Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1995 Dec;54(12):976–982. doi: 10.1136/ard.54.12.976

IL-1 has no direct role in the IGF-1 non-responsive state during experimentally induced arthritis in mouse knee joints.

P J Verschure 1, L A Joosten 1, F A Van de Loo 1, W B Van den Berg 1
PMCID: PMC1010063  PMID: 8546530

Abstract

OBJECTIVE--To investigate the involvement of interleukin-1 (IL-1) in the induction or maintenance of the insulin-like growth factor 1 (IGF-1) non-responsive state of chondrocytes during experimental arthritis in mouse knee joints. METHODS--To characterise IGF-1 nonresponsiveness during arthritis, we measured chondrocyte proteoglycan (PG) synthesis by assaying incorporation of 35S-sulphate into mouse patellar cartilage, obtained from knee joints with experimentally induced arthritis and normal knee joints, cultured with IGF-1. We investigated whether suppressive mediators produced by the arthritic synovium or chondrocytes abolished the IGF-1 stimulation of normal cartilage, and used IL-1 primed cartilage to mimic the arthritic in vivo state. Specific inflammatory mediators responsible for the maintenance of the suppressed IGF-1 response were sought. We measured IGF-1 responsiveness in normal and arthritic patellae cultured with antibodies against tumour necrosis factor (TNF) or IL-1 alpha/beta, with IL-1 receptor antagonist (IL-1ra), and with several inhibitors of proteolytic enzymes or reactive oxygen species, and analysed the role of IL-1 in the development of IGF-1 non-responsiveness by studying IGF-1 responses in cartilage treated with IL-1 antibodies in vivo, at the onset of arthritis. RESULTS--Mediators from the surrounding tissue of both normal and arthritic cartilage suppressed chondrocyte IGF-1 responses. Priming the cartilage with IL-1 did not directly induce IGF-1 non-responsiveness, but enhanced the ability of suppressive mediators from synovium or chondrocytes to downregulate the IGF-1 responsive state. IL-1ra, IL-1 alpha/beta antibody, TNF antibody, or the inhibitors tested did not markedly improve the disturbed IGF-1 response, but treatment with anti-IL-1 at the onset of arthritis prevented the development of IGF-1 non-responsiveness. CONCLUSION--IL-1 alone does not induce IGF-1 non-responsiveness and is not critical in the maintenance of this phenomenon. However, IL-1 does appear to be an important cofactor in the generation of the IGF-1 non-responsive state.

Full text

PDF
976

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend W. P., Dayer J. M. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum. 1995 Feb;38(2):151–160. doi: 10.1002/art.1780380202. [DOI] [PubMed] [Google Scholar]
  2. Benton H. P., Tyler J. A. Inhibition of cartilage proteoglycan synthesis by interleukin I. Biochem Biophys Res Commun. 1988 Jul 15;154(1):421–428. doi: 10.1016/0006-291x(88)90703-6. [DOI] [PubMed] [Google Scholar]
  3. Chandrasekhar S., Harvey A. K., Hrubey P. S. Intra-articular administration of interleukin-1 causes prolonged suppression of cartilage proteoglycan synthesis in rats. Matrix. 1992 Feb;12(1):1–10. doi: 10.1016/s0934-8832(11)80099-5. [DOI] [PubMed] [Google Scholar]
  4. Charles I. G., Palmer R. M., Hickery M. S., Bayliss M. T., Chubb A. P., Hall V. S., Moss D. W., Moncada S. Cloning, characterization, and expression of a cDNA encoding an inducible nitric oxide synthase from the human chondrocyte. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11419–11423. doi: 10.1073/pnas.90.23.11419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dewar C. L., Harth M. Superoxide production from cytokine-treated adherent rheumatoid neutrophils. Clin Invest Med. 1994 Feb;17(1):52–60. [PubMed] [Google Scholar]
  6. Doré S., Pelletier J. P., DiBattista J. A., Tardif G., Brazeau P., Martel-Pelletier J. Human osteoarthritic chondrocytes possess an increased number of insulin-like growth factor 1 binding sites but are unresponsive to its stimulation. Possible role of IGF-1-binding proteins. Arthritis Rheum. 1994 Feb;37(2):253–263. doi: 10.1002/art.1780370215. [DOI] [PubMed] [Google Scholar]
  7. Ellis A. J., Curry V. A., Powell E. K., Cawston T. E. The prevention of collagen breakdown in bovine nasal cartilage by TIMP, TIMP-2 and a low molecular weight synthetic inhibitor. Biochem Biophys Res Commun. 1994 May 30;201(1):94–101. doi: 10.1006/bbrc.1994.1673. [DOI] [PubMed] [Google Scholar]
  8. Everts V., Hembry R. M., Reynolds J. J., Beertsen W. Metalloproteinases are not involved in the phagocytosis of collagen fibrils by fibroblasts. Matrix. 1989 Aug;9(4):266–276. doi: 10.1016/s0934-8832(89)80002-2. [DOI] [PubMed] [Google Scholar]
  9. Hardingham T. E., Bayliss M. T., Rayan V., Noble D. P. Effects of growth factors and cytokines on proteoglycan turnover in articular cartilage. Br J Rheumatol. 1992;31 (Suppl 1):1–6. [PubMed] [Google Scholar]
  10. Hascall V. C., Handley C. J., McQuillan D. J., Hascall G. K., Robinson H. C., Lowther D. A. The effect of serum on biosynthesis of proteoglycans by bovine articular cartilage in culture. Arch Biochem Biophys. 1983 Jul 1;224(1):206–223. doi: 10.1016/0003-9861(83)90205-9. [DOI] [PubMed] [Google Scholar]
  11. Henderson B., Thompson R. C., Hardingham T., Lewthwaite J. Inhibition of interleukin-1-induced synovitis and articular cartilage proteoglycan loss in the rabbit knee by recombinant human interleukin-1 receptor antagonist. Cytokine. 1991 May;3(3):246–249. doi: 10.1016/1043-4666(91)90023-7. [DOI] [PubMed] [Google Scholar]
  12. Häuselmann H. J., Oppliger L., Michel B. A., Stefanovic-Racic M., Evans C. H. Nitric oxide and proteoglycan biosynthesis by human articular chondrocytes in alginate culture. FEBS Lett. 1994 Oct 3;352(3):361–364. doi: 10.1016/0014-5793(94)00994-5. [DOI] [PubMed] [Google Scholar]
  13. Joosten L. A., Helsen M. M., van den Berg W. B. Accelerated onset of collagen-induced arthritis by remote inflammation. Clin Exp Immunol. 1994 Aug;97(2):204–211. doi: 10.1111/j.1365-2249.1994.tb06069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joosten L. A., Helsen M. M., van den Berg W. B. Transient chondrocyte nonresponsiveness to insulin-like growth factor-1 upon H2O2 exposure is not related to IGF receptor damage. J Rheumatol. 1991 Apr;18(4):585–590. [PubMed] [Google Scholar]
  15. Krane S. M., Conca W., Stephenson M. L., Amento E. P., Goldring M. B. Mechanisms of matrix degradation in rheumatoid arthritis. Ann N Y Acad Sci. 1990;580:340–354. doi: 10.1111/j.1749-6632.1990.tb17943.x. [DOI] [PubMed] [Google Scholar]
  16. Lin T., Wang D., Nagpal M. L., Chang W., Calkins J. H. Down-regulation of Leydig cell insulin-like growth factor-I gene expression by interleukin-1. Endocrinology. 1992 Mar;130(3):1217–1224. doi: 10.1210/endo.130.3.1537287. [DOI] [PubMed] [Google Scholar]
  17. Luyten F. P., Hascall V. C., Nissley S. P., Morales T. I., Reddi A. H. Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. Arch Biochem Biophys. 1988 Dec;267(2):416–425. doi: 10.1016/0003-9861(88)90047-1. [DOI] [PubMed] [Google Scholar]
  18. Martel-Pelletier J., McCollum R., Fujimoto N., Obata K., Cloutier J. M., Pelletier J. P. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab Invest. 1994 Jun;70(6):807–815. [PubMed] [Google Scholar]
  19. Matsumoto T., Tsukazaki T., Enomoto H., Iwasaki K., Yamashita S. Effects of interleukin-1 beta on insulin-like growth factor-I autocrine/paracrine axis in cultured rat articular chondrocytes. Ann Rheum Dis. 1994 Feb;53(2):128–133. doi: 10.1136/ard.53.2.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Osborn K. D., Trippel S. B., Mankin H. J. Growth factor stimulation of adult articular cartilage. J Orthop Res. 1989;7(1):35–42. doi: 10.1002/jor.1100070106. [DOI] [PubMed] [Google Scholar]
  21. Palmer R. M., Hickery M. S., Charles I. G., Moncada S., Bayliss M. T. Induction of nitric oxide synthase in human chondrocytes. Biochem Biophys Res Commun. 1993 May 28;193(1):398–405. doi: 10.1006/bbrc.1993.1637. [DOI] [PubMed] [Google Scholar]
  22. Pettipher E. R., Higgs G. A., Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8749–8753. doi: 10.1073/pnas.83.22.8749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rayan V., Hardingham T. The recovery of articular cartilage in explant culture from interleukin-1 alpha: effects on proteoglycan synthesis and degradation. Matrix Biol. 1994 Apr;14(3):263–271. doi: 10.1016/0945-053x(94)90190-2. [DOI] [PubMed] [Google Scholar]
  24. Schalkwijk J., Joosten L. A., van den Berg W. B., van Wyk J. J., van de Putte L. B. Insulin-like growth factor stimulation of chondrocyte proteoglycan synthesis by human synovial fluid. Arthritis Rheum. 1989 Jan;32(1):66–71. doi: 10.1002/anr.1780320111. [DOI] [PubMed] [Google Scholar]
  25. Schalkwijk J., Joosten L. A., van den Berg W. B., van de Putte L. B. Chondrocyte nonresponsiveness to insulin-like growth factor 1 in experimental arthritis. Arthritis Rheum. 1989 Jul;32(7):894–900. [PubMed] [Google Scholar]
  26. Schalkwijk J., van den Berg W. B., van de Putte L. B., Joosten L. A., van den Bersselaar L. Cationization of catalase, peroxidase, and superoxide dismutase. Effect of improved intraarticular retention on experimental arthritis in mice. J Clin Invest. 1985 Jul;76(1):198–205. doi: 10.1172/JCI111946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shingu M., Isayama T., Yasutake C., Naono T., Nobunaga M., Tomari K., Horie K., Goto Y. Role of oxygen radicals and IL-6 in IL-1-dependent cartilage matrix degradation. Inflammation. 1994 Dec;18(6):613–623. doi: 10.1007/BF01535259. [DOI] [PubMed] [Google Scholar]
  28. Smith R. J., Chin J. E., Sam L. M., Justen J. M. Biologic effects of an interleukin-1 receptor antagonist protein on interleukin-1-stimulated cartilage erosion and chondrocyte responsiveness. Arthritis Rheum. 1991 Jan;34(1):78–83. doi: 10.1002/art.1780340112. [DOI] [PubMed] [Google Scholar]
  29. Stadler J., Stefanovic-Racic M., Billiar T. R., Curran R. D., McIntyre L. A., Georgescu H. I., Simmons R. L., Evans C. H. Articular chondrocytes synthesize nitric oxide in response to cytokines and lipopolysaccharide. J Immunol. 1991 Dec 1;147(11):3915–3920. [PubMed] [Google Scholar]
  30. Taskiran D., Stefanovic-Racic M., Georgescu H., Evans C. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun. 1994 Apr 15;200(1):142–148. doi: 10.1006/bbrc.1994.1426. [DOI] [PubMed] [Google Scholar]
  31. Tesch G. H., Handley C. J., Cornell H. J., Herington A. C. Effects of free and bound insulin-like growth factors on proteoglycan metabolism in articular cartilage explants. J Orthop Res. 1992 Jan;10(1):14–22. doi: 10.1002/jor.1100100103. [DOI] [PubMed] [Google Scholar]
  32. Thorbecke G. J., Shah R., Leu C. H., Kuruvilla A. P., Hardison A. M., Palladino M. A. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7375–7379. doi: 10.1073/pnas.89.16.7375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tyler J. A. Insulin-like growth factor 1 can decrease degradation and promote synthesis of proteoglycan in cartilage exposed to cytokines. Biochem J. 1989 Jun 1;260(2):543–548. doi: 10.1042/bj2600543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Verschure P. J., Joosten L. A., van der Kraan P. M., Van den Berg W. B. Responsiveness of articular cartilage from normal and inflamed mouse knee joints to various growth factors. Ann Rheum Dis. 1994 Jul;53(7):455–460. doi: 10.1136/ard.53.7.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Verschure P. J., Van Noorden C. J. The effects of interleukin-1 on articular cartilage destruction as observed in arthritic diseases, and its therapeutic control. Clin Exp Rheumatol. 1990 May-Jun;8(3):303–313. [PubMed] [Google Scholar]
  36. Verschure P. J., van Marle J., Joosten L. A., Van den Berg W. B. Localization and quantification of the insulin-like growth factor-1 receptor in mouse articular cartilage by confocal laser scanning microscopy. J Histochem Cytochem. 1994 Jun;42(6):765–773. doi: 10.1177/42.6.8189038. [DOI] [PubMed] [Google Scholar]
  37. Verschure P. J., van Marle J., Joosten L. A., van den Berg W. B. Chondrocyte IGF-1 receptor expression and responsiveness to IGF-1 stimulation in mouse articular cartilage during various phases of experimentally induced arthritis. Ann Rheum Dis. 1995 Aug;54(8):645–653. doi: 10.1136/ard.54.8.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Williams R. O., Feldmann M., Maini R. N. Anti-tumor necrosis factor ameliorates joint disease in murine collagen-induced arthritis. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9784–9788. doi: 10.1073/pnas.89.20.9784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van Beuningen H. M., Arntz O. J., van den Berg W. B. In vivo effects of interleukin-1 on articular cartilage. Prolongation of proteoglycan metabolic disturbances in old mice. Arthritis Rheum. 1991 May;34(5):606–615. doi: 10.1002/art.1780340513. [DOI] [PubMed] [Google Scholar]
  40. van de Loo A. A., Arntz O. J., Bakker A. C., van Lent P. L., Jacobs M. J., van den Berg W. B. Role of interleukin 1 in antigen-induced exacerbations of murine arthritis. Am J Pathol. 1995 Jan;146(1):239–249. [PMC free article] [PubMed] [Google Scholar]
  41. van de Loo F. A., Arntz O. J., Otterness I. G., van den Berg W. B. Protection against cartilage proteoglycan synthesis inhibition by antiinterleukin 1 antibodies in experimental arthritis. J Rheumatol. 1992 Mar;19(3):348–356. [PubMed] [Google Scholar]
  42. van de Loo F. A., Joosten L. A., van Lent P. L., Arntz O. J., van den Berg W. B. Role of interleukin-1, tumor necrosis factor alpha, and interleukin-6 in cartilage proteoglycan metabolism and destruction. Effect of in situ blocking in murine antigen- and zymosan-induced arthritis. Arthritis Rheum. 1995 Feb;38(2):164–172. doi: 10.1002/art.1780380204. [DOI] [PubMed] [Google Scholar]
  43. van den Berg W. B., Joosten L. A., Helsen M., van de Loo F. A. Amelioration of established murine collagen-induced arthritis with anti-IL-1 treatment. Clin Exp Immunol. 1994 Feb;95(2):237–243. doi: 10.1111/j.1365-2249.1994.tb06517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van den Berg W. B., Kruijsen M. W., van de Putte L. B., van Beusekom H. J., van der Sluis-van der Pol M., Zwarts W. A. Antigen-induced and zymosan-induced arthritis in mice: studies on in vivo cartilage proteoglycan synthesis and chondrocyte death. Br J Exp Pathol. 1981 Jun;62(3):308–316. [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES