Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Apr 6:2023.04.05.535701. [Version 1] doi: 10.1101/2023.04.05.535701

3D architecture and a bi-cellular mechanism of touch detection in mechanosensory corpuscle

Yury A Nikolaev, Luke H Ziolkowski, Song Pang, Wei-Ping Li, Viktor V Feketa, C Shan Xu, Elena O Gracheva, Sviatoslav N Bagriantsev
PMCID: PMC10104047  PMID: 37066170

Abstract

Mechanosensory corpuscles detect transient touch and vibratory signals in the skin of vertebrates, enabling navigation, foraging, and precise manipulation of objects 1 . The corpuscle core comprises a terminal neurite of a mechanoreceptor afferent, the only known touch-sensing element within corpuscles, surrounded by terminal Schwann cells called lamellar cells (LCs) 2–4 . However, the precise corpuscular ultrastructure, and the role of LCs in touch detection are unknown. Here we used enhanced focused ion beam scanning electron microscopy and electron tomography to reveal the three-dimensional architecture of avian Meissner (Grandry) corpuscle 5 . We show that corpuscles contain a stack of LCs innervated by two afferents, which form large-area contacts with LCs. LCs form tether-like connections with the afferent membrane and contain dense core vesicles which release their content onto the afferent. Furthermore, by performing simultaneous electrophysiological recordings from both cell types, we show that mechanosensitive LCs use calcium influx to trigger action potential firing in the afferent and thus serve as physiological touch sensors in the skin. Our findings suggest a bi-cellular mechanism of touch detection, which comprises the afferent and LCs, likely enables corpuscles to encode the nuances of tactile stimuli.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES