Skip to main content
Cell Insight logoLink to Cell Insight
. 2022 Oct 11;1(6):100059. doi: 10.1016/j.cellin.2022.100059

The role of TRPA1 channels in thermosensation

Hao Zhang a, Chengsan Wang a,b, Keyi Zhang b,d, Peter Muiruri Kamau a,b,c, Anna Luo a,b, Lifeng Tian b,d, Ren Lai a,c,
PMCID: PMC10120293  PMID: 37193355

Abstract

Transient receptor potential ankyrin 1 (TRPA1) is a polymodal nonselective cation channel sensitive to different physical and chemical stimuli. TRPA1 is associated with many important physiological functions in different species and thus is involved in different degrees of evolution. TRPA1 acts as a polymodal receptor for the perceiving of irritating chemicals, cold, heat, and mechanical sensations in various animal species. Numerous studies have supported many functions of TRPA1, but its temperature-sensing function remains controversial. Although TRPA1 is widely distributed in both invertebrates and vertebrates, and plays a crucial role in tempreture sensing, the role of TRPA1 thermosensation and molecular temperature sensitivity are species-specific. In this review, we summarize the temperature-sensing role of TRPA1 orthologues in terms of molecular, cellular, and behavioural levels.

Keywords: TRPA1, Thermosensation, Ion channel

1. Introduction

TRPA1 (also known as ankyrin-like with transmembrane domains protein 1 (ANKTM1) or the wasabi receptor) derives its name from numerous (14–18, depending on species) ankyrin repeat domains (ARs) at the N-terminus (Jaquemar et al., 1999; Mosavi et al., 2002; Story et al., 2003). The trpa1 gene was first cloned from human fibroblasts in 1999 and is located on human chromosome 8 in band 8q13 (Jaquemar et al., 1999). TRPA1 is a homotetrameric nonselective cation channel, where each monomer contains six transmembrane domains(S1–S6) with cytoplasmic N- and C-termini and the pore loop is between S5 and S6 (Zygmunt and Hogestatt, 2014). TRPA1 is widely distributed in many tissues and organs and is expressed in neuronal cells such as dorsal root ganglion (DRG) neurons, trigeminal ganglia (TG) neurons, and nodose ganglia neurons (Story et al., 2003; Jordt et al., 2004; Nagata et al., 2005; Fajardo et al., 2008), as well as in non-neuronal cells such as astrocytes, hair cells, ventricular cardiomyocytes, pulmonary epithelial cells, and multiple immune cells (Clarke and Attwell, 2011; Nagata et al., 2005; Andrei et al., 2017; Buch et al., 2013; Naert et al., 2021). TRPA1 is involved in a variety of physiological and pathological processes (Talavera et al., 2020), such as neuropathic pain (Nativi et al., 2013), oxygen sensing (Takahashi et al., 2011), inflammation (Bandell et al., 2004; Bautista et al., 2006), obesity (Mahajan et al., 2021), itching (Wilson et al., 2013), mechanical allodynia and thermal hyperalgesia in drug treatment (Nassini et al., 2011), respiratory disease (Mukhopadhyay et al., 2016) and cardiovascular diseases (Gao et al., 2020). In addition, animals employ TRPA1 as an important chemoreceptor for detecting different chemicals in vivo and in vitro. TRPA1 can be activated by electrophilic reagents like allyl isothiocyanate (AITC) (Jordt et al., 2004) and non-electrophilic reagents like menthol (Karashima et al., 2007). The detection role of TRPA1 for compounds is conserved in animals, especially for harmful chemicals. TRPA1 can be activated by electrophilic reagents in almost all animals, from worms, and insects to mammals (Arenas et al., 2017; Chen et al., 2009; Bianchi et al., 2012; Jordt et al., 2004; Laursen et al., 2015).

The activities of all biomolecules, including RNA, DNA, proteins, and lipids, change with temperature. Thus, the sense of fluctuating external temperature is crucial for the survival of animals, and TRPA1, a member of temperature-sensitive ion channels, is deeply involved in the evolutionary adaptation of different species. However, since the discovery of the TRPA1 ion channel, its temperature sensitivity has always been fascinating and confusing. The temperature-sensing properties of TRPA1 are strongly enormously and species-specific (Laursen et al., 2015; Sinica and Vlachova, 2021) (see Table 1). Therefore, this review briefly demonstrates and describes the temperature-sensitive properties and thermal sensing roles of TRPA1 in different species.

Table 1.

Temperature sensitivity data for TRPA1 orthologues from different animal species.

Species Heat/cold Threshold (°C) Expression system References
Human (Homo sapiens) cold sensitive ≤17 DRG neurons Story et al. (2003)
cold sensitive About 17-20 HEK 293 Moparthi et al. (2014)
cold sensitive About 16-18 Oocytes Bandell et al. (2004)
heat sensitive N.D. HEK293 Hynkova et al. (2016)
bidirectional N.D. HEK293; F11 neuroblastoma cells Sinica et al. (2019)
bidirectional N.D. (heat); N.D. (cold) Planar lipid bilayers; HEK293 Moparthi et al. (2016)
cold insensitive HEK293 Chen et al. (2013)
cold insensitive HEK293 Miyake et al. (2016)
Rhesus monkey (Macaca mulatta) cold insensitive HEK293 Chen et al. (2013)
Mouse (Mus musculus) cold sensitive 17.5 ± 3.5(CHO) CHO; HEK293; Oocytes Story et al. (2003)
cold sensitive N.D. CHO; HEK293 Jabba et al. (2014)
cold sensitive About 16 Oocytes Viswanath et al. (2003)
cold sensitive About 15–16 (Oocytes) CHO; Oocytes Bandell et al. (2004)
cold sensitive 16(CHO); 18.9 ± 0.4(TG neurons) CHO; TG neurons Karashima et al. (2009)
cold sensitive <15.5 ± 0.52(DRG neurons); 17.2 ± 1.2 (HEK293, whole-cell); 16.5 ± 2.7 (HEK293, inside-out) HEK293; DRG neurons Sawada et al. (2007)
cold sensitive 16 HEK293 Chen et al. (2013)
cold sensitive N.D. HEK293; DRG neurons Miyake et al. (2016)
cold sensitive About 17-20 CHO Startek and Talavera (2020)
bidirectional N.D. HEK293; F11 neuroblastoma cells Sinica et al. (2019)
cold insensitive HEK293 Nagata et al. (2005)
Rat (rattus norvegicus) cold sensitive 21.9 ± 1.2 Nodose ganglion neurons Fajardo et al. (2008)
cold sensitive About 18 HEK293 Chen et al. (2013)
cold sensitive N.D. CHO de Oliveira et al. (2014)
cold sensitive N.D. HEK293 21068322 (del Camino et al., 2010)
cold insensitive DRG neurons Babes et al. (2004)
cold insensitive DRG neurons del Camino et al. (2010)
Thirteen-lined ground squirrel (Citellus tridecemlineatus) cold insensitive Oocytes Matos-Cruz et al. (2017)
Chicken (Gallus gallus) heat sensitive 39.4 ± 1.1(Oocytes) Oocytes; HEK293; DRG neurons Saito et al. (2014)
Rattlesnake heat sensitive 26.3/23.3 Oocytes Kang (2016)
Rattlesnake (Crotalus atrox) heat sensitive 27.6 ± 0.9(HEK293) HEK293; Oocytes; TG neurons Gracheva et al. (2010)
heat sensitive N.D. Oocytes Cordero-Morales et al. (2011)
heat sensitive N.D. Oocytes Du and Kang (2020)
Boas (Boa constrictor) heat sensitive N.D. Oocytes; TG neurons Du and Kang (2020)
heat sensitive 29.6 ± 0.7(Oocytes) HEK293; Oocytes; TG neurons Gracheva et al. (2010)
Python (Python bivittatus) heat sensitive 32.7 ± 1.3(Oocytes) Oocytes; TG neurons Gracheva et al. (2010)
Rat snake (Elaphe obsolete lindheimerii) heat sensitive 37.2 ± 0.7(Oocytes) HEK293; oocytes; TG neurons Gracheva et al. (2010)
Chinese three-keeled pond turtle (Mauremys reevesii) heat sensitive 28.0 ± 0.2(SF9 cells) SF9 cells; DRG neurons Ye et al. (2021)
Anolis lizards (Anolis allogus) heat sensitive 33.5 ± 0.69 Oocytes Akashi et al. (2018)
Anolis lizards (Anolis homolechis) heat sensitive 36.4 ± 0.79 Oocytes Akashi et al. (2018)
Anolis lizards (Anolis sagrei) heat sensitive 36.1 ± 0.78 Oocytes Akashi et al. (2018)
Green anole lizards (Anolis carolinensis) heat sensitive 35.8 HEK293 Kurganov et al. (2014)
heat sensitive 33.9 ± 0.8(Oocytes) Oocytes; HEK293; DRG neurons Saito et al. (2012)
African clawed frog (Xenopus laevis) heat sensitive TRPA1a: 37.8 ± 0.6; TRPA1b: 36.4(Oocytes) Oocytes; HeLa cells Saito et al. (2016)
Western clawed frog (Xenopus tropicalis) heat sensitive 39.7 ± 0.7(Oocytes) Oocytes, HEK293; DRG neurons Saito et al. (2012)
heat sensitive 39.9 ± 0.5 Oocytes Saito et al. (2016)
Zebrafish (Danio rerio) bidirectional (zTRPA1b); heat insensitive(zTRPA1a) cold: < 10; heat: > 25 Oocytes Oda et al. (2016)
Medaka (Oryzias latipes) heat sensitive unclear Oocytes Oda et al. (2017)
Pufferfish (Takifugu rubripes) bidirectional >25(heat); 7.9 ± 0.5 (cold) Oocytes Oda et al. (2018)
Honey bee (Apis mellifera) heat sensitive 33.9 ± 0.6 HEK293 Kohno et al. (2010)
Mosquito (Anopheles gambiae) heat sensitive N.D. Oocytes Wang et al. (2009)
heat sensitive 28.5 ± 0.7 HEK293 Li et al. (2019)
heat sensitive N.D. Oocytes Hamada et al. (2008)
Mosquito (Aedes aegypti) heat sensitive 32 ± 0.8 HEK293 Nguyen et al. (2022)
Mosquito (Culex pipiens pallens) heat sensitive 21.8 ± 0.7 HEK293 Nguyen et al. (2022)
Mosquito (Aedes aegypti) heat sensitive 32 ± 0.8 HEK293 Li et al. (2019)
Mosquito (Culex pipiens pallens) heat sensitive 21.8 ± 0.7 HEK293 Li et al. (2019)
Mosquito (Anopheles stephensi) heat sensitive 30.3 ± 0.9 HEK293 Li et al. (2019)
Fruitfly (Drosophila) heat sensitive N.D. Drosophila S2 Cells Wang et al. (2013)
heat sensitive 30(dTRPA1-A); 30(dTRPA1-B); 34(dTRPA1-C); 31(dTRPA1-D) Drosophila S2 Cells Gu et al. (2019)
heat sensitive N.D. (dTRPA1-A); N.D. (dTRPA1-D) Oocytes Luo et al. (2017)
Fruitfly (Drosophila melanogaster) heat sensitive 29.7 ± 0.3(dTRPA1-A); 27.8 ± 0.4(dTRPA1-B) Oocytes Kang et al. (2011)
heat sensitive 24-29(Oocytes); 27(CHO) Oocytes; CHO Viswanath et al. (2003)
heat sensitive N.D. Oocytes Hamada et al. (2008)
heat sensitive 33.7 ± 1.0 Oocytes Gracheva et al. (2010)
Starfish (Patiria pectinifera) heat sensitive 34.8 ± 0.5 Oocytes Saito et al. (2017)
Mites (Tropilaelaps mercedesae) heat sensitive N.D. HEK293 Peng et al. (2016)
Mites (Varroa destructor) heat sensitive N.D. HEK293 Peng et al. (2016)
Nematode worm Caenorhabditis elegans cold sensitive N.D. PVD neurons; FLP neurons; HEK293 Chatzigeorgiou et al. (2010)
cold sensitive N.D. Intestine cell Xiao et al. (2013)

N.D., Not Defined.

2. Thermosensation of TRPA1 in mammals

2.1. Temperature sensitivity of mammalian TRPA1

In the initial report, Patapoutian's group found that noxious cold temperatures of approximately 17 °C could activate mouse TRPA1 (Story et al., 2003). Later research, however, ignited a contentious argument about the TRPA1 as a cold-activated channel. Following the first publication of TRPA1 as a cold-sensitive channel, several studies demonstrated that human (Jordt et al., 2004; Chen et al., 2013), mice (Nagata et al., 2005), rhesus monkey (Chen et al., 2013), squirrel (Matos-Cruz et al., 2017) TRPA1 orthologues expressed in HEK293 or Xenopus oocytes heterologous systems were not activated by cold. A study identified an alternative splice variant of the mouse Trpa1 gene, TRPA1b, which can increase the expression of TRPA1a (full-length). However, they found that neither TRPA1a, TRPA1b alone nor TRPA1a + TRPA1b co-expressed was activated by cold stimulation down to 10 °C in the absence or presence of intracellular calcium (Zhou et al., 2013).

In addition to the controversy around whether or not heterologously expressed TRPA1 could be activated by cold, there is currently no definitive data regarding the cold sensitivity of TRPA1 in cultured or acutely isolated neuronal cells. Acute noxious cold (10 °C) does not activate rat DRG neurons (del Camino et al., 2010). Not only the ratio of cold-sensitive neurons in the trigeminal ganglion (TG) of TRPA1 knockout mice was not significantly changed compared to WT (wild type) mice (Bautista et al., 2006; Knowlton et al., 2010), but also TRPM8 (transient receptor potential melastatin 8, a cold sensor (Bautista et al., 2007) knockout mice were unchanged compared to TRPM8−/−/TRPA1−/− double knockout mice (Knowlton et al., 2010).

Following these negative results, several published studies support the initial conclusion that TRPA1 acts as a cold-sensitive channel. These studies included heterologous expression of mouse and human TRPA1 and TRPA1-positive neurons from mice and rats (Moparthi et al., 2014; Karashima et al., 2009; Fajardo et al., 2008; Sawada et al., 2007; Bandell et al., 2004).

Over the past 20 years, numerous reports have shown that mammalian TRPA1 is a cold-activated channel. With the decrease in temperature, the single channel conductance of TRPA1 decreased, while open probability (Po) increased significantly (Sawada et al., 2007; Karashima et al., 2009). Ca2+ increased the cold activation activity of TRPA1 channels even though cold-activated TRPA1 was not dependent on intracellular Ca2+ release (Karashima et al., 2009). Moreover, the cold activation gating thermodynamics of TRPA1, such as entropy and enthalpy changes, were negative, consistent with the known cold activation channel TRPM8 (Karashima et al., 2009). We hypothesize that the degree of increase in channel Po and decrease in single-channel conductance during cooling may play a role in determining whether macroscopic currents can be detected with TRPA1 cold activation. According to a study, human TRPA1 shares the same cold sensitivity as TRPM8 in terms of its intrinsic features (Moparthi et al., 2014; Zakharian et al., 2010). Human TRPA1 that had been purified and placed into planar lipid bilayers demonstrated cold sensitivity independent of the N-terminal ARs (Moparthi et al., 2014).

Despite experimental evidence from several types of research does not support that TRPA1 is the molecular basis of cold sensitivity in DRG and TG neurons (Jordt et al., 2004; Babes et al., 2004; Bautista et al., 2006; Knowlton et al., 2010). However, some studies have detected cold activation of TRPA1 expressed neurons not only in the TG and DRG but also in other neurons in response to cold temperature (Karashima et al., 2009; Sawada et al., 2007; Fajardo et al., 2008). A study demonstrated that mTRPA1 and TRPA1-expressing TG neurons might be triggered by cold, albeit the rate of cold activation was slow; hence, they hypothesized that this could partially explain why some studies failed to identify cold responses in TRPA1-positive neurons (Jordt et al., 2004; Bautista et al., 2006).

The pharmacological (TRPA1 antagonists) and genetic (TRPA1 knock-out mice) evidence suggests that TRPA1 is the essential molecular basis of cold sensing in mice vagal sensory neurons (Fajardo et al., 2008). Nodose ganglion neurons' cold-evoked responses are blocked by TRPA1 antagonists and reduced in TRPA1 knock-out mice (Fajardo et al., 2008).

2.2. Temperature detection by TRPA1

2.2.1. Cold sensation

TRPA1 is thought to have important roles in pain, chemoreception, and inflammation, but its role in cold sensation remains debated. For mammalian cold receptors, TRPM8 is recognized to play an important role in cold/cool sensation (McKemy et al., 2002; Peier et al., 2002; Madrid et al., 2006; Bautista et al., 2007; Dhaka et al., 2007), and TRPM8 knockout mice exhibit severely diminished neuronal and behavior were clearly shown to be severely attenuated by cold sensation (Bautista et al., 2007; Dhaka et al., 2007). Unfortunately, TRPA1 knockout mice failed to resolve the controversy of whether TRPA1 is a cold receptor or not.

Whether cold sensation is altered in TRPA1 knockout mice has emerged as an opposite conclusion in different studies. Two early research published in the same year yielded opposite results on whether TRPA1 is involved in mammalian cold sensation (Bautista et al., 2006; Du and Kang, 2020).

TRPA1-deficient mice show normal cold sensitivity, suggesting that the channel is not required for acute noxious cold sensing (Bautista et al., 2006; Knowlton et al., 2010). Evidence suggests that a fraction of cold-sensitive neurons does not rely on TRPA1 to produce cold responses (Jordt et al., 2004; Bautista et al., 2006; Knowlton et al., 2010).

Interestingly, previous findings indicated that a robust cold sensitivity emerges in the early stages of animal development well before the emergence of TRPA1 and TRPM8, indicating the possibility of alternative cold transduction pathways in early development (Hjerling-Leffler et al., 2007). Accordingly, a study conducted employing a pharmacological TRPA1 antagonist and knockout mice showed that TRPA1 receptors have no effect on the deep body and skin temperature, indicating that they are not involved in autonomic thermoregulatory responses (de Oliveira et al., 2014). As a result, TRPA1 as well as TRPM8 aren't the only exclusive ion channels that induce cold perception, and additional mechanisms.

However, several studies have shown that the proportion of cold-sensitive neurons in TRPA1-deficient mice is reduced (Sawada et al., 2007; Karashima et al., 2009; Fajardo et al., 2008). Moreover, subsequent investigations demonstrate that subcutaneous injection of TRPA1 agonists induces cold hypersensitivity in WT mice, but not in TRPA1 knockout mice, indicating that TRPA1 is implicated in cold-induced nociceptive behavior in mice under pathological settings (Andersson et al., 2009; del Camino et al., 2010; Andersson et al., 2012; Gentry et al., 2010). A study observed significant differences between TRPM8−/−/TRPA1−/− double knockout mice and TRPM8-deficient mice by analyzing the cold avoidance behavior of mice in the thermal ring track assay (30 and 5 °C) (Winter et al., 2017).

Similarly, there were no significant differences in the latency of the first behavioral response to cold in WT and TRPA1−/− two genotype mice after placement on a cold plate at 0 °C (Bautista et al., 2006; Karashima et al., 2009). But TRPA1−/− mice in the cold plate test showed a significantly lower total number of jumps and a considerably longer latency for the first jump compared to WT mice (Karashima et al., 2009). In addition, TRPA1−/− mice showed significantly longer tail-flick latency in the cold tail-flick test (Karashima et al., 2009). This suggests that some of the conflicting research results may be due to inconsistent experimental design or analytical approaches. In conclusion, the role of TRPA1 in sensing noxious cold temperatures has not been established and it is not yet possible to answer whether TRPA1 is a cold receptor in vivo.

Although there are still conflicting opinions on whether TRPA1 is a cold sensor in mammals, TRPA1 contributes to cold hypersensitivity is supported by many studies (del Camino et al., 2010; Ji et al., 2008; da Costa et al., 2010; Gentry et al., 2010; Yamamoto et al., 2015).

2.2.2. Heat sensation

In addition to reports of cold perception in mammals, it has been shown that TRPA1 also plays a vital role in noxious heat stimuli. A previous study seems to support that TRPA1 mediates a critical physiological role in noxious heat sensing in rodents (Hoffmann et al., 2013). A recent study demonstrates that TRPA1 is tightly linked to heat perception and that there is redundancy in noxious heat transduction in mice. They found extensive co-expression of transient receptor potential vanilloid 1 (TRPV1), transient receptor potential melastatin-3 (TRPM3), and TRPA1 in wild-type heat-sensitive TG neurons; when they combined elimination of TRPA1, TRPV1, and TRPM3 they obtained heat-insensitive mice, and TRPV1−/−/TRPM3−/−/TRPA1−/− triple knockout (TKO) showed a complete loss of perception of acute noxious heat stimuli; whereas mTRPA1 expressed in CHO cells treated with hydrogen peroxide was able to detect heat-activated currents, while hydrogen peroxide treatment did make TRPA1 more sensitive to heat, allowing heat to excite TRPA1-expressing neurons (Vandewauw et al., 2018). This is in line with previous studies showing that the heat sensitivity of mTRPA1 depends on the channel or cellular redox state (Moparthi et al., 2016). However, the physiological mechanism of how TRPA1 is oxidized in vivo to contribute to heat sensing remains unknown.

3. Thermosensation of TRPA1 in non-mammals

TRPA1 temperature sensitivity has been documented more frequently in organisms other than mammals, and there are species-specific variations in TRPA1 temperature sensitivity. In addition to shared chemosensitivity, TRPA1 is also used as a sensor of warm or noxious temperatures in other animals (Talavera et al., 2020; Hoffstaetter et al., 2018; Saito and Tominaga, 2017). Different species use TRPA1 to perform different physiological functions by adapting its temperature-sensing properties, for example, some snakes use TRPA1 for infrared radiation detection (Gracheva et al., 2010), worms, flies, and clawed frogs use TRPA1 as a cold or heat sensor to detect noxious temperature (Chatzigeorgiou et al., 2010; Tracey et al., 2003; Saito et al., 2012), and turtle embryos use TRPA1 to sense warm temperature for behavioral thermoregulation and to maintain their optimal body temperature (Ye et al., 2021).

3.1. TRPA1 acts as a thermosensor in invertebrates

A result obtained on Caenorhabditis elegans suggests that cold sensitivity of TRPA1 appears to be conserved in worms and mice, TRPA1 is responsible for cold sensation in C. elegans posterior ventral dorsal (PVD) neurons and intestinal cells (Chatzigeorgiou et al., 2010; Xiao et al., 2013). Expressing C. elegans and mouse TRPA1 cDNA in PVD neurons rescues the cold-insensitive phenotype of trpa1 deletion mutants (Chatzigeorgiou et al., 2010). Similarly, wild-type TRPA1 expression in the intestine is sufficient to rescue the cold response defect in trpa1 mutant worm intestinal cells (Xiao et al., 2013). Furthermore, heterologous expression of TRPA1 in C. elegans FLP neurons and CHO cells confers cold sensitivity to both (Chatzigeorgiou et al., 2010).

Unlike C. elegans TRPA1 is cold-sensitive, planarian worm, mites, flies, mosquitoes and honeybees TRPA1 orthologues are heat-activated (Arenas et al., 2017; Tracey et al., 2003; Gu et al., 2019; Kohno et al., 2010). Tropilaelaps mercedesae (TmTRPA1) and Varroa destructor (VdTRPA1) showed conserved chemosensitivity, while all isoforms of TmTRPA1 and VdTRPA1L isoform were potential heat sensors (Dong et al., 2016; Peng et al., 2016). Drosophila melanogaster TRPA1 (dTRPA1) acts as a temperature-sensitive channel involved in a variety of temperature-related behaviors like thermosensation (Zhong et al., 2012; Kwon et al., 2008; Kang et al., 2011), temperature-dependent rhythmic activity (Das et al., 2016; Roessingh and Stanewsky, 2017) and thermotaxis (Rosenzweig et al., 2005; Hamada et al., 2008; Kwon et al., 2008) in Drosophila.

The dTRPA1 channel has five isoforms (dTRPA1-A, B, C, D and E), which are used to detect electrophilic compounds and temperatures (Gu et al., 2019; Zhong et al., 2012; Kang et al., 2010, 2011; Hamada et al., 2008). All dTRPA1 isoforms were activated by heat except for dTRPA1-E, dTRPA1-C mediates ultraviolet and electrophilic reagent detection, while dTRPA1-D (temperature coefficients, Q10 around 50) is essential for the detection of noxious thermal stimuli (Gu et al., 2019).

Mosquitoes, like Drosophila, adapt the properties of their TRPA1 isoforms to meet their different needs (Kang et al., 2011). Different species of mosquitoes adapt to diverse thermal ecological niches by changing the TRPA1 temperature activation thresholds (Li et al., 2019; Nguyen et al., 2022). The thermal activation threshold (33.9 ± 0.6 °C, Q10 = 17.2) of honeybee (Apis mellifera) TRPA1 is well consistent with the thermal preference of honeybees (∼35 °C) and may help bees detect elevated brood nest temperatures and maintenance of normal brood nest temperatures (Kohno et al., 2010).

3.2. TRPA1 channels are involved in thermosensation in non-mammalian vertebrates

In addition to invertebrates, vertebrates achieve different temperature sensing functions by altering TRPA1 properties.

Similar to mammals, TRPA1 and TRPV1 are highly overlapping in the DRG neurons of chickens (Saito et al., 2014). However, the threshold of heat activation of chicken TRPA1 is 39.4 °C, slightly below body temperature (41–42 °C) (Saito et al., 2014), indicating that chicken TRPA1 may not be a noxious heat receptor and that its physiological role is unclear.

Several vertebrate families possess sensory organs dedicated to infrared radiation detection: vipers, pythons, boas, and vampire bats, while snakes use a similar molecular strategy to sense infrared radiation, evolutionarily selecting TRPA1 as a specific and highly sensitive thermosensor in pit organ (Gracheva et al., 2010). Boidae, Pythonidae, and Crotalinae have a special pit organ, a sensory system that detects infrared radiation innervated by nerve fibers of the TG (Gracheva et al., 2010). By comparing transcriptomic data of TG and DRG in pit-bearing snakes, researchers found that TRPA1 is highly enriched in TG innervating the pit bearing and exhibits strong thermal sensitivity; rattlesnakes, boas, and pythons, with buccal fossa had thermal activation thresholds of 27.6 °C (Q10 = 13.7), 29.6 °C, and 32.7 °C, respectively, while rat snake (Elaphe obsoleta lindheimeri) (non-pit) TRPA1 has a higher thermal activation threshold of 37.2 °C (Q10 = 8.8) (Gracheva et al., 2010).

Among the two TRPA1 paralogs in zebrafish, zebrafish TRPA1a is chemosensitive while zebrafish TRPA1b (Q10 = 8.2) is temperature-sensitive (Oda et al., 2016). zebrafish TRPA1b and pufferfish TRPA1 expressed in oocytes exhibit bimodal temperature properties, which were activated by both temperatures above 25 °C (but without a clear threshold) and below 10 °C (Oda et al., 2016, 2018). In contrast, TRPA1 in medaka (Oryzias latipes) cannot be activated by cold and is heat activated (Oda et al., 2017).

The thermal activation threshold of 39.7 °C (Q10 = 59.2) for western clawed frog (Xenopus tropicalis) TRPA1 matches the temperature preference of this species (Saito et al., 2012). Besides the thermal tolerance, the diversity of thermal sensations affects species' preferred temperature ecological niche. Xenopus laevis and X. tropicalis adapted to different temperature environments depending on the heat-induced activity and sensitivity of TRPA1 and heat desensitization or heat sensitization of TRPV1 channels (Saito et al., 2016). Further studies found that the activity of TRPA1 to heat showed a significant correlation with warm and cool adaptations in four clawed frog species. Xbo-TRPA1a (Xenopus borealis) and Xla-TRPA1a (X. laevis) exhibit higher heat-induced activity than Xmu-TRPA1a (Xenopus muelleri) and Xtr-TRPA1 (X. tropicalis), which is consistent with their thermal ecological niches, that X. borealis and X. laevis are adapted to cooler environments than X. muelleri and X. tropicalis (Saito et al., 2019). These findings suggest that changes in the heat-activated activity of TRPA1 rather than in sensitivity largely contribute to the evolutionary shift in heat perception during the thermal adaptation.

The thermal activation threshold of TRPA1 achieves the adaptation of lizards to different temperature environments. Anole lizards (Anolis allogus, Anolis homolechis, and Anolis sagrei), although distributed in the same location in Cuba, selected different thermal microhabitats separately (Cádiz et al., 2013; Ruibal, 1961). Further study demonstrated that sun-dwelling species, A. homoelchis and A. sagrei, were more tolerant to heat stimuli than shade-dwelling species, A. allogus. Consistent with this result, the heat-evoked threshold of TRPA1 was also higher in A. homoelchis and A. sagrei than in A. allogus (Akashi et al., 2018). This suggests that TRPA1 was involved in the selection of these lizard species' thermal microhabitats as a critical thermosensor.

TRPA1 functions as a thermosensor not just in adults but also in starfish larvae, silkworm larvae, fly larvae, and turtle embryos (Saito et al., 2017; Sato et al., 2014; Rosenzweig et al., 2005, 2008; Luo et al., 2017; Kwon et al., 2008; Ye et al., 2021). Studies using RNA interference and classical gene mutagenesis revealed that TRPA1 is essential for warming avoidance in Drosophila larvae (Rosenzweig et al., 2005, 2008). The heat activation threshold for Patiria pectinifera TRPA1 was 34.8 ± 0.5 °C and P. pectinifera TRPA1 was expressed in larvae and functioned as thermosensors for positive thermotaxis (Saito et al., 2017). In silkworms, embryonic Bombyx mori TRPA1 was activated above 21 °C (Q10 = 20.5) and was involved in diapause induction (Sato et al., 2014). By using pharmacological evidence, a recent study demonstrated that TRPA1 and TRPV1 form the molecular basis of embryonic behavioral thermoregulation in Mauremys reevesii embryos (Ye et al., 2021). Since behavioural thermoregulation is widespread in the embryos of reptiles and birds (Li et al., 2014), these species likely use a similar molecular basis of temperature sensing during (and even after) the hatching period.

4. Molecular basis of thermal activation of TRPA1

The theory of Clapham and Miller and the study of Chowdhury et al. suggested that according to the laws of thermodynamics, all temperature-sensitive channels should be cold- and heat-sensitive (Clapham and Miller, 2011; Chowdhury et al., 2014). Two studies reported that TRPA1 in mice and human has bimodal thermal properties and is activated by cold and heat (Moparthi et al., 2016; Sinica et al., 2019). Similarly, This U-shaped thermosensitivity of TRPA1 was also observed in zebrafish (Danio rerio) and pufferfish (Takifugu rubripes) (Oda et al., 2016, 2018).

Both the N-terminal and pore domains are important for the temperature sensitivity of temperature-sensitive transient receptor potential channels (thermo-TRPs) such as TRPA1, TRPV1, and TRPM8 (Wang et al., 2013; Cordero-Morales et al., 2011; Laursen et al., 2016; Yang et al., 2010, 2020; Lu et al., 2022). Interestingly, the N-terminal MHR1-3(melastatin homology regions 1 to 3) of TRPM8 confers its cold activation function (Lu et al., 2022), and the hydrophobicity of the pore region amino acids regulates the cold activation efficiency (Yang et al., 2020), while purified human TRPA1 lacking the N-terminal ARD (ankyrin repeat domain) (Δ1–688 hTRPA1) can still be cold activated (Moparthi et al., 2014). Replacement of the human TRPA1 ARD with the heat-sensitive rattlesnake TRPA1 or dTRPA1 ARD confers heat sensitivity to human TRPA1 (Cordero-Morales et al., 2011), while a recent study found that two single point mutations in the N-terminal ARD of mosquito TRPA1 altered its heat activation threshold (Nguyen et al., 2022), suggesting that the N terminal has a critical role in TRPA1 heat-sensitivity.

The directionality of TRPA1 temperature activation has also been linked to its N-terminal ARD and pore regions. In mouse TRPA1, three single point mutations (S250N, M258L and D261G) in ankyrin repeat six caused it to be heat-sensitive (Jabba et al., 2014), while in dTRPA1, a single amino acid mutation (R1073Q) in pore region changed its heat sensitivity to cold sensitivity (Wang et al., 2013). Using Clapham and Miller's theory (Clapham and Miller, 2011), it is possible that differences in amino acid residues in TRPA1 homologs result in a shift in the detectable minimum temperature of channel opening, causing TRPA1 temperature activation to appear to reverse its directionality (Laursen et al., 2015). This may explain the differences in TRPA1 temperature sensitivity across species.

The interaction network formed by the interaction between ARD and helix-turn-helix motifs allows ARD to transmit information to the pore (Paulsen et al., 2015). In temperature-sensitive channels, the hydrophobicity of amino acid residues is partially responsible for their temperature sensitivity (Yang et al., 2020; Sosa-Pagan et al., 2017). Thus, the studies on the hydrophobicity of amino acid residues near the pore region and N terminus of TRPA1 may enhance the understanding of the mechanism of TRPA1 temperature activation.

5. Brief overview of the physiological and pathological roles of TRPA1

Besides thermosensation, TRPA1 channels are widely involved in nociceptive, pathological, and inflammatory pain processes, such as mechanical and thermal hypersensitivity (Obata et al., 2005; Nassini et al., 2011; del Camino et al., 2010; Staff et al., 2017), cancer pain (Antoniazzi et al., 2019), chemical-induced pain (Kwan et al., 2006; Bandell et al., 2004), visceral pain (Yang et al., 2008; Kondo et al., 2009; Balemans et al., 2017), migraine (Benemei et al., 2014; Nassini et al., 2014). Meanwhile, a gain-of-function mutation (N855S) in human TRPA1 causes a rare channelopathy pain syndrome which is named familial episodic pain syndrome (FEPS) (Kremeyer et al., 2010). Moreover, several human TRPA1 gene polymorphisms have been linked to cramp-fasciculation syndrome (CFS), crisis pain in sickle cell disease, and childhood asthma (Nirenberg et al., 2018; Jhun et al., 2018; Gallo et al., 2017).

Besides nociceptive neurons, TRPA1 is widely expressed in immune cells and is associated with various pathophysiologies, including inflammation (Naert et al., 2021). TRPA1 in immune cells is associated with anaphylaxis (Matsuda et al., 2020), chronic itch in atopic dermatitis (Oh et al., 2013), arthritis (Horvath et al., 2016; Batai et al., 2019), atherosclerosis (Zhao et al., 2016; Wang et al., 2020), colitis (Bertin et al., 2017), cardiac hypertrophy and fibrosis (Wang et al., 2018), kidney injury (Ma et al., 2019; Wu et al., 2021; Ma and Wang, 2021), and inflammatory bowel disease (Cseko et al., 2019). TRPA1 also mediates vascular physiology and cardiovascular diseases including arrhythmia, heart failure, and myocardial fibrosis in addition to atherosclerosis (Gao et al., 2020). Activating the TRPA1 channel causes vasodilation, which regulates blood flow and blood pressure (Gao et al., 2020).

The variety of physiological and pathological processes such as urogenital function, itch, ischemia, cancer, gastrointestinal tract diseases, respiratory disease, obesity, diabetes, and pancreatitis involving TRPA1 makes this channel an important therapeutic target (Talavera et al., 2020). Both agonists and antagonists of TRPA1 are used in clinical and pre-clinical trials for various diseases (Talavera et al., 2020, Souza Monteiro de Araujo et al., 2020; Chen and Hackos, 2015; Heber and Fischer, 2019; Koivisto et al., 2018; Chen and Terrett, 2020).

6. Conclusions

In contrast to other thermo-TRPs, such as TRPV1 and TRPM8, which play similar roles in temperature sensing across species (Hoffstaetter et al., 2018), TRPA1 is a distinct temperature receptor in diverse invertebrates and vertebrates. The role of TRPA1 in temperature sensing varies by species (Laursen et al., 2015; Sinica and Vlachova, 2021). TRPA1 is a very intriguing channel with a high degree of functional plasticity involved in the evolution of temperature-environment adaptations in different animals to suit their physiological needs. TRPA1 has been reported in some species (e.g., zebrafish (Oda et al., 2016), pufferfish (Oda et al., 2018), human, and mouse (Sinica et al., 2019)) to be activated by heat and cold, and this bimodal thermal property gives it the potential to act as both heat and cold sensors.

In contrast to the well-defined temperature sensitivity of non-mammalian TRPA1, the temperature sensitivity of mammalian TRPA1 is highly ambiguous, and its temperature response is modified in vivo by several variables, including H2O2, reactive oxygen species, and Ca2+ (Vandewauw et al., 2018; Moparthi et al., 2016; Miyake et al., 2016, 2017; Karashima et al., 2009). In the meantime, the residues important for perceiving hypoxia and hyperoxia are preserved in mammals (Mori et al., 2017). These studies suggest that oxidative stress products created by noxious heat and cold stimuli may be a precondition for the temperature sensitivity of TRPA1 channels (Vandewauw et al., 2018). TRPA1 is more likely to be a downstream mediator than a primary sensor, even if it is implicated in mammalian temperature sensing. Therefore, further research is required into the function of TRPA1 in mammalian thermosensation.

Author contributions

All authors contributed in the preparation of this manuscript. H.Z. and R.L. contributed to preparing the draft version. C.W., K.Z., P.M.K., A.L. and L.T. critically reviewed and revised the manuscript. All authors read and approved the final version.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31930015), Ministry of Science and Technology of China (2018YFA0801403), Chinese Academy of Sciences (XDB31000000, KFJ-BRP-008-003 and K. C. Wong Education Foundation), Yunnan Provincial Science and Technology Department (202003AD150008 and 202002AA100007), Kunming Science and Technology Bureau (2023SCP001), Chongqing Municipal Education Commission (HZ2021020) and Kunming Bureau of Industry and Information Technology (2120784001315 and 2120784001310).

References

  1. Akashi H.D., Saito S., Cadiz Diaz A., Makino T., Tominaga M., Kawata M. Comparisons of behavioural and TRPA1 heat sensitivities in three sympatric Cuban Anolis lizards. Mol. Ecol. 2018;27:2234–2242. doi: 10.1111/mec.14572. [DOI] [PubMed] [Google Scholar]
  2. Andersson D.A., Gentry C., Bevan S. TRPA1 has a key role in the somatic pro-nociceptive actions of hydrogen sulfide. PLoS One. 2012;7 doi: 10.1371/journal.pone.0046917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Andersson D.A., Gentry C., Moss S., Bevan S. Clioquinol and pyrithione activate TRPA1 by increasing intracellular Zn2+ Proc. Natl. Acad. Sci. U. S. A. 2009;106:8374–8379. doi: 10.1073/pnas.0812675106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andrei S.R., Ghosh M., Sinharoy P., Dey S., Bratz I.N., Damron D.S. TRPA1 ion channel stimulation enhances cardiomyocyte contractile function via a CaMKII-dependent pathway. Channels. 2017;11:587–603. doi: 10.1080/19336950.2017.1365206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Antoniazzi C.T.D., Nassini R., Rigo F.K., Milioli A.M., Bellinaso F., Camponogara C., Silva C.R., de Almeida A.S., Rossato M.F., De Logu F., Oliveira S.M., Cunha T.M., Geppetti P., Ferreira J., Trevisan G. Transient receptor potential ankyrin 1 (TRPA1) plays a critical role in a mouse model of cancer pain. Int. J. Cancer. 2019;144:355–365. doi: 10.1002/ijc.31911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arenas O.M., Zaharieva E.E., Para A., Vasquez-Doorman C., Petersen C.P., Gallio M. Activation of planarian TRPA1 by reactive oxygen species reveals a conserved mechanism for animal nociception. Nat. Neurosci. 2017;20:1686–1693. doi: 10.1038/s41593-017-0005-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Babes A., Zorzon D., Reid G. Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur. J. Neurosci. 2004;20:2276–2282. doi: 10.1111/j.1460-9568.2004.03695.x. [DOI] [PubMed] [Google Scholar]
  8. Balemans D., Boeckxstaens G.E., Talavera K., Wouters M.M. Transient receptor potential ion channel function in sensory transduction and cellular signaling cascades underlying visceral hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;312:G635–G648. doi: 10.1152/ajpgi.00401.2016. [DOI] [PubMed] [Google Scholar]
  9. Bandell M., Story G.M., Hwang S.W., Viswanath V., Eid S.R., Petrus M.J., Earley T.J., Patapoutian A. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41:849–857. doi: 10.1016/s0896-6273(04)00150-3. [DOI] [PubMed] [Google Scholar]
  10. Batai I.Z., Sar C.P., Horvath A., Borbely E., Bolcskei K., Kemeny A., Sandor Z., Nemes B., Helyes Z., Perkecz A., Mocsai A., Pozsgai G., Pinter E. TRPA1 ion channel determines beneficial and detrimental effects of GYY4137 in murine serum-transfer arthritis. Front. Pharmacol. 2019;10:964. doi: 10.3389/fphar.2019.00964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bautista D.M., Jordt S.E., Nikai T., Tsuruda P.R., Read A.J., Poblete J., Yamoah E.N., Basbaum A.I., Julius D. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–1282. doi: 10.1016/j.cell.2006.02.023. [DOI] [PubMed] [Google Scholar]
  12. Bautista D.M., Siemens J., Glazer J.M., Tsuruda P.R., Basbaum A.I., Stucky C.L., Jordt S.E., Julius D. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature. 2007;448:204–208. doi: 10.1038/nature05910. [DOI] [PubMed] [Google Scholar]
  13. Benemei S., Fusi C., Trevisan G., Geppetti P. The TRPA1 channel in migraine mechanism and treatment. Br. J. Pharmacol. 2014;171:2552–2567. doi: 10.1111/bph.12512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bertin S., Aoki-Nonaka Y., Lee J., de Jong P.R., Kim P., Han T., Yu T., To K., Takahashi N., Boland B.S., Chang J.T., Ho S.B., Herdman S., Corr M., Franco A., Sharma S., Dong H., Akopian A.N., Raz E. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1. Gut. 2017;66:1584–1596. doi: 10.1136/gutjnl-2015-310710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bianchi B.R., Zhang X.F., Reilly R.M., Kym P.R., Yao B.B., Chen J. Species comparison and pharmacological characterization of human, monkey, rat, and mouse TRPA1 channels. J. Pharmacol. Exp. Therapeut. 2012;341:360–368. doi: 10.1124/jpet.111.189902. [DOI] [PubMed] [Google Scholar]
  16. Buch T.R., Schafer E.A., Demmel M.T., Boekhoff I., Thiermann H., Gudermann T., Steinritz D., Schmidt A. Functional expression of the transient receptor potential channel TRPA1, a sensor for toxic lung inhalants, in pulmonary epithelial cells. Chem. Biol. Interact. 2013;206:462–471. doi: 10.1016/j.cbi.2013.08.012. [DOI] [PubMed] [Google Scholar]
  17. Cádiz A., Nagata N., Katabuchi M., Díaz L.M., Echenique-Díaz L.M., Akashi H.D., Makino T., Kawata M. Relative importance of habitat use, range expansion, and speciation in local species diversity ofAnolislizards in Cuba. Ecosphere. 2013;4 [Google Scholar]
  18. Chatzigeorgiou M., Yoo S., Watson J.D., Lee W.H., Spencer W.C., Kindt K.S., Hwang S.W., Miller D.M., 3rd, Treinin M., Driscoll M., Schafer W.R. Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat. Neurosci. 2010;13:861–868. doi: 10.1038/nn.2581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chen H., Terrett J.A. Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019) Expert Opin. Ther. Pat. 2020;30:643–657. doi: 10.1080/13543776.2020.1797679. [DOI] [PubMed] [Google Scholar]
  20. Chen J., Hackos D.H. TRPA1 as a drug target--promise and challenges. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2015;388:451–463. doi: 10.1007/s00210-015-1088-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Chen J., Kang D., Xu J., Lake M., Hogan J.O., Sun C., Walter K., Yao B., Kim D. Species differences and molecular determinant of TRPA1 cold sensitivity. Nat. Commun. 2013;4:2501. doi: 10.1038/ncomms3501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Chen J., Kim D., Bianchi B.R., Cavanaugh E.J., Faltynek C.R., Kym P.R., Reilly R.M. Pore dilation occurs in TRPA1 but not in TRPM8 channels. Mol. Pain. 2009;5:3. doi: 10.1186/1744-8069-5-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Chowdhury S., Jarecki B.W., Chanda B. A molecular framework for temperature-dependent gating of ion channels. Cell. 2014;158:1148–1158. doi: 10.1016/j.cell.2014.07.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Clapham D.E., Miller C. A thermodynamic framework for understanding temperature sensing by transient receptor potential (TRP) channels. Proc. Natl. Acad. Sci. U. S. A. 2011;108:19492–19497. doi: 10.1073/pnas.1117485108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Clarke L.E., Attwell D. An astrocyte TRP switch for inhibition. Nat. Neurosci. 2011;15:3–4. doi: 10.1038/nn.3010. [DOI] [PubMed] [Google Scholar]
  26. Cordero-Morales J.F., Gracheva E.O., Julius D. Cytoplasmic ankyrin repeats of transient receptor potential A1 (TRPA1) dictate sensitivity to thermal and chemical stimuli. Proc. Natl. Acad. Sci. U. S. A. 2011;108:E1184–E1191. doi: 10.1073/pnas.1114124108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Cseko K., Beckers B., Keszthelyi D., Helyes Z. Role of TRPV1 and TRPA1 ion channels in inflammatory bowel diseases: potential therapeutic targets? Pharmaceuticals. 2019;12 doi: 10.3390/ph12020048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. da Costa D.S.M., Meotti F.C., Andrade E.L., Leal P.C., Motta E.M., Calixto J.B. The involvement of the transient receptor potential A1 (TRPA1) in the maintenance of mechanical and cold hyperalgesia in persistent inflammation. Pain. 2010;148:431–437. doi: 10.1016/j.pain.2009.12.002. [DOI] [PubMed] [Google Scholar]
  29. Das A., Holmes T.C., Sheeba V. dTRPA1 in non-circadian neurons modulates temperature-dependent rhythmic activity in Drosophila melanogaster. J. Biol. Rhythm. 2016;31:272–288. doi: 10.1177/0748730415627037. [DOI] [PubMed] [Google Scholar]
  30. de Oliveira C., Garami A., Lehto S.G., Pakai E., Tekus V., Pohoczky K., Youngblood B.D., Wang W., Kort M.E., Kym P.R., Pinter E., Gavva N.R., Romanovsky A.A. Transient receptor potential channel ankyrin-1 is not a cold sensor for autonomic thermoregulation in rodents. J. Neurosci. 2014;34:4445–4452. doi: 10.1523/JNEUROSCI.5387-13.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. del Camino D., Murphy S., Heiry M., Barrett L.B., Earley T.J., Cook C.A., Petrus M.J., Zhao M., D'Amours M., Deering N., Brenner G.J., Costigan M., Hayward N.J., Chong J.A., Fanger C.M., Woolf C.J., Patapoutian A., Moran M.M. TRPA1 contributes to cold hypersensitivity. J. Neurosci. 2010;30:15165–15174. doi: 10.1523/JNEUROSCI.2580-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Dhaka A., Murray A.N., Mathur J., Earley T.J., Petrus M.J., Patapoutian A. TRPM8 is required for cold sensation in mice. Neuron. 2007;54:371–378. doi: 10.1016/j.neuron.2007.02.024. [DOI] [PubMed] [Google Scholar]
  33. Dong X., Kashio M., Peng G., Wang X., Tominaga M., Kadowaki T. Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae. Open Biol. 2016;6 doi: 10.1098/rsob.160042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Du E.J., Kang K. A single natural variation determines cytosolic Ca(2+)-mediated hyperthermosensitivity of TRPA1s from rattlesnakes and boas. Mol. Cell. 2020;43:572–580. doi: 10.14348/molcells.2020.0036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Fajardo O., Meseguer V., Belmonte C., Viana F. TRPA1 channels mediate cold temperature sensing in mammalian vagal sensory neurons: pharmacological and genetic evidence. J. Neurosci. 2008;28:7863–7875. doi: 10.1523/JNEUROSCI.1696-08.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Gallo V., Dijk F.N., Holloway J.W., Ring S.M., Koppelman G.H., Postma D.S., Strachan D.P., Granell R., de Jongste J.C., Jaddoe V.W., den Dekker H.T., Duijts L., Henderson A.J., Shaheen S.O. TRPA1 gene polymorphisms and childhood asthma. Pediatr. Allergy Immunol. 2017;28:191–198. doi: 10.1111/pai.12673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gao S., Kaudimba K.K., Guo S., Zhang S., Liu T., Chen P., Wang R. Transient receptor potential ankyrin type-1 channels as a potential target for the treatment of cardiovascular diseases. Front. Physiol. 2020;11:836. doi: 10.3389/fphys.2020.00836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Gentry C., Stoakley N., Andersson D.A., Bevan S. The roles of iPLA2, TRPM8 and TRPA1 in chemically induced cold hypersensitivity. Mol. Pain. 2010;6:4. doi: 10.1186/1744-8069-6-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gracheva E.O., Ingolia N.T., Kelly Y.M., Cordero-Morales J.F., Hollopeter G., Chesler A.T., Sanchez E.E., Perez J.C., Weissman J.S., Julius D. Molecular basis of infrared detection by snakes. Nature. 2010;464:1006–1011. doi: 10.1038/nature08943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Gu P., Gong J., Shang Y., Wang F., Ruppell K.T., Ma Z., Sheehan A.E., Freeman M.R., Xiang Y. Polymodal nociception in Drosophila requires alternative splicing of TrpA1. Curr. Biol. 2019;29:3961–3973 e6. doi: 10.1016/j.cub.2019.09.070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Hamada F.N., Rosenzweig M., Kang K., Pulver S.R., Ghezzi A., Jegla T.J., Garrity P.A. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 2008;454:217–220. doi: 10.1038/nature07001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Heber S., Fischer M.J.M. Non-analgesic symptomatic or disease-modifying potential of TRPA1. Med. Sci. 2019;7 doi: 10.3390/medsci7100099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hjerling-Leffler J., Alqatari M., Ernfors P., Koltzenburg M. Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J. Neurosci. 2007;27:2435–2443. doi: 10.1523/JNEUROSCI.5614-06.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hoffmann T., Kistner K., Miermeister F., Winkelmann R., Wittmann J., Fischer M.J., Weidner C., Reeh P.W. TRPA1 and TRPV1 are differentially involved in heat nociception of mice. Eur. J. Pain. 2013;17:1472–1482. doi: 10.1002/j.1532-2149.2013.00331.x. [DOI] [PubMed] [Google Scholar]
  45. Hoffstaetter L.J., Bagriantsev S.N., Gracheva E.O. TRPs et al.: a molecular toolkit for thermosensory adaptations. Pflügers Archiv. 2018;470:745–759. doi: 10.1007/s00424-018-2120-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Horvath A., Tekus V., Boros M., Pozsgai G., Botz B., Borbely E., Szolcsanyi J., Pinter E., Helyes Z. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res. Ther. 2016;18:6. doi: 10.1186/s13075-015-0904-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Hynkova A., Marsakova L., Vaskova J., Vlachova V. N-terminal tetrapeptide T/SPLH motifs contribute to multimodal activation of human TRPA1 channel. Sci. Rep. 2016;6 doi: 10.1038/srep28700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Jabba S., Goyal R., Sosa-Pagan J.O., Moldenhauer H., Wu J., Kalmeta B., Bandell M., Latorre R., Patapoutian A., Grandl J. Directionality of temperature activation in mouse TRPA1 ion channel can be inverted by single-point mutations in ankyrin repeat six. Neuron. 2014;82:1017–1031. doi: 10.1016/j.neuron.2014.04.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Jaquemar D., Schenker T., Trueb B. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem. 1999;274:7325–7333. doi: 10.1074/jbc.274.11.7325. [DOI] [PubMed] [Google Scholar]
  50. Jhun E.H., Hu X., Sadhu N., Yao Y., He Y., Wilkie D.J., Molokie R.E., Wang Z.J. Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease. Pharmacogenomics. 2018;19:401–411. doi: 10.2217/pgs-2017-0198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ji G., Zhou S., Carlton S.M. Intact Adelta-fibers up-regulate transient receptor potential A1 and contribute to cold hypersensitivity in neuropathic rats. Neuroscience. 2008;154:1054–1066. doi: 10.1016/j.neuroscience.2008.04.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Jordt S.E., Bautista D.M., Chuang H.H., McKemy D.D., Zygmunt P.M., Hogestatt E.D., Meng I.D., Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260–265. doi: 10.1038/nature02282. [DOI] [PubMed] [Google Scholar]
  53. Kang K. Exceptionally high thermal sensitivity of rattlesnake TRPA1 correlates with peak current amplitude. Biochim. Biophys. Acta. 2016;1858:318–325. doi: 10.1016/j.bbamem.2015.12.011. [DOI] [PubMed] [Google Scholar]
  54. Kang K., Panzano V.C., Chang E.C., Ni L., Dainis A.M., Jenkins A.M., Regna K., Muskavitch M.A., Garrity P.A. Modulation of TRPA1 thermal sensitivity enables sensory discrimination in Drosophila. Nature. 2011;481:76–80. doi: 10.1038/nature10715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kang K., Pulver S.R., Panzano V.C., Chang E.C., Griffith L.C., Theobald D.L., Garrity P.A. Analysis of Drosophila TRPA1 reveals an ancient origin for human chemical nociception. Nature. 2010;464:597–600. doi: 10.1038/nature08848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Karashima Y., Damann N., Prenen J., Talavera K., Segal A., Voets T., Nilius B. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 2007;27:9874–9884. doi: 10.1523/JNEUROSCI.2221-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Karashima Y., Talavera K., Everaerts W., Janssens A., Kwan K.Y., Vennekens R., Nilius B., Voets T. TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 2009;106:1273–1278. doi: 10.1073/pnas.0808487106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Knowlton W.M., Bifolck-Fisher A., Bautista D.M., McKemy D.D. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain. 2010;150:340–350. doi: 10.1016/j.pain.2010.05.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kohno K., Sokabe T., Tominaga M., Kadowaki T. Honey bee thermal/chemical sensor, AmHsTRPA, reveals neofunctionalization and loss of transient receptor potential channel genes. J. Neurosci. 2010;30:12219–12229. doi: 10.1523/JNEUROSCI.2001-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Koivisto A., Jalava N., Bratty R., Pertovaara A. TRPA1 antagonists for pain relief. Pharmaceuticals. 2018;11 doi: 10.3390/ph11040117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kondo T., Obata K., Miyoshi K., Sakurai J., Tanaka J., Miwa H., Noguchi K. Transient receptor potential A1 mediates gastric distention-induced visceral pain in rats. Gut. 2009;58:1342–1352. doi: 10.1136/gut.2008.175901. [DOI] [PubMed] [Google Scholar]
  62. Kremeyer B., Lopera F., Cox J.J., Momin A., Rugiero F., Marsh S., Woods C.G., Jones N.G., Paterson K.J., Fricker F.R., Villegas A., Acosta N., Pineda-Trujillo N.G., Ramirez J.D., Zea J., Burley M.W., Bedoya G., Bennett D.L., Wood J.N., Ruiz-Linares A. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron. 2010;66:671–680. doi: 10.1016/j.neuron.2010.04.030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Kurganov E., Zhou Y., Saito S., Tominaga M. Heat and AITC activate green anole TRPA1 in a membrane-delimited manner. Pflügers Archiv. 2014;466:1873–1884. doi: 10.1007/s00424-013-1420-z. [DOI] [PubMed] [Google Scholar]
  64. Kwan K.Y., Allchorne A.J., Vollrath M.A., Christensen A.P., Zhang D.S., Woolf C.J., Corey D.P. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron. 2006;50:277–289. doi: 10.1016/j.neuron.2006.03.042. [DOI] [PubMed] [Google Scholar]
  65. Kwon Y., Shim H.S., Wang X., Montell C. Control of thermotactic behavior via coupling of a TRP channel to a phospholipase C signaling cascade. Nat. Neurosci. 2008;11:871–873. doi: 10.1038/nn.2170. [DOI] [PubMed] [Google Scholar]
  66. Laursen W.J., Anderson E.O., Hoffstaetter L.J., Bagriantsev S.N., Gracheva E.O. Species-specific temperature sensitivity of TRPA1. Temperature (Austin) 2015;2:214–226. doi: 10.1080/23328940.2014.1000702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Laursen W.J., Schneider E.R., Merriman D.K., Bagriantsev S.N., Gracheva E.O. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proc. Natl. Acad. Sci. U. S. A. 2016;113:11342–11347. doi: 10.1073/pnas.1604269113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Li T., Saito C.T., Hikitsuchi T., Inoguchi Y., Mitsuishi H., Saito S., Tominaga M. Diverse sensitivities of TRPA1 from different mosquito species to thermal and chemical stimuli. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-56639-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Li T., Zhao B., Zhou Y.K., Hu R., Du W.G. Thermoregulatory behavior is widespread in the embryos of reptiles and birds. Am. Nat. 2014;183:445–451. doi: 10.1086/675065. [DOI] [PubMed] [Google Scholar]
  70. Lu X., Yao Z., Wang Y., Yin C., Li J., Chai L., Dong W., Yuan L., Lai R., Yang S. The acquisition of cold sensitivity during TRPM8 ion channel evolution. Proc. Natl. Acad. Sci. U. S. A. 2022;119 doi: 10.1073/pnas.2201349119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Luo J., Shen W.L., Montell C. TRPA1 mediates sensation of the rate of temperature change in Drosophila larvae. Nat. Neurosci. 2017;20:34–41. doi: 10.1038/nn.4416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Ma S., Wang D.H. Knockout of Trpa1 exacerbates renal ischemia-reperfusion injury with classical activation of macrophages. Am. J. Hypertens. 2021;34:110–116. doi: 10.1093/ajh/hpaa162. [DOI] [PubMed] [Google Scholar]
  73. Ma S., Zhang Y., He K., Wang P., Wang D.H. Knockout of TRPA1 exacerbates angiotensin II-induced kidney injury. Am. J. Physiol. Ren. Physiol. 2019;317:F623–F631. doi: 10.1152/ajprenal.00069.2019. [DOI] [PubMed] [Google Scholar]
  74. Madrid R., Donovan-Rodriguez T., Meseguer V., Acosta M.C., Belmonte C., Viana F. Contribution of TRPM8 channels to cold transduction in primary sensory neurons and peripheral nerve terminals. J. Neurosci. 2006;26:12512–12525. doi: 10.1523/JNEUROSCI.3752-06.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Mahajan N., Khare P., Kondepudi K.K., Bishnoi M. TRPA1: pharmacology, natural activators and role in obesity prevention. Eur. J. Pharmacol. 2021;912 doi: 10.1016/j.ejphar.2021.174553. [DOI] [PubMed] [Google Scholar]
  76. Matos-Cruz V., Schneider E.R., Mastrotto M., Merriman D.K., Bagriantsev S.N., Gracheva E.O. Molecular prerequisites for diminished cold sensitivity in ground squirrels and hamsters. Cell Rep. 2017;21:3329–3337. doi: 10.1016/j.celrep.2017.11.083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Matsuda K., Arkwright P.D., Mori Y., Oikawa M.A., Muko R., Tanaka A., Matsuda H. A rapid shift from chronic hyperoxia to normoxia induces systemic anaphylaxis via transient receptor potential ankyrin 1 channels on mast cells. J. Immunol. 2020;205:2959–2967. doi: 10.4049/jimmunol.2000149. [DOI] [PubMed] [Google Scholar]
  78. McKemy D.D., Neuhausser W.M., Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416:52–58. doi: 10.1038/nature719. [DOI] [PubMed] [Google Scholar]
  79. Miyake T., Nakamura S., Meng Z., Hamano S., Inoue K., Numata T., Takahashi N., Nagayasu K., Shirakawa H., Mori Y., Nakagawa T., Kaneko S. Distinct mechanism of cysteine oxidation-dependent activation and cold sensitization of human transient receptor potential ankyrin 1 channel by high and low oxaliplatin. Front. Physiol. 2017;8:878. doi: 10.3389/fphys.2017.00878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Miyake T., Nakamura S., Zhao M., So K., Inoue K., Numata T., Takahashi N., Shirakawa H., Mori Y., Nakagawa T., Kaneko S. Cold sensitivity of TRPA1 is unveiled by the prolyl hydroxylation blockade-induced sensitization to ROS. Nat. Commun. 2016;7 doi: 10.1038/ncomms12840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Moparthi L., Kichko T.I., Eberhardt M., Hogestatt E.D., Kjellbom P., Johanson U., Reeh P.W., Leffler A., Filipovic M.R., Zygmunt P.M. Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Sci. Rep. 2016;6 doi: 10.1038/srep28763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Moparthi L., Survery S., Kreir M., Simonsen C., Kjellbom P., Hogestatt E.D., Johanson U., Zygmunt P.M. Human TRPA1 is intrinsically cold- and chemosensitive with and without its N-terminal ankyrin repeat domain. Proc. Natl. Acad. Sci. U. S. A. 2014;111:16901–16906. doi: 10.1073/pnas.1412689111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Mori Y., Takahashi N., Kurokawa T., Kiyonaka S. TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O2 sensing. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017;93:464–482. doi: 10.2183/pjab.93.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Mosavi L.K., Minor D.L., Jr., Peng Z.Y. Consensus-derived structural determinants of the ankyrin repeat motif. Proc. Natl. Acad. Sci. U. S. A. 2002;99:16029–16034. doi: 10.1073/pnas.252537899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Mukhopadhyay I., Kulkarni A., Khairatkar-Joshi N. Blocking TRPA1 in respiratory disorders: does it hold a promise? Pharmaceuticals. 2016;9 doi: 10.3390/ph9040070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Naert R., Lopez-Requena A., Talavera K. TRPA1 expression and pathophysiology in immune cells. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms222111460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Nagata K., Duggan A., Kumar G., Garcia-Anoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 2005;25:4052–4061. doi: 10.1523/JNEUROSCI.0013-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Nassini R., Gees M., Harrison S., De Siena G., Materazzi S., Moretto N., Failli P., Preti D., Marchetti N., Cavazzini A., Mancini F., Pedretti P., Nilius B., Patacchini R., Geppetti P. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain. 2011;152:1621–1631. doi: 10.1016/j.pain.2011.02.051. [DOI] [PubMed] [Google Scholar]
  89. Nassini R., Materazzi S., Benemei S., Geppetti P. The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev. Physiol. Biochem. Pharmacol. 2014;167:1–43. doi: 10.1007/112_2014_18. [DOI] [PubMed] [Google Scholar]
  90. Nativi C., Gualdani R., Dragoni E., Di Cesare Mannelli L., Sostegni S., Norcini M., Gabrielli G., la Marca G., Richichi B., Francesconi O., Moncelli M.R., Ghelardini C., Roelens S. A TRPA1 antagonist reverts oxaliplatin-induced neuropathic pain. Sci. Rep. 2013;3:2005. doi: 10.1038/srep02005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Nguyen T.H.D., Chapman S., Kashio M., Saito C., Strom T., Yasui M., Tominaga M. Single amino acids set apparent temperature thresholds for heat-evoked activation of mosquito transient receptor potential channel TRPA1. J. Biol. Chem. 2022 doi: 10.1016/j.jbc.2022.102271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Nirenberg M.J., Chaouni R., Biller T.M., Gilbert R.M., Paisan-Ruiz C. A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome. Clin. Genet. 2018;93:164–168. doi: 10.1111/cge.13040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Obata K., Katsura H., Mizushima T., Yamanaka H., Kobayashi K., Dai Y., Fukuoka T., Tokunaga A., Tominaga M., Noguchi K. TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J. Clin. Invest. 2005;115:2393–2401. doi: 10.1172/JCI25437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Oda M., Kubo Y., Saitoh O. Sensitivity of Takifugu TRPA1 to thermal stimulations analyzed in oocytes expression system. Neuroreport. 2018;29:280–285. doi: 10.1097/WNR.0000000000000939. [DOI] [PubMed] [Google Scholar]
  95. Oda M., Kurogi M., Kubo Y., Saitoh O. Sensitivities of two zebrafish TRPA1 paralogs to chemical and thermal stimuli analyzed in heterologous expression systems. Chem. Senses. 2016;41:261–272. doi: 10.1093/chemse/bjv091. [DOI] [PubMed] [Google Scholar]
  96. Oda M., Saito K., Hatta S., Kubo Y., Saitoh O. Chemical and thermal sensitivity of medaka TRPA1 analyzed in heterologous expression system. Biochem. Biophys. Res. Commun. 2017;494:194–201. doi: 10.1016/j.bbrc.2017.10.057. [DOI] [PubMed] [Google Scholar]
  97. Oh M.H., Oh S.Y., Lu J., Lou H., Myers A.C., Zhu Z., Zheng T. TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. J. Immunol. 2013;191:5371–5382. doi: 10.4049/jimmunol.1300300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Paulsen C.E., Armache J.P., Gao Y., Cheng Y., Julius D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature. 2015;520:511–517. doi: 10.1038/nature14367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Peier A.M., Moqrich A., Hergarden A.C., Reeve A.J., Andersson D.A., Story G.M., Earley T.J., Dragoni I., McIntyre P., Bevan S., Patapoutian A. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–715. doi: 10.1016/s0092-8674(02)00652-9. [DOI] [PubMed] [Google Scholar]
  100. Peng G., Kashio M., Li T., Dong X., Tominaga M., Kadowaki T. TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions. Front. Physiol. 2016;7:447. doi: 10.3389/fphys.2016.00447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  101. Roessingh S., Stanewsky R. The Drosophila TRPA1 channel and neuronal circuits controlling rhythmic behaviours and sleep in response to environmental temperature. Int. J. Mol. Sci. 2017;18 doi: 10.3390/ijms18102028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Rosenzweig M., Brennan K.M., Tayler T.D., Phelps P.O., Patapoutian A., Garrity P.A. The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis. Genes Dev. 2005;19:419–424. doi: 10.1101/gad.1278205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Rosenzweig M., Kang K., Garrity P.A. Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 2008;105:14668–14673. doi: 10.1073/pnas.0805041105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Ruibal R. Thermal relations of five species of tropical lizard. Evolution. 1961;15:98–111. [Google Scholar]
  105. Saito S., Banzawa N., Fukuta N., Saito C.T., Takahashi K., Imagawa T., Ohta T., Tominaga M. Heat and noxious chemical sensor, chicken TRPA1, as a target of bird repellents and identification of its structural determinants by multispecies functional comparison. Mol. Biol. Evol. 2014;31:708–722. doi: 10.1093/molbev/msu001. [DOI] [PubMed] [Google Scholar]
  106. Saito S., Hamanaka G., Kawai N., Furukawa R., Gojobori J., Tominaga M., Kaneko H., Satta Y. Characterization of TRPA channels in the starfish Patiria pectinifera: involvement of thermally activated TRPA1 in thermotaxis in marine planktonic larvae. Sci. Rep. 2017;7:2173. doi: 10.1038/s41598-017-02171-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Saito S., Nakatsuka K., Takahashi K., Fukuta N., Imagawa T., Ohta T., Tominaga M. Analysis of transient receptor potential ankyrin 1 (TRPA1) in frogs and lizards illuminates both nociceptive heat and chemical sensitivities and coexpression with TRP vanilloid 1 (TRPV1) in ancestral vertebrates. J. Biol. Chem. 2012;287:30743–30754. doi: 10.1074/jbc.M112.362194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Saito S., Ohkita M., Saito C.T., Takahashi K., Tominaga M., Ohta T. Evolution of heat sensors drove shifts in thermosensation between Xenopus species adapted to different thermal niches. J. Biol. Chem. 2016;291:11446–11459. doi: 10.1074/jbc.M115.702498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Saito S., Saito C.T., Nozawa M., Tominaga M. Elucidating the functional evolution of heat sensors among Xenopus species adapted to different thermal niches by ancestral sequence reconstruction. Mol. Ecol. 2019;28:3561–3571. doi: 10.1111/mec.15170. [DOI] [PubMed] [Google Scholar]
  110. Saito S., Tominaga M. Evolutionary tuning of TRPA1 and TRPV1 thermal and chemical sensitivity in vertebrates. Temperature (Austin) 2017;4:141–152. doi: 10.1080/23328940.2017.1315478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Sato A., Sokabe T., Kashio M., Yasukochi Y., Tominaga M., Shiomi K. Embryonic thermosensitive TRPA1 determines transgenerational diapause phenotype of the silkworm, Bombyx mori. Proc. Natl. Acad. Sci. U. S. A. 2014;111:E1249–E1255. doi: 10.1073/pnas.1322134111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Sawada Y., Hosokawa H., Hori A., Matsumura K., Kobayashi S. Cold sensitivity of recombinant TRPA1 channels. Brain Res. 2007;1160:39–46. doi: 10.1016/j.brainres.2007.05.047. [DOI] [PubMed] [Google Scholar]
  113. Sinica V., Vlachova V. Transient receptor potential ankyrin 1 channel: an evolutionarily tuned thermosensor. Physiol. Res. 2021;70:363–381. doi: 10.33549/physiolres.934697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  114. Sinica V., Zimova L., Barvikova K., Macikova L., Barvik I., Vlachova V. Human and mouse TRPA1 are heat and cold sensors differentially tuned by voltage. Cells. 2019;9 doi: 10.3390/cells9010057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  115. Sosa-Pagan J.O., Iversen E.S., Grandl J. TRPV1 temperature activation is specifically sensitive to strong decreases in amino acid hydrophobicity. Sci. Rep. 2017;7:549. doi: 10.1038/s41598-017-00636-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Souza Monteiro de Araujo D., Nassini R., Geppetti P., De Logu F. TRPA1 as a therapeutic target for nociceptive pain. Expert Opin. Ther. Targets. 2020;24:997–1008. doi: 10.1080/14728222.2020.1815191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Staff N.P., Grisold A., Grisold W., Windebank A.J. Chemotherapy-induced peripheral neuropathy: a current review. Ann. Neurol. 2017;81:772–781. doi: 10.1002/ana.24951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Startek J.B., Talavera K. Lipid raft destabilization impairs mouse TRPA1 responses to cold and bacterial lipopolysaccharides. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21113826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Story G.M., Peier A.M., Reeve A.J., Eid S.R., Mosbacher J., Hricik T.R., Earley T.J., Hergarden A.C., Andersson D.A., Hwang S.W., McIntyre P., Jegla T., Bevan S., Patapoutian A. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–829. doi: 10.1016/s0092-8674(03)00158-2. [DOI] [PubMed] [Google Scholar]
  120. Takahashi N., Kuwaki T., Kiyonaka S., Numata T., Kozai D., Mizuno Y., Yamamoto S., Naito S., Knevels E., Carmeliet P., Oga T., Kaneko S., Suga S., Nokami T., Yoshida J., Mori Y. TRPA1 underlies a sensing mechanism for O2. Nat. Chem. Biol. 2011;7:701–711. doi: 10.1038/nchembio.640. [DOI] [PubMed] [Google Scholar]
  121. Talavera K., Startek J.B., Alvarez-Collazo J., Boonen B., Alpizar Y.A., Sanchez A., Naert R., Nilius B. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol. Rev. 2020;100:725–803. doi: 10.1152/physrev.00005.2019. [DOI] [PubMed] [Google Scholar]
  122. Tracey W.D., Jr., Wilson R.I., Laurent G., Benzer S. painless, a Drosophila gene essential for nociception. Cell. 2003;113:261–273. doi: 10.1016/s0092-8674(03)00272-1. [DOI] [PubMed] [Google Scholar]
  123. Vandewauw I., De Clercq K., Mulier M., Held K., Pinto S., Van Ranst N., Segal A., Voet T., Vennekens R., Zimmermann K., Vriens J., Voets T. A TRP channel trio mediates acute noxious heat sensing. Nature. 2018;555:662–666. doi: 10.1038/nature26137. [DOI] [PubMed] [Google Scholar]
  124. Viswanath V., Story G.M., Peier A.M., Petrus M.J., Lee V.M., Hwang S.W., Patapoutian A., Jegla T. Opposite thermosensor in fruitfly and mouse. Nature. 2003;423:822–823. doi: 10.1038/423822a. [DOI] [PubMed] [Google Scholar]
  125. Wang G., Qiu Y.T., Lu T., Kwon H.W., Pitts R.J., Van Loon J.J., Takken W., Zwiebel L.J. Anopheles gambiae TRPA1 is a heat-activated channel expressed in thermosensitive sensilla of female antennae. Eur. J. Neurosci. 2009;30:967–974. doi: 10.1111/j.1460-9568.2009.06901.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Wang H., Schupp M., Zurborg S., Heppenstall P.A. Residues in the pore region of Drosophila transient receptor potential A1 dictate sensitivity to thermal stimuli. J Physiol. 2013;591:185–201. doi: 10.1113/jphysiol.2012.242842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Wang Q., Chen K., Zhang F., Peng K., Wang Z., Yang D., Yang Y. TRPA1 regulates macrophages phenotype plasticity and atherosclerosis progression. Atherosclerosis. 2020;301:44–53. doi: 10.1016/j.atherosclerosis.2020.04.004. [DOI] [PubMed] [Google Scholar]
  128. Wang Z., Xu Y., Wang M., Ye J., Liu J., Jiang H., Ye D., Wan J. TRPA1 inhibition ameliorates pressure overload-induced cardiac hypertrophy and fibrosis in mice. EBioMedicine. 2018;36:54–62. doi: 10.1016/j.ebiom.2018.08.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Wilson S.R., Nelson A.M., Batia L., Morita T., Estandian D., Owens D.M., Lumpkin E.A., Bautista D.M. The ion channel TRPA1 is required for chronic itch. J. Neurosci. 2013;33:9283–9294. doi: 10.1523/JNEUROSCI.5318-12.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Winter Z., Gruschwitz P., Eger S., Touska F., Zimmermann K. Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse. Front. Mol. Neurosci. 2017;10:209. doi: 10.3389/fnmol.2017.00209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Wu C.K., Wu C.L., Lee T.S., Kou Y.R., Tarng D.C. Renal tubular epithelial TRPA1 acts as an oxidative stress sensor to mediate ischemia-reperfusion-induced kidney injury through MAPKs/NF-kappaB signaling. Int. J. Mol. Sci. 2021;22 doi: 10.3390/ijms22052309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Xiao R., Zhang B., Dong Y., Gong J., Xu T., Liu J., Xu X.Z. A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell. 2013;152:806–817. doi: 10.1016/j.cell.2013.01.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Yamamoto K., Chiba N., Chiba T., Kambe T., Abe K., Kawakami K., Utsunomiya I., Taguchi K. Transient receptor potential ankyrin 1 that is induced in dorsal root ganglion neurons contributes to acute cold hypersensitivity after oxaliplatin administration. Mol. Pain. 2015;11:69. doi: 10.1186/s12990-015-0072-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Yang F., Cui Y., Wang K., Zheng J. Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc. Natl. Acad. Sci. U. S. A. 2010;107:7083–7088. doi: 10.1073/pnas.1000357107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Yang J., Li Y., Zuo X., Zhen Y., Yu Y., Gao L. Transient receptor potential ankyrin-1 participates in visceral hyperalgesia following experimental colitis. Neurosci. Lett. 2008;440:237–241. doi: 10.1016/j.neulet.2008.05.093. [DOI] [PubMed] [Google Scholar]
  136. Yang S., Lu X., Wang Y., Xu L., Chen X., Yang F., Lai R. A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. Proc. Natl. Acad. Sci. U. S. A. 2020;117:8633–8638. doi: 10.1073/pnas.1922714117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Ye Y.Z., Zhang H., Li J., Lai R., Yang S., Du W.G. Molecular sensors for temperature detection during behavioral thermoregulation in turtle embryos. Curr. Biol. 2021;31:2995–3003 e4. doi: 10.1016/j.cub.2021.04.054. [DOI] [PubMed] [Google Scholar]
  138. Zakharian E., Cao C., Rohacs T. Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. J. Neurosci. 2010;30:12526–12534. doi: 10.1523/JNEUROSCI.3189-10.2010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Zhao J.F., Shyue S.K., Kou Y.R., Lu T.M., Lee T.S. Transient receptor potential ankyrin 1 channel involved in atherosclerosis and macrophage-foam cell formation. Int. J. Biol. Sci. 2016;12:812–823. doi: 10.7150/ijbs.15229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Zhong L., Bellemer A., Yan H., Ken H., Jessica R., Hwang R.Y., Pitt G.S., Tracey W.D. Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel. Cell Rep. 2012;1:43–55. doi: 10.1016/j.celrep.2011.11.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Zhou Y., Suzuki Y., Uchida K., Tominaga M. Identification of a splice variant of mouse TRPA1 that regulates TRPA1 activity. Nat. Commun. 2013;4:2399. doi: 10.1038/ncomms3399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Zygmunt P.M., Hogestatt E.D. Trpa1. Handb. Exp. Pharmacol. 2014;222:583–630. doi: 10.1007/978-3-642-54215-2_23. [DOI] [PubMed] [Google Scholar]

Articles from Cell Insight are provided here courtesy of Elsevier

RESOURCES