Skip to main content
British Journal of Industrial Medicine logoLink to British Journal of Industrial Medicine
. 1992 Jun;49(6):394–401. doi: 10.1136/oem.49.6.394

Renal and immunological effects of occupational exposure to inorganic mercury.

S Langworth 1, C G Elinder 1, K G Sundquist 1, O Vesterberg 1
PMCID: PMC1012120  PMID: 1606025

Abstract

Seven parameters of renal dysfunction (urinary excretion of albumin, orosomucoid, beta 2-microglobulin, N-acetyl-beta-glucosaminidase (NAG), and copper; serum creatinine concentration, and relative clearance of beta 2-microglobulin) were examined in a group of chloralkali workers exposed to mercury vapour (n = 89) and in an unexposed control group (n = 75). Serum concentrations of immunoglobulins (IgA, IgG, IgM) and auto-antibodies towards glomeruli and other tissues were also determined. The parameters examined were compared between the two groups and related to different exposure parameters. In the chloralkali group median blood mercury concentration (B-Hg) was 55 nmol/l, serum mercury (S-Hg) 45 nmol/l, and urine mercury concentration (U-Hg) 14.3 nmol/mmol creatinine (25.4 micrograms/g creatinine). Corresponding concentrations for the control group were 15 nmol/l, 4 nmol/l, and 1.1 nmol/mmol creatinine (1.9 micrograms/g creatinine) respectively. None of the parameters of renal dysfunction differed significantly between the two groups, but there was a tendency to increased excretion of NAG in the exposed group compared with the controls. Also, a statistically significant relation existed between U-Hg and U-NAG (p less than 0.001). Serum immunoglobulin concentrations did not differ between the groups, and serum titres of autoantibodies (including antiglomerular basement membrane and antilaminin antibodies) were low in both groups. Thus the results gave no evidence of glomerular damage or of a tubular reabsorption defect at the current relatively low exposures. The findings still indicate slight, dose related tubular cell damage in the mercury exposed group. There were no signs of a mercury induced effect on the immune system.

Full text

PDF
394

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKER C. G., BECKER E. L., MAHER J. F., SCHREINER G. E. Nephrotic syndrome after contact with mercury. A report of five cases, three after the use of ammoniated mercury ointment. Arch Intern Med. 1962 Aug;110:178–186. doi: 10.1001/archinte.1962.03620200038008. [DOI] [PubMed] [Google Scholar]
  2. Barnes J. L., McDowell E. M., McNeil J. S., Flamenbaum W., Trump B. F. Studies on the pathophysiology of acute renal failure. IV. Protective effect of dithiothreitol following administration of mercuric chloride in the rat. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;32(3):201–232. doi: 10.1007/BF02889029. [DOI] [PubMed] [Google Scholar]
  3. Barnes J. L., McDowell E. M., McNeil J. S., Flamenbaum W., Trump B. F. Studies on the pathophysiology of acute renal failure. V. Effect of chronic saline loading on the progression of proximal tubular injury and functional impairment following administration of mercuric chloride in the rat. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;32(3):233–260. [PubMed] [Google Scholar]
  4. Barregård L., Hultberg B., Schütz A., Sällsten G. Enzymuria in workers exposed to inorganic mercury. Int Arch Occup Environ Health. 1988;61(1-2):65–69. doi: 10.1007/BF00381609. [DOI] [PubMed] [Google Scholar]
  5. Bencko V., Wagner V., Wagnerová M., Ondrejcák V. Immunological profiles in workers occupationally exposed to inorganic mercury. J Hyg Epidemiol Microbiol Immunol. 1990;34(1):9–15. [PubMed] [Google Scholar]
  6. Bernard A. M., Roels H. R., Foidart J. M., Lauwerys R. L. Search for anti-laminin antibodies in the serum of workers exposed to cadmium, mercury vapour or lead. Int Arch Occup Environ Health. 1987;59(3):303–309. doi: 10.1007/BF00377742. [DOI] [PubMed] [Google Scholar]
  7. Bernard A. M., Vyskocil A. A., Mahieu P., Lauwerys R. R. Assessment of urinary retinol-binding protein as an index of proximal tubular injury. Clin Chem. 1987 Jun;33(6):775–779. [PubMed] [Google Scholar]
  8. Bernard A., Lauwerys R. Epidemiological application of early markers of nephrotoxicity. Toxicol Lett. 1989 Mar;46(1-3):293–306. doi: 10.1016/0378-4274(89)90137-9. [DOI] [PubMed] [Google Scholar]
  9. Buchet J. P., Roels H., Bernard A., Lauwerys R. Assessment of renal function of workers exposed to inorganic lead, calcium or mercury vapor. J Occup Med. 1980 Nov;22(11):741–750. [PubMed] [Google Scholar]
  10. Druet P., Bernard A., Hirsch F., Weening J. J., Gengoux P., Mahieu P., Birkeland S. Immunologically mediated glomerulonephritis induced by heavy metals. Arch Toxicol. 1982 Sep;50(3-4):187–194. doi: 10.1007/BF00310850. [DOI] [PubMed] [Google Scholar]
  11. Elinder C. G., Edling C., Lindberg E., Kågedal B., Vesterberg O. Assessment of renal function in workers previously exposed to cadmium. Br J Ind Med. 1985 Nov;42(11):754–760. doi: 10.1136/oem.42.11.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971 Sep;8(9):871–874. doi: 10.1016/0019-2791(71)90454-x. [DOI] [PubMed] [Google Scholar]
  13. Evrin P. E., Wibell L. The serum levels and urinary excretion of 2 -microglobulin in apparently healthy subjects. Scand J Clin Lab Invest. 1972 Feb;29(1):69–74. doi: 10.3109/00365517209081057. [DOI] [PubMed] [Google Scholar]
  14. Flynn F. V. Assessment of renal function: selected developments. Clin Biochem. 1990 Feb;23(1):49–54. doi: 10.1016/0009-9120(90)90435-w. [DOI] [PubMed] [Google Scholar]
  15. Foà V., Caimi L., Amante L., Antonini C., Gattinoni A., Tettamanti G., Lombardo A., Giuliani A. Patterns of some lysosomal enzymes in the plasma and of proteins in urine of workers exposed to inorganic mercury. Int Arch Occup Environ Health. 1976 Jun 3;37(2):115–124. doi: 10.1007/BF00378058. [DOI] [PubMed] [Google Scholar]
  16. Friberg L., Mottet N. K. Accumulation of methylmercury and inorganic mercury in the brain. Biol Trace Elem Res. 1989 Jul-Sep;21:201–206. doi: 10.1007/BF02917253. [DOI] [PubMed] [Google Scholar]
  17. Hanseus K., Hultberg B., Isaksson A., Sjöblad S. Plasma and urinary beta-hexosaminidase in juvenile diabetes mellitus. Acta Paediatr Scand. 1983 Jan;72(1):77–80. doi: 10.1111/j.1651-2227.1983.tb09667.x. [DOI] [PubMed] [Google Scholar]
  18. Himeno S., Watanabe C., Suzuki T. Urinary biochemical changes in workers exposed to mercury vapor. Ind Health. 1986;24(3):151–155. doi: 10.2486/indhealth.24.151. [DOI] [PubMed] [Google Scholar]
  19. Hultman P., Eneström S. Mercury induced B-cell activation and antinuclear antibodies in mice. J Clin Lab Immunol. 1989 Mar;28(3):143–150. [PubMed] [Google Scholar]
  20. Johnston I. D., Jones N. F., Scoble J. E., Yuen C. T., Price R. G. The diagnostic value of urinary enzyme measurements in hypertension. Clin Chim Acta. 1983 Oct 14;133(3):317–325. doi: 10.1016/0009-8981(83)90277-2. [DOI] [PubMed] [Google Scholar]
  21. KAZANTZIS G., SCHILLER K. F., ASSCHER A. W., DREW R. G. Albuminuria and the nephrotic syndrome following exposure to mercury and its compounds. Q J Med. 1962 Oct;31:403–418. [PubMed] [Google Scholar]
  22. Langworth S., Elinder C. G., Göthe C. J., Vesterberg O. Biological monitoring of environmental and occupational exposure to mercury. Int Arch Occup Environ Health. 1991;63(3):161–167. doi: 10.1007/BF00381563. [DOI] [PubMed] [Google Scholar]
  23. Lauwerys R., Bernard A., Roels H., Buchet J. P., Gennart J. P., Mahieu P., Foidart J. M. Anti-laminin antibodies in workers exposed to mercury vapour. Toxicol Lett. 1983 Jun;17(1-2):113–116. doi: 10.1016/0378-4274(83)90045-0. [DOI] [PubMed] [Google Scholar]
  24. Maruhn D. Rapid colorimetric assay of beta-galactosidase and N-acetyl-beta-glucosaminidase in human urine. Clin Chim Acta. 1976 Dec;73(3):453–461. doi: 10.1016/0009-8981(76)90147-9. [DOI] [PubMed] [Google Scholar]
  25. Meyer B. R., Fischbein A., Rosenman K., Lerman Y., Drayer D. E., Reidenberg M. M. Increased urinary enzyme excretion in workers exposed to nephrotoxic chemicals. Am J Med. 1984 Jun;76(6):989–998. doi: 10.1016/0002-9343(84)90847-7. [DOI] [PubMed] [Google Scholar]
  26. Morgan D. B. Assessment of renal tubular function and damage and their clinical significance. Ann Clin Biochem. 1982 Jul;19(Pt 4):307–313. doi: 10.1177/000456328201900422. [DOI] [PubMed] [Google Scholar]
  27. Nogawa K., Yamada Y., Honda R., Tsuritani I., Kobayashi E., Ishizaki M. Copper and zinc levels in serum and urine of cadmium-exposed people with special reference to renal tubular damage. Environ Res. 1984 Feb;33(1):29–38. doi: 10.1016/0013-9351(84)90005-7. [DOI] [PubMed] [Google Scholar]
  28. Ohmori K., Ikemi Y., Tozawa T., Koike S., Mori Y., Toda K. [Urinary excretion of cadmium, copper and zinc in workers exposed to cadmium]. Sangyo Igaku. 1985 Jan;27(1):16–23. doi: 10.1539/joh1959.27.16. [DOI] [PubMed] [Google Scholar]
  29. Piikivi L., Ruokonen A. Renal function and long-term low mercury vapor exposure. Arch Environ Health. 1989 May-Jun;44(3):146–149. doi: 10.1080/00039896.1989.9935878. [DOI] [PubMed] [Google Scholar]
  30. Prescott L. F. Assessment of nephrotoxicity. Br J Clin Pharmacol. 1982 Mar;13(3):303–311. doi: 10.1111/j.1365-2125.1982.tb01379.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Price R. G. Urinary enzymes, nephrotoxicity and renal disease. Toxicology. 1982;23(2-3):99–134. doi: 10.1016/0300-483x(82)90092-0. [DOI] [PubMed] [Google Scholar]
  32. Roels H., Gennart J. P., Lauwerys R., Buchet J. P., Malchaire J., Bernard A. Surveillance of workers exposed to mercury vapour:validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med. 1985;7(1):45–71. doi: 10.1002/ajim.4700070106. [DOI] [PubMed] [Google Scholar]
  33. Roels H., Lauwerys R., Buchet J. P., Bernard A., Barthels A., Oversteyns M., Gaussin J. Comparison of renal function and psychomotor performance in workers exposed to elemental mercury. Int Arch Occup Environ Health. 1982;50(1):77–93. doi: 10.1007/BF00432495. [DOI] [PubMed] [Google Scholar]
  34. Sapin C., Druet E., Druet P. Induction of anti-glomerular basement membrane antibodies in the Brown-Norway rat by mercuric chloride. Clin Exp Immunol. 1977 Apr;28(1):173–179. [PMC free article] [PubMed] [Google Scholar]
  35. Schaller K. H., Gonzales J., Thürauf J., Schiele R. Früherkennung von Nierenschäden bei beruflich gegenüber Blei, Quecksilber und Cadmium exponierten Personen. Zentralbl Bakteriol Mikrobiol Hyg B. 1980 Sep;171(4-5):320–335. [PubMed] [Google Scholar]
  36. Stonard M. D., Chater B. V., Duffield D. P., Nevitt A. L., O'Sullivan J. J., Steel G. T. An evaluation of renal function in workers occupationally exposed to mercury vapour. Int Arch Occup Environ Health. 1983;52(2):177–189. doi: 10.1007/BF00405421. [DOI] [PubMed] [Google Scholar]
  37. Strunge P. Nephrotic syndrome caused by a seed disinfectant. J Occup Med. 1970 May;12(5):178–179. doi: 10.1097/00043764-197005000-00007. [DOI] [PubMed] [Google Scholar]
  38. Vanderlinde R. E. Urinary enzyme measurements in the diagnosis of renal disorders. Ann Clin Lab Sci. 1981 May-Jun;11(3):189–201. [PubMed] [Google Scholar]
  39. Vesterberg O. Automatic method for quantitation of mercury in blood, plasma and urine. J Biochem Biophys Methods. 1991 Oct-Nov;23(3):227–235. doi: 10.1016/0165-022x(91)90015-o. [DOI] [PubMed] [Google Scholar]
  40. Vesterberg O. Quantification of albumin in urine by a new method: zone immuno-electrophoresis assay (ZIA). Clin Chim Acta. 1981 Jul 1;113(3):305–310. doi: 10.1016/0009-8981(81)90283-7. [DOI] [PubMed] [Google Scholar]
  41. WELLER T. H., COONS A. H. Fluorescent antibody studies with agents of varicella and herpes zoster propagated in vitro. Proc Soc Exp Biol Med. 1954 Aug-Sep;86(4):789–794. doi: 10.3181/00379727-86-21235. [DOI] [PubMed] [Google Scholar]
  42. Weening J. J., Grond J., van der Top D., Hoedemaeker P. J. Identification of the nuclear antigen involved in mercury-induced glomerulopathy in the rat. Invest Cell Pathol. 1980 Apr-Jun;3(2):129–134. [PubMed] [Google Scholar]
  43. Weiss P. H., Klein L. The quantitative relationship of urinary peptide hydroxyproline excretion to collagen degradation. J Clin Invest. 1969 Jan;48(1):1–10. doi: 10.1172/JCI105957. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Industrial Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES