Abstract
OBJECTIVES: To clarify the three dimensional ultrastructure of proteoglycans, and their relationship with other matrix components in articular cartilage. METHODS: Specimens from rat femoral heads were examined using three techniques: (1) Histochemical staining with cationic polyethyleneimine (PEI), using a pre-embedding or a postembedding method. Some tissues were pretreated with chondroitinase ABC or hyaluronidase. (2) Quick freezing and deep etching (QF-DE). Some specimens were fixed with paraformaldehyde and washed in buffer solution before quick freezing; others were frozen directly. (3) Ultrathin sections were studied after conventional preparation. RESULTS: Proteoglycans were observed as aggregated clumps with PEI staining by the pre-embedding method, but as fine filaments by the postembedding method. They were lost with enzyme digestion; this was also demonstrated by the QF-DE method. The ultrastructure was well preserved by the QF-DE method when fixation and washing procedures were included, but not without these procedures. A fine mesh-like structure was connected to the cell membrane in the pericellular matrix. Filamentous structures suggestive of aggrecans were observed among collagen fibrils. They had side chains, approximately 50 nm in length, which branched from the central filaments at intervals of 10-20 nm, and were occasionally linked to other structures. Many thin filaments were also attached to the collagen fibrils. CONCLUSIONS: The QF-DE method incorporating paraformaldehyde fixation and buffer washing procedures revealed three dimensional, extended structures suggestive of proteoglycans.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akisaka T., Shigenaga Y. Ultrastructure of growing epiphyseal cartilage processed by rapid freezing and freeze-substitution. J Electron Microsc (Tokyo) 1983;32(4):305–320. [PubMed] [Google Scholar]
- Arsenault A. L., Ottensmeyer F. P., Heath I. B. An electron microscopic and spectroscopic study of murine epiphyseal cartilage: analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution. J Ultrastruct Mol Struct Res. 1988 Jan;98(1):32–47. doi: 10.1016/s0889-1605(88)80932-7. [DOI] [PubMed] [Google Scholar]
- Buckwalter J. A., Rosenberg L. C. Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein. J Biol Chem. 1982 Aug 25;257(16):9830–9839. [PubMed] [Google Scholar]
- Buckwalter J. A., Rosenberg L. C. Electron microscopic studies of cartilage proteoglycans. Electron Microsc Rev. 1988;1(1):87–112. doi: 10.1016/s0892-0354(98)90007-7. [DOI] [PubMed] [Google Scholar]
- Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
- Engfeldt B., Hjertquist S. O. Studies on the epiphysial growth zone. I. The preservation of acid glycosaminoglycans in tissues in some histotechnical procedures for electron microscopy. Virchows Arch B Cell Pathol. 1968;1(3):222–229. [PubMed] [Google Scholar]
- Gardner D. L., O'Connor P., Middleton J. F., Oates K., Orford C. R. An investigation by transmission electron microscopy of freeze replicas of dog articular cartilage surfaces: the fibre-rich surface structure. J Anat. 1983 Oct;137(Pt 3):573–582. [PMC free article] [PubMed] [Google Scholar]
- Gardner D. L., O'Connor P., Oates K. Low temperature scanning electron microscopy of dog and guinea-pig hyaline articular cartilage. J Anat. 1981 Mar;132(Pt 2):267–282. [PMC free article] [PubMed] [Google Scholar]
- Hardingham T. Proteoglycans: their structure, interactions and molecular organization in cartilage. Biochem Soc Trans. 1981 Dec;9(6):489–497. doi: 10.1042/bst0090489. [DOI] [PubMed] [Google Scholar]
- Hascall G. K. Cartilage proteoglycans: comparison of sectioned and spread whole molecules. J Ultrastruct Res. 1980 Mar;70(3):369–375. doi: 10.1016/s0022-5320(80)80019-0. [DOI] [PubMed] [Google Scholar]
- Hedbom E., Heinegård D. Interaction of a 59-kDa connective tissue matrix protein with collagen I and collagen II. J Biol Chem. 1989 Apr 25;264(12):6898–6905. [PubMed] [Google Scholar]
- Heinegård D., Lohmander S., Thyberg J. Cartilage proteoglycan aggregates. Electron-microscopic studies of native and fragmented molecules. Biochem J. 1978 Dec 1;175(3):913–919. doi: 10.1042/bj1750913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique. Methods Cell Biol. 1981;22:97–122. doi: 10.1016/s0091-679x(08)61872-5. [DOI] [PubMed] [Google Scholar]
- Hunziker E. B., Herrmann W., Schenk R. K. Improved cartilage fixation by ruthenium hexammine trichloride (RHT). A prerequisite for morphometry in growth cartilage. J Ultrastruct Res. 1982 Oct;81(1):1–12. doi: 10.1016/s0022-5320(82)90036-3. [DOI] [PubMed] [Google Scholar]
- Hunziker E. B., Schenk R. K. Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II. Intercellular matrix ultrastructure - preservation of proteoglycans in their native state. J Cell Biol. 1984 Jan;98(1):277–282. doi: 10.1083/jcb.98.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keene D. R., McDonald K. The ultrastructure of the connective tissue matrix of skin and cartilage after high-pressure freezing and freeze-substitution. J Histochem Cytochem. 1993 Aug;41(8):1141–1153. doi: 10.1177/41.8.8331280. [DOI] [PubMed] [Google Scholar]
- Kimura J. H., Osdoby P., Caplan A. I., Hascall V. C. Electron microscopic and biochemical studies of proteoglycan polydispersity in chick limb bud chondrocyte cultures. J Biol Chem. 1978 Jul 10;253(13):4721–4729. [PubMed] [Google Scholar]
- Krusius T., Ruoslahti E. Primary structure of an extracellular matrix proteoglycan core protein deduced from cloned cDNA. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7683–7687. doi: 10.1073/pnas.83.20.7683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
- Luft J. H. Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec. 1971 Nov;171(3):369–415. doi: 10.1002/ar.1091710303. [DOI] [PubMed] [Google Scholar]
- McCormick D., van der Rest M., Goodship J., Lozano G., Ninomiya Y., Olsen B. R. Structure of the glycosaminoglycan domain in the type IX collagen-proteoglycan. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4044–4048. doi: 10.1073/pnas.84.12.4044. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mecham R. P., Heuser J. Three-dimensional organization of extracellular matrix in elastic cartilage as viewed by quick freeze, deep etch electron microscopy. Connect Tissue Res. 1990;24(2):83–93. doi: 10.3109/03008209009152425. [DOI] [PubMed] [Google Scholar]
- Mendler M., Eich-Bender S. G., Vaughan L., Winterhalter K. H., Bruckner P. Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol. 1989 Jan;108(1):191–197. doi: 10.1083/jcb.108.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller-Glauser W., Humbel B., Glatt M., Sträuli P., Winterhalter K. H., Bruckner P. On the role of type IX collagen in the extracellular matrix of cartilage: type IX collagen is localized to intersections of collagen fibrils. J Cell Biol. 1986 May;102(5):1931–1939. doi: 10.1083/jcb.102.5.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naramoto A., Ohno S., Itoh N., Shibata N., Nakazawa K., Takami H., Duan H. J., Kasahara H., Shigematsu H. Ultrastructure of matriceal changes in chronic phase of Masugi nephritis by quick-freezing and deep-etching method. Virchows Arch A Pathol Anat Histopathol. 1991;418(1):51–59. doi: 10.1007/BF01600244. [DOI] [PubMed] [Google Scholar]
- Naramoto A., Ohno S., Nakazawa K., Takami H., Itoh N., Shigematsu H. Three-dimensional ultrastructure of glomerular injury in serum sickness nephritis using the quick-freezing and deep-etching method. Virchows Arch A Pathol Anat Histopathol. 1991;418(3):185–192. doi: 10.1007/BF01606055. [DOI] [PubMed] [Google Scholar]
- Ohno S., Fujii Y. Three-dimensional and histochemical studies of peroxisomes in cultured hepatocytes by quick-freezing and deep-etching method. Histochem J. 1990 Mar;22(3):143–154. doi: 10.1007/BF01003534. [DOI] [PubMed] [Google Scholar]
- Ohno S., Fujii Y. Three-dimensional studies of the cytoskeleton of cultured hepatocytes: a quick-freezing and deep-etching study. Virchows Arch A Pathol Anat Histopathol. 1991;418(1):61–70. doi: 10.1007/BF01600245. [DOI] [PubMed] [Google Scholar]
- Oldberg A., Antonsson P., Lindblom K., Heinegård D. A collagen-binding 59-kd protein (fibromodulin) is structurally related to the small interstitial proteoglycans PG-S1 and PG-S2 (decorin). EMBO J. 1989 Sep;8(9):2601–2604. doi: 10.1002/j.1460-2075.1989.tb08399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pidd J. G., Gardner D. L. Surface structure of baboon (Papio anubis) hydrated articular cartilage: study of low temperature replicas by transmission electron microscopy. J Med Primatol. 1987;16(5):301–309. [PubMed] [Google Scholar]
- Poole A. R., Pidoux I., Reiner A., Rosenberg L. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J Cell Biol. 1982 Jun;93(3):921–937. doi: 10.1083/jcb.93.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg L., Hellmann W., Kleinschmidt A. K. Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. J Biol Chem. 1975 Mar 10;250(5):1877–1883. [PubMed] [Google Scholar]
- Ruggeri A., Dell'orbo C., Quacci D. Electron microscopic visualization of proteoglycans with Alcian Blue. Histochem J. 1975 Mar;7(2):187–197. doi: 10.1007/BF01004562. [DOI] [PubMed] [Google Scholar]
- Schurer J. W., Hoedemaeker J., Molenaar I. Polyethyleneimine as tracer particle for (immuno) electron microscopy. J Histochem Cytochem. 1977 May;25(5):384–387. doi: 10.1177/25.5.325123. [DOI] [PubMed] [Google Scholar]
- Schurer J. W., Kalicharan D., Hoedemaeker P. J., Molenaar I. The use of polyethyleneimine for demonstration of anionic sites in basement membranes and collagen fibrils. J Histochem Cytochem. 1978 Aug;26(8):688–689. doi: 10.1177/26.8.690407. [DOI] [PubMed] [Google Scholar]
- Scott J. E. Collagen--proteoglycan interactions. Localization of proteoglycans in tendon by electron microscopy. Biochem J. 1980 Jun 1;187(3):887–891. doi: 10.1042/bj1870887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shepard N., Mitchell N. Acridine orange stabilization of glycosaminoglycans in beginning endochondral ossification. A comparative light and electron microscopic study. Histochemistry. 1981;70(2):107–114. doi: 10.1007/BF00493202. [DOI] [PubMed] [Google Scholar]
- Shepard N., Mitchell N. Simultaneous localization of proteoglycan by light and electron microscopy using toluidine blue O. A study of epiphyseal cartilage. J Histochem Cytochem. 1976 May;24(5):621–629. doi: 10.1177/24.5.132503. [DOI] [PubMed] [Google Scholar]
- Thyberg J. Electron microscopy of cartilage proteoglycans. Histochem J. 1977 May;9(3):259–266. doi: 10.1007/BF01004761. [DOI] [PubMed] [Google Scholar]
- Thyberg J., Lohmander S., Heinegård D. Proteoglycans of hyaline cartilage: Electron-microscopic studies on isolated molecules. Biochem J. 1975 Oct;151(1):157–166. doi: 10.1042/bj1510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaughan L., Mendler M., Huber S., Bruckner P., Winterhalter K. H., Irwin M. I., Mayne R. D-periodic distribution of collagen type IX along cartilage fibrils. J Cell Biol. 1988 Mar;106(3):991–997. doi: 10.1083/jcb.106.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wellauer P., Wyler T., Buddecke E. Electron microscopic and physico-chemical studies on bovine nasal cartilage proteoglycan. Hoppe Seylers Z Physiol Chem. 1972 Jul;353(7):1043–1052. doi: 10.1515/bchm2.1972.353.2.1043. [DOI] [PubMed] [Google Scholar]
- Wiedemann H., Paulsson M., Timpl R., Engel J., Heinegård D. Domain structure of cartilage proteoglycans revealed by rotary shadowing of intact and fragmented molecules. Biochem J. 1984 Nov 15;224(1):331–333. doi: 10.1042/bj2240331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi Y., Mann D. M., Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature. 1990 Jul 19;346(6281):281–284. doi: 10.1038/346281a0. [DOI] [PubMed] [Google Scholar]
- Yoshimura A., Ohno S., Nakano K., Oniki H., Inui K., Ideura T., Koshikawa S. Three-dimensional ultrastructure of anionic sites of the glomerular basement membrane by a quick-freezing and deep-etching method using a cationic tracer. Histochemistry. 1991;96(2):107–113. doi: 10.1007/BF00315980. [DOI] [PubMed] [Google Scholar]
- van der Rest M., Mayne R. Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem. 1988 Feb 5;263(4):1615–1618. [PubMed] [Google Scholar]









