Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1996 Dec;55(12):880–887. doi: 10.1136/ard.55.12.880

Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism.

D W McMillan 1, G Garbutt 1, M A Adams 1
PMCID: PMC1010338  PMID: 9014581

Abstract

OBJECTIVE: To examine regional changes in the fluid content of human intervertebral discs by comparing sagittal plane "profiles" of hydration before and after mechanical loading. METHODS: Cadaveric lumbar intervertebral discs were loaded to simulate a typical day's loading in vivo. Ten motion segments were subjected to a 1500 N compressive load for a period of 6 h with the superior vertebrae inclined by 4-8 degrees to simulate a slightly flexed posture. Immediately after loading the discs were frozen at -80 degrees C. Subsequently they were cut into slices perpendicular to the sagittal midline of the disc, and each slice was weighed before and after freeze drying. This enabled a profile of fluid content across the disc to be constructed. Fluid loss due to loading was estimated by comparing the water content of each loaded disc with that of an adjacent unloaded disc from the same spine. RESULTS: After 6 h of creep loading, disc height approached, but did not quite reach, an equilibrium. The mean fluid loss from all discs was 18%. All regions except the outer 2 mm experienced a significant loss of fluid (P < 0.01). The posterior mid-annulus showed the greatest fluid loss (30%), while the nucleus lost 15%. CONCLUSIONS: A comparison with previously published work suggests that fluid exchange of this magnitude will have a considerable effect on disc cell metabolism and on metabolite transport.

Full text

PDF
880

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. A., Green T. P., Dolan P. The strength in anterior bending of lumbar intervertebral discs. Spine (Phila Pa 1976) 1994 Oct 1;19(19):2197–2203. doi: 10.1097/00007632-199410000-00014. [DOI] [PubMed] [Google Scholar]
  2. Adams M. A., Hutton W. C. The effect of posture on the fluid content of lumbar intervertebral discs. Spine (Phila Pa 1976) 1983 Sep;8(6):665–671. doi: 10.1097/00007632-198309000-00013. [DOI] [PubMed] [Google Scholar]
  3. Adams M. A., Hutton W. C. The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg Br. 1980 Aug;62(3):358–362. doi: 10.1302/0301-620X.62B3.6447702. [DOI] [PubMed] [Google Scholar]
  4. Adams M. A., McMillan D. W., Green T. P., Dolan P. Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine (Phila Pa 1976) 1996 Feb 15;21(4):434–438. doi: 10.1097/00007632-199602150-00006. [DOI] [PubMed] [Google Scholar]
  5. Andersson G. B., Murphy R. W., Ortengren R., Nachemson A. L. The influence of backrest inclination and lumbar support on lumbar lordosis. Spine (Phila Pa 1976) 1979 Jan-Feb;4(1):52–58. doi: 10.1097/00007632-197901000-00009. [DOI] [PubMed] [Google Scholar]
  6. Bayliss M. T., Johnstone B., O'Brien J. P. 1988 Volvo award in basic science. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology. Spine (Phila Pa 1976) 1988 Sep;13(9):972–981. doi: 10.1097/00007632-198809000-00003. [DOI] [PubMed] [Google Scholar]
  7. Bayliss M. T., Urban J. P., Johnstone B., Holm S. In vitro method for measuring synthesis rates in the intervertebral disc. J Orthop Res. 1986;4(1):10–17. doi: 10.1002/jor.1100040102. [DOI] [PubMed] [Google Scholar]
  8. Botsford D. J., Esses S. I., Ogilvie-Harris D. J. In vivo diurnal variation in intervertebral disc volume and morphology. Spine (Phila Pa 1976) 1994 Apr 15;19(8):935–940. doi: 10.1097/00007632-199404150-00012. [DOI] [PubMed] [Google Scholar]
  9. Dolan P., Mannion A. F., Adams M. A. Passive tissues help the back muscles to generate extensor moments during lifting. J Biomech. 1994 Aug;27(8):1077–1085. doi: 10.1016/0021-9290(94)90224-0. [DOI] [PubMed] [Google Scholar]
  10. Holm S., Nachemson A. Nutritional changes in the canine intervertebral disc after spinal fusion. Clin Orthop Relat Res. 1982 Sep;(169):243–258. [PubMed] [Google Scholar]
  11. Hult E., Ekström L., Kaigle A., Holm S., Hansson T. In vivo measurement of spinal column viscoelasticity--an animal model. Proc Inst Mech Eng H. 1995;209(2):105–135. doi: 10.1243/PIME_PROC_1995_209_326_02. [DOI] [PubMed] [Google Scholar]
  12. Johnstone B., Urban J. P., Roberts S., Menage J. The fluid content of the human intervertebral disc. Comparison between fluid content and swelling pressure profiles of discs removed at surgery and those taken postmortem. Spine (Phila Pa 1976) 1992 Apr;17(4):412–416. doi: 10.1097/00007632-199204000-00006. [DOI] [PubMed] [Google Scholar]
  13. Kazarian L. E. Creep characteristics of the human spinal column. Orthop Clin North Am. 1975 Jan;6(1):3–18. [PubMed] [Google Scholar]
  14. Keller T. S., Hansson T. H., Holm S. H., Pope M. M., Spengler D. M. In vivo creep behavior of the normal and degenerated porcine intervertebral disk: a preliminary report. J Spinal Disord. 1988;1(4):267–278. [PubMed] [Google Scholar]
  15. Keller T. S., Holm S. H., Hansson T. H., Spengler D. M. 1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine (Phila Pa 1976) 1990 Aug;15(8):751–761. doi: 10.1097/00007632-199008010-00004. [DOI] [PubMed] [Google Scholar]
  16. Kraemer J., Kolditz D., Gowin R. Water and electrolyte content of human intervertebral discs under variable load. Spine (Phila Pa 1976) 1985 Jan-Feb;10(1):69–71. doi: 10.1097/00007632-198501000-00011. [DOI] [PubMed] [Google Scholar]
  17. Krag M. H., Cohen M. C., Haugh L. D., Pope M. H. Body height change during upright and recumbent posture. Spine (Phila Pa 1976) 1990 Mar;15(3):202–207. doi: 10.1097/00007632-199003000-00008. [DOI] [PubMed] [Google Scholar]
  18. Maroudas A., Stockwell R. A., Nachemson A., Urban J. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat. 1975 Sep;120(Pt 1):113–130. [PMC free article] [PubMed] [Google Scholar]
  19. McNally D. S., Adams M. A. Internal intervertebral disc mechanics as revealed by stress profilometry. Spine (Phila Pa 1976) 1992 Jan;17(1):66–73. doi: 10.1097/00007632-199201000-00011. [DOI] [PubMed] [Google Scholar]
  20. Nachemson A. L., Evans J. H. Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). J Biomech. 1968 Aug;1(3):211–220. doi: 10.1016/0021-9290(68)90006-7. [DOI] [PubMed] [Google Scholar]
  21. Ohshima H., Urban J. P., Bergel D. H. Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res. 1995 Jan;13(1):22–29. doi: 10.1002/jor.1100130106. [DOI] [PubMed] [Google Scholar]
  22. Ohshima H., Urban J. P. The effect of lactate and pH on proteoglycan and protein synthesis rates in the intervertebral disc. Spine (Phila Pa 1976) 1992 Sep;17(9):1079–1082. doi: 10.1097/00007632-199209000-00012. [DOI] [PubMed] [Google Scholar]
  23. PEREY O. Fracture of the vertebral end-plate in the lumbar spine; an experimental biochemical investigation. Acta Orthop Scand Suppl. 1957;25:1–101. doi: 10.3109/ort.1957.28.suppl-25.01. [DOI] [PubMed] [Google Scholar]
  24. Reilly T., Tyrrell A., Troup J. D. Circadian variation in human stature. Chronobiol Int. 1984;1(2):121–126. doi: 10.3109/07420528409059129. [DOI] [PubMed] [Google Scholar]
  25. Seroussi R. E., Wilder D. G., Pope M. H. Trunk muscle electromyography and whole body vibration. J Biomech. 1989;22(3):219–229. doi: 10.1016/0021-9290(89)90090-0. [DOI] [PubMed] [Google Scholar]
  26. Stairmand J. W., Holm S., Urban J. P. Factors influencing oxygen concentration gradients in the intervertebral disc. A theoretical analysis. Spine (Phila Pa 1976) 1991 Apr;16(4):444–449. doi: 10.1097/00007632-199104000-00010. [DOI] [PubMed] [Google Scholar]
  27. Urban J. P., Holm S., Maroudas A., Nachemson A. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin Orthop Relat Res. 1982 Oct;(170):296–302. [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES