Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Apr 4:2023.04.01.535159. [Version 2] doi: 10.1101/2023.04.01.535159

Tamoxifen Response at Single Cell Resolution in Estrogen Receptor-Positive Primary Human Breast Tumors

Hyunsoo Kim, Austin A Whitman, Kamila Wisniewska, Rasha T Kakati, Susan Garcia-Recio, Benjamin C Calhoun, Hector L Franco, Charles M Perou, Philip M Spanheimer
PMCID: PMC10103953  PMID: 37066379

ABSTRACT

In ER+/HER2- breast cancer, multiple measures of intra-tumor heterogeneity are associated with worse response to endocrine therapy. To investigate heterogeneity in response to treatment, we developed an operating room-to-laboratory pipeline for the collection of live human tumors and normal breast specimens immediately after surgical resection for processing into single-cell workflows for experimentation and genomic analyses. We demonstrate differences in tamoxifen response by cell type and identify distinctly responsive and resistant subpopulations within the malignant cell compartment of human tumors. Tamoxifen resistance signatures from 3 distinct resistant subpopulations are prognostic in large cohorts of ER+ breast cancer patients and enriched in endocrine therapy resistant tumors. This novel ex vivo model system now provides a foundation to define responsive and resistant sub-populations within heterogeneous tumors, to develop precise single cell-based predictors of response to therapy, and to identify genes and pathways driving resistance to therapy.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES