assaying for glycosaminoglycans and hydroxyproline, respectively, in both the non-calcified cartilage that comprises the articular surface layer and the calcified cartilage compartment. The incorporation in vitro of [35S]-sulphate into glycosaminoglycans was assayed as a measure of proteoglycan biosynthesis. An osmotic minipump was cannulated to the implanted femoral head cartilage and synthetic MMP inhibitors (MI-1 and MI-2) were infused continuously over a 14 day period. RESULTS--The implanted, cotton wrapped femoral head cartilages provoked a granulomatous response that resulted in the removal of collagen and proteoglycan from the cartilage matrix. The removal of proteoglycan and collagen was exclusively from the non-calcified articular cartilage, whereas the proteoglycan and collagen content of the calcified compartment increased during the experiments. MI-1 reproducibly reduced the degradation of proteoglycan and collagen in implanted femoral head cartilage. CONCLUSIONS--We have described an in vivo model of cartilage degradation that permits the measurement of proteoglycan and collagen in both non-calcified articular cartilage and calcified cartilage compartments. The model can be used to test the effects of agents of unknown systemic bioavailability and pharmacokinetic profile by infusing them directly to the site of cartilage degradation. The removal of cartilage extracellular matrix by granulomatous tissue was inhibited by an MMP inhibitor, thus proving the involvement of this family of proteinases in cartilage catabolism in this model.

Full text

PDF
662

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews H. J., Plumpton T. A., Harper G. P., Cawston T. E. A synthetic peptide metalloproteinase inhibitor, but not TIMP, prevents the breakdown of proteoglycan within articular cartilage in vitro. Agents Actions. 1992 Sep;37(1-2):147–154. doi: 10.1007/BF01987904. [DOI] [PubMed] [Google Scholar]
  2. Beszant B., Bird J., Gaster L. M., Harper G. P., Hughes I., Karran E. H., Markwell R. E., Miles-Williams A. J., Smith S. A. Synthesis of novel modified dipeptide inhibitors of human collagenase: beta-mercapto carboxylic acid derivatives. J Med Chem. 1993 Dec 10;36(25):4030–4039. doi: 10.1021/jm00077a006. [DOI] [PubMed] [Google Scholar]
  3. Birkedal-Hansen H., Moore W. G., Bodden M. K., Windsor L. J., Birkedal-Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4(2):197–250. doi: 10.1177/10454411930040020401. [DOI] [PubMed] [Google Scholar]
  4. Bishop J., Greenham A. K., Lewis E. J. A novel in vivo model for the study of cartilage degradation. J Pharmacol Toxicol Methods. 1993 Sep;30(1):19–25. doi: 10.1016/1056-8719(93)90003-w. [DOI] [PubMed] [Google Scholar]
  5. Bottomley K. M., Griffiths R. J., Rising T. J., Steward A. A modified mouse air pouch model for evaluating the effects of compounds on granuloma induced cartilage degradation. Br J Pharmacol. 1988 Mar;93(3):627–635. doi: 10.1111/j.1476-5381.1988.tb10320.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bromley M., Woolley D. E. Histopathology of the rheumatoid lesion. Identification of cell types at sites of cartilage erosion. Arthritis Rheum. 1984 Aug;27(8):857–863. doi: 10.1002/art.1780270804. [DOI] [PubMed] [Google Scholar]
  7. Burleigh M. C., Barrett A. J., Lazarus G. S. Cathepsin B1. A lysosomal enzyme that degrades native collagen. Biochem J. 1974 Feb;137(2):387–398. doi: 10.1042/bj1370387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buttle D. J., Handley C. J., Ilic M. Z., Saklatvala J., Murata M., Barrett A. J. Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum. 1993 Dec;36(12):1709–1717. doi: 10.1002/art.1780361210. [DOI] [PubMed] [Google Scholar]
  9. Buttle D. J., Saklatvala J. Lysosomal cysteine endopeptidases mediate interleukin 1-stimulated cartilage proteoglycan degradation. Biochem J. 1992 Oct 15;287(Pt 2):657–661. doi: 10.1042/bj2870657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Buttle D. J., Saklatvala J., Tamai M., Barrett A. J. Inhibition of interleukin 1-stimulated cartilage proteoglycan degradation by a lipophilic inactivator of cysteine endopeptidases. Biochem J. 1992 Jan 1;281(Pt 1):175–177. doi: 10.1042/bj2810175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caputo C. B., Sygowski L. A., Wolanin D. J., Patton S. P., Caccese R. G., Shaw A., Roberts R. A., DiPasquale G. Effect of synthetic metalloprotease inhibitors on cartilage autolysis in vitro. J Pharmacol Exp Ther. 1987 Feb;240(2):460–465. [PubMed] [Google Scholar]
  12. Cawston T. E., Barrett A. J. A rapid and reproducible assay for collagenase using [1-14C]acetylated collagen. Anal Biochem. 1979 Nov 1;99(2):340–345. doi: 10.1016/s0003-2697(79)80017-2. [DOI] [PubMed] [Google Scholar]
  13. De Brito F. B., Moore A. R., Holmes M. J., Willoughby D. A. Cartilage damage by a granulomatous reaction in a murine species. Br J Exp Pathol. 1987 Oct;68(5):675–686. [PMC free article] [PubMed] [Google Scholar]
  14. Dean D. D., Martel-Pelletier J., Pelletier J. P., Howell D. S., Woessner J. F., Jr Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest. 1989 Aug;84(2):678–685. doi: 10.1172/JCI114215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ellis A. J., Curry V. A., Powell E. K., Cawston T. E. The prevention of collagen breakdown in bovine nasal cartilage by TIMP, TIMP-2 and a low molecular weight synthetic inhibitor. Biochem Biophys Res Commun. 1994 May 30;201(1):94–101. doi: 10.1006/bbrc.1994.1673. [DOI] [PubMed] [Google Scholar]
  16. Farndale R. W., Buttle D. J., Barrett A. J. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986 Sep 4;883(2):173–177. doi: 10.1016/0304-4165(86)90306-5. [DOI] [PubMed] [Google Scholar]
  17. Firestein G. S., Paine M. M., Littman B. H. Gene expression (collagenase, tissue inhibitor of metalloproteinases, complement, and HLA-DR) in rheumatoid arthritis and osteoarthritis synovium. Quantitative analysis and effect of intraarticular corticosteroids. Arthritis Rheum. 1991 Sep;34(9):1094–1105. doi: 10.1002/art.1780340905. [DOI] [PubMed] [Google Scholar]
  18. Jeffery A. K., Blunn G. W., Archer C. W., Bentley G. Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br. 1991 Sep;73(5):795–801. doi: 10.1302/0301-620X.73B5.1894669. [DOI] [PubMed] [Google Scholar]
  19. Kaklamanis P. M. Experimental animal models resembling rheumatoid arthritis. Clin Rheumatol. 1992 Mar;11(1):41–47. doi: 10.1007/BF02207082. [DOI] [PubMed] [Google Scholar]
  20. Karran E. H., Dodgson K., Harris S. J., Markwell R. E., Harper G. P. A simple in vivo model of collagen degradation using collagen-gelled cotton buds: the effects of collagenase inhibitors and other agents. Inflamm Res. 1995 Jan;44(1):36–46. doi: 10.1007/BF01630486. [DOI] [PubMed] [Google Scholar]
  21. McCachren S. S. Expression of metalloproteinases and metalloproteinase inhibitor in human arthritic synovium. Arthritis Rheum. 1991 Sep;34(9):1085–1093. doi: 10.1002/art.1780340904. [DOI] [PubMed] [Google Scholar]
  22. Mort J. S., Dodge G. R., Roughley P. J., Liu J., Finch S. J., DiPasquale G., Poole A. R. Direct evidence for active metalloproteinases mediating matrix degradation in interleukin 1-stimulated human articular cartilage. Matrix. 1993 Mar;13(2):95–102. doi: 10.1016/s0934-8832(11)80068-5. [DOI] [PubMed] [Google Scholar]
  23. Murphy G., Cambray G. J., Virani N., Page-Thomas D. P., Reynolds J. J. The production in culture of metalloproteinases and an inhibitor by joint tissues from normal rabbits, and from rabbits with a model arthritis. II. Articular cartilage. Rheumatol Int. 1981;1(1):17–20. doi: 10.1007/BF00541218. [DOI] [PubMed] [Google Scholar]
  24. Scott D. L., Symmons D. P., Coulton B. L., Popert A. J. Long-term outcome of treating rheumatoid arthritis: results after 20 years. Lancet. 1987 May 16;1(8542):1108–1111. doi: 10.1016/s0140-6736(87)91672-2. [DOI] [PubMed] [Google Scholar]
  25. Sedgwick A. D., Moore A. R., Al-Duaij A. Y., Edwards J. C., Willoughby D. A. Studies into the influence of carrageenan-induced inflammation on articular cartilage degradation using implantation into air pouches. Br J Exp Pathol. 1985 Aug;66(4):445–453. [PMC free article] [PubMed] [Google Scholar]
  26. Shiozawa S., Shiozawa K. A review of the histopathological evidence on the pathogenesis of cartilage destruction in rheumatoid arthritis. Scand J Rheumatol Suppl. 1988;74:65–72. doi: 10.3109/03009748809102940. [DOI] [PubMed] [Google Scholar]
  27. Sin Y. M., Sedgwick A. D., Willoughby D. A. Studies on the mechanism of cartilage degradation. J Pathol. 1984 Jan;142(1):23–30. doi: 10.1002/path.1711420107. [DOI] [PubMed] [Google Scholar]
  28. Sumii H., Inoue H. Ultrastructure and X-ray microanalysis of epiphyseal growth cartilage of femoral head processed by rapid-freezing and freeze-substitution. Acta Med Okayama. 1993 Apr;47(2):95–102. doi: 10.18926/AMO/31577. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES