Skip to main content
Journal of Clinical Otorhinolaryngology Head and Neck Surgery logoLink to Journal of Clinical Otorhinolaryngology Head and Neck Surgery
. 2020 Apr 5;34(4):376–380. [Article in Chinese] doi: 10.13201/j.issn.2096-7993.2020.04.023

2型固有淋巴细胞在变应性鼻炎中的研究现状

Current status of research on group 2 innate lymphocytes in allergic rhinitis

江 远航 1, 刘 月辉 1,*,Δ
PMCID: PMC10127764  PMID: 32842239

固有淋巴细胞(innate lymphoid cell,ILC)主要存在于黏膜屏障中,是固有免疫中的重要效应细胞,在淋巴样组织的形成和炎症重塑中起着重要作用。ILC是一个起源于共同的淋巴祖细胞,但缺乏抗原特异性受体的非T非B淋巴细胞的异质群体。过去根据它们产生的标记细胞因子和驱动其分化的转录因子来划分3个组:①自然杀伤(natural killer cell,NK)细胞和1型固有淋巴细胞(innate lymphoid cell,ILC1),依赖T-BET转录因子并产生IFN-γ; ②2型固有淋巴细胞(innate lymphoid cell,ILC2),依赖GATA-3和RORα转录因子并产生IL-5、IL-13等; ③天然细胞毒性受体(NCR)-ILC3、NCR+ILC3和淋巴组织诱导因子(lymphoid tissue-inducer cells,LTi)细胞,它们都依赖RORγt转录因子并产生IL-17和(或)IL-22。根据以往对ILC的研究,基于其发育和功能重新分为5个组:①NK细胞,专门释放含有穿孔素和颗粒酶的裂解溶酶体,因此被认为是细胞毒性CD8+T细胞的先天对应物,介导早期免疫应答; ②ILC1,响应于细胞内病原体如病毒和肿瘤; ③ILC2,响应于大的细胞外寄生虫和过敏原; ④ILC3,对抗细胞外微生物(如细菌和真菌); ⑤LTi细胞,在胚胎发育过程中对淋巴结的形成起着至关重要的作用1。其中ILC2与过敏性炎症联系最为密切,本文将对目前ILC2免疫学特性及在变应性鼻炎中的作用加以简述。

1. ILC2概述

2001年研究报道了一群非T非B细胞,这群细胞在IL-25刺激下分泌大量IL-5和IL-13,同时在体内实验中这群细胞在IL-25刺激下介导了肺、肠道等黏膜组织损伤和嗜酸粒细胞增多症,之后将这群细胞命名为非淋巴样辅助细胞2。2010年Moro等3、Neill等4和Price等5相继在小鼠中发现了天然辅助细胞、ν细胞和固有Ⅱ型辅助细胞,因而ILC2逐渐引起研究者的关注。Moro等3在肠道脂肪相关的淋巴群中发现表型Lin-c-Kit+Sca-1+细胞,它们在IL-33刺激或寄生虫感染时可分泌大量的IL-5和IL-13,从而引起杯状细胞增生。同年,Neill等4在小鼠肠系膜淋巴结中检测到一种非T细胞,在IL-25刺激下产生IL-13以对抗寄生虫感染。而Price等5也发现了一群相似的谱系阴性并能产生IL-13的细胞,广泛存在脾脏、肺脏、骨髓以及肠系膜淋巴结中。目前已将这3种细胞统称为ILC2。另外,CRTH2和CD161在人外周血ILC2中表达增高6。ILC2来源于骨髓中共同淋巴样祖细胞,其发育和分化受到多种转录因子的调控7,如GATA结合因子3(GATA-binding factor 3,GATA3)8,维甲酸相关孤核受体(retinoic acid receptor related orphan receptor α)9,独立生长因子1(growth factor independence 1)10和T细胞因子-1(T cell factor-1)11等。各个转录因子在调控ILC2发育中的相互作用尚不清楚。

2. ILC2的调控

2.1. 上皮细胞源性细胞因子

IL-33、IL-25和胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP)等气道上皮细胞源性细胞因子是激活ILC2激活所必需的。当气道接触变应原时,损伤的气道上皮会分泌IL-33、IL-25和TSLP等细胞因子,这些细胞因子可激活ILC2,活化后的ILC2可产生大量IL-4、IL-5和IL-13等Th2型炎症因子。有研究发现,在阻断小鼠中IL-33受体后IL-5、IL-13+ILC2数目明显减少,并且ILC2产生IL-13又可诱导IL-33的表达12。Mjösberg等6证实了人类外周血及胎儿肠道中ILC2在IL-33的作用下可以生成IL-13。在小鼠中,鼻内给予IL-25可单独诱导肺内ILC2介导的2型炎症13-14。IL-33通过刺激ILC2迅速扩增而在快速诱导气道收缩中起着关键作用,而IL-25诱导的反应则较慢且不那么有效13-14。TSLP由TOLL样受体(toll-like receptor,TLR)激动剂、过敏原所诱导,其在固有免疫和适应性免疫介导的2型炎症免疫应答中均发挥重要作用。在人类,TSLP刺激的ILC2能上调GATA3并产生2型细胞因子IL-4、IL-5和IL-13,但最近的一项研究表明,TSLP促进人ILC2的活性增强,但并不能诱导ILC2的增殖或细胞因子的产生,然而TSLP与IL-33联合使用对小鼠和人ILC2的增殖及产生Th2型细胞因子有协同作用15

2.2. 受体-配体相互作用

除了调节ILC2的可溶性因子外,已显示许多受体-配体相互作用介导ILC2活化。肿瘤坏死因子样配体1A(tumor necrosis factor-like ligand,TL1A)由内皮细胞和骨髓细胞表达,并结合由T细胞和ILC2表达的死亡域受体3(death domain-containing receptors,DR3)。体内和体外研究表明TL1A-DR3相互作用导致ILC2增殖和IL-5表达,并且在IL-7刺激下能增强该反应,但其程度远低于IL-33诱导的反应16-18。与小鼠模型一样,TL1A在人类中的效力低于IL-33和IL-25,但与2种因子协同作用能驱动最佳的ILC2反应。在过敏性小鼠的肺中,发现ILC2表达诱导T细胞共刺激分子(inducible T cell costimulator,ICOS)以及其配体ICOS-L,并且观察到ICOS与ICOS-L的相互作用通过STAT5信号传导促进ILC2的细胞因子产生、增殖和存活19。相反,杀伤细胞凝集素样受体G1(kill cell lectin-linke receport G1,KLRG1)表达及其与E-钙黏蛋白的结合抑制人ILC2功能20

2.3. 脂质递质

半胱氨酰白三烯(cysteinyl leukotrienes,CysLTs)是由花生四烯酸合成的脂质递质,在促进2型气道炎症中具有良好的作用。白三烯D4(leukotriene D4,LTD4)对ILC2表达的半胱氨酰白三烯受体1(cysteinyl leukotriene receptor 1,CysLT1R)具有非常高的亲和力21。当缺乏CysLT1R时导致在气道炎症或蠕虫感染期间产生IL-13的ILC的频率降低,表明白三烯有助于ILC2应答。另外,已显示与IL-33组合给予的LTC4通过激活CysLT1R直接增强ILC2产生IL-5和IL-1322。前列腺素D2(prostaglandin D2,PGD2)是前列腺素驱动2型炎症反应的关键,其受体CRTH2在人Th2细胞和ILC2上有选择性表达。PGD2-CRTH2通路能诱导ILC2迁移、IL-4产生及增强IL-25和IL-33介导的反应。在小鼠中,PGD2也显示出在气道中驱动ILC2的功能和积累23-24

另外,脂质递质还可负调控ILC2的功能。前列腺素I2(prostaglandin I2,PGI2)与其受体IP结合可抑制ILC2增殖并诱导细胞凋亡。当暴露于链格孢属真菌时,PGI2受体缺陷小鼠在肺中显示出更高的IL-5和IL-13表达的ILC225。脂氧素A4(lipoxin A4,LXA4)具有抗炎作用,能与人ILC2表达LXA/FPR2受体结合。它可抑制IL-2、IL-25、IL-33和PGD2共培养时ILC2的IL-13产生,从而减轻气道炎症26-27。Masresin-1则是另一种促进炎症消退的递质,可直接或通过刺激TGF-β诱导的Treg分化来抑制ILC2细胞因子的分泌,使过敏性炎症消退28

2.4. 激素

Laffont等29的研究表明,雄性激素可以抑制ILC2反应。在该研究中,与IL-33诱导的气道炎症模型中的雌性小鼠相比,在雄性小鼠中观察到降低的ILC2频率和更少的气道炎症。阉割雄性小鼠可使ILC2的频率和气道炎症恢复到雌性小鼠中观察到的水平,表明雄性激素对ILC2的负调节,而睾酮是引起雄性小鼠和雌性小鼠差异的原因。然而,现今对ILC2的激素控制知之甚少。

2.5. 微小RNA

微小RNA(microRNA,miRNA)是一类内源性非编码RNA,广泛参与免疫应答,在细胞发育分化、细胞增殖与凋亡中有着重要作用。活化后ILC2小RNA序列分析miRNA表达,结果显示miRNA-21a、miRNA-98、miRNA-134、miRNA-146、miRNA-155、miRNA-409和miRNA-541表达上调,并且miRNA-126a、miRNA-203、miRNA-151和let-7c都被下调。研究者还发现miRNA-17~92簇是ILC2扩增所必需的,并在IL-33刺激后通过靶向抑制细胞因子信号传导1和A20基因来促进IL-5和IL-13的产生30。最近的一项研究报道在小鼠气道变应性炎症模型中,IL-33可诱导ILC2高表达miRNA-155,并且miRNA-155介导调控了IL-33诱导的ILC2扩增和分泌IL-1331。这些结果确立了miRNA在作为ILC2生物学重要调节因子而介导IL-33诱导的Th2型免疫中发挥了不可或缺的作用。

2.6. 神经递质

神经元可以通过产生神经递质来促进ILC2的反应。ILC2表达血管活性肠肽(vasoactive intestinal peptide,VIP)的受体VPAC1和VPAC2,用VIP或VPAC2激动剂刺激促进IL-5的产生。血清IL-5水平和嗜酸粒细胞频率与昼夜节律和小鼠的进食周期相关,表明神经元响应热量摄入而分泌的VIP促进体内ILC2活化,从而调节嗜酸粒细胞稳态32。最近研究确定了另一种神经肽U(neuromedin U,NMU),可促进过敏性气道炎症和蠕虫清除。神经肽U受体1(neuromedin U receptor 1,Nmur1)是NMU的受体,由ILC2而不是其他ILC表达,并且NMU/Nmur1信号传导在体外和体内通过ILC2诱导IL-5和IL-13的产生。还有,IL-25和NMU的协同可诱导肺ILC2中显著产生IL-5和IL-1333。总之,神经系统和免疫系统的联系对过敏性疾病的治疗具有意义。

3. ILC2的功能

ILC2具有组织保护和促炎效应功能。ILC2产生的IL-13,可以不依赖IL-5,促进簇细胞和杯状细胞增生,激活DC以迁移至淋巴结,它们促进Th2分化,并诱导CD103-DC产生CCL17,其将记忆T细胞募集至炎症部位。ILC2还通过产生IL-5诱导嗜酸粒细胞增多、B1细胞扩增和B细胞产生IgM,并产生IL-9,导致自分泌激活。ILC2通过OX40-L-OX40结合,影响T细胞增殖和分化,并且通过MHCⅡ和PD-L1与Th2细胞的相互作用促进Th2分化和效应子功能。另外,ILC2还可通过ICOSL-ICOS结合促进Treg细胞积累。虽然这些细胞因子和表面分子有助于组织炎症的发展,但表皮生长因子双调蛋白对组织稳态和修复很重要34

4. ILC2与变应性鼻炎

变应性鼻炎是由IgE介导的对吸入过敏原的炎症反应,其涉及许多炎性细胞,如T细胞、B细胞、肥大细胞和嗜酸粒细胞等。当IgE在肥大细胞或肥大细胞上的交联诱导如组胺等递质释放,导致气道炎症。临床表现为鼻痒、阵发性喷嚏、清水样鼻涕和鼻塞35。除了经树突状细胞抗原递呈T细胞、B细胞等可引起过敏反应的经典途径外,研究还发现气道过敏炎症反应可不依赖T细胞而产生Th2细胞因子如IL-4、IL-5、IL-13等。ILC2在变应性鼻炎中的研究甚少。Doherty等36发现用变应原激发猫毛过敏患者,4 h后患者外周血ILC2含量增加,可能是由于体液和(或)细胞机制引起的骨髓ILC2的募集增强。由花粉引起的AR患者在花粉季节时外周血ILC2增加,并且在皮下免疫治疗后检测到外周血ILC2明显下降,进一步提示ILC2参与AR的发生、发展过程37。单一尘螨致敏患者外周血中ILC2明显高于健康组和单一艾蒿致敏患者,并且在皮下免疫治疗后患者ILC2数量显著降低,可能提示尘螨过敏原与植物性过敏原引起炎症反应的机制不同,具有更高的过敏原性38。屋尘螨介导的直接非特异性损伤和呼吸道上皮细胞的过敏反应是由与螨过敏原相关的胰蛋白酶/胰凝乳蛋白酶样酶活性诱导的,这种作用可能潜在地导致更大的上皮细胞衍生的IL-33释放和系统性ILC2的产生39。Zhong等39发现屋尘螨致敏的变应性鼻炎患者外周血中ILC2表达增高,且外周血ILC2与临床症状严重程度及血浆中功能性细胞因子IL-13水平呈显著正相关,说明变应性鼻炎患者外周血ILC2含量升高。另一项研究发现哮喘患者外周血中的ILC2数量明显高于健康组和变应性鼻炎组,而变应性鼻炎组与健康组比较ILC2数量差异无统计学意义40。这可能是因为只有少部分的变应性鼻炎患者对尘螨敏感,而其他的变应性鼻炎患者对季节性过敏原(如豚草)敏感,研究者没有报告变应性鼻炎患者是否在过敏期间或非过敏季期间入组,而造成变应性鼻炎组与健康组外周血中ILC2无变化的原因。当用IL-33或IL-25刺激变应性鼻炎患者的外周血单核细胞培养时,检测出显著的IL-5和IL-13水平。与之相比,屋尘螨过敏原也能促进屋尘螨AR患者外周血单核细胞中产生IL-5和IL-13,但却低很多39。这提示IL-33/IL-25对AR患者的外周血单核细胞具有更强的作用,诱导Th2细胞因子的产生,表明不同的过敏原可以引起不同的过敏反应。这与先前关于在不同过敏原致敏引起外周血ILC2含量不同的结果一致38。另外,有研究提示,在变应性鼻炎模型的鼻相关淋巴组织中OVA可以诱导ILC2,它们被重组IL-25诱导分泌IL-5和IL-13,并且IL-17RB的阻断导致培养物中这些细胞因子的产生减少41。研究者继续从正常小鼠和变应性鼻炎小鼠的鼻相关淋巴组织中分离出ILC2,再使用流式细胞术分析将细胞进一步定义为ICOS+MHCⅡ+,并通过免疫细胞化学和共聚焦显微镜定性鉴定MHCⅡ分子在ILC2上的表达,表明在AR小鼠中MHCⅡ的mRNA和蛋白表达高于正常小鼠。与未刺激的样品相比,CD4+T细胞与ILC2共培养后IL-5和IL-13蛋白及mRNA的产生被上调。然而,在组合的抗MHCⅡ抗体或抗CD4抗体处理后,表达水平均下调。结果表明,CD4+T细胞通过MHCⅡ和CD4分子共同作用、相互作用途径提高ILC2对IL-5和IL-13的产生42

总之,在AR中ILC2能引起变应性炎症的发生、发展,但在细胞分子层面的发生机制还需更多实验研究揭示。已有研究表明,miRNA-155可调控ILC2的功能从而引起气道过敏反应31,但miRNA-155具体靶向调控机制尚不清楚。然而,文献发现miRNA-155能靶向T细胞中c-maf引起细胞因子的改变43,c-maf也被证实是能结合IL-4启动子从而促进IL-4的表达,那么在ILC2中是否miRNA-155也通过靶向c-maf影响其功能呢?这个问题值得我们去探索。

5. 展望

ILC2作为新发现的固有淋巴细胞群,是连接固有免疫和适应性免疫的桥梁。虽然ILC2在变应性哮喘中的研究取得了一些成果,但是在变应性鼻炎等过敏性疾病中的研究还只是初步阶段。ILC2不仅是变态反应炎症早期的重要来源之一,其也维持炎症晚期的浸润作用。现今对AR的研究多在于ILC2表达是否增加,证明了AR与ILC2的正相关性,但在深层面关于AR中ILC2具体影响病理炎症的发生机制以及信号通路笔者还未见相关研究。另外,在AR中ILC2与其他免疫细胞如Th2细胞、Th17细胞和调节性T细胞等的关系需进一步阐明。在AR中研究ILC2主要从鼻黏膜和外周血获得ILC2,但因ILC2含量过低且鼻黏膜过少,为研究其功能带来了一定困难。值得肯定的是,通过靶向调控ILC2的途径可以为临床治疗变应性鼻炎提供新的思路。

Funding Statement

国家自然科学基金项目(No:81760184)

References

  • 1.Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell. 2018;174(5):1054–1066. doi: 10.1016/j.cell.2018.07.017. [DOI] [PubMed] [Google Scholar]
  • 2.Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15(6):985–995. doi: 10.1016/S1074-7613(01)00243-6. [DOI] [PubMed] [Google Scholar]
  • 3.Moro K, Yamada T, Tanabe M, et al. Innate production of Th2 cytokines by adipose tissue-associated c-Kit+Sca-1+lymphoid cells. Nature. 2010;463(7):540–544. doi: 10.1038/nature08636. [DOI] [PubMed] [Google Scholar]
  • 4.Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(9):1367–1370. doi: 10.1038/nature08900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Price AE, Liang HE, Sullivan BM, et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA. 2010;107(25):11489–11494. doi: 10.1073/pnas.1003988107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Mjösberg JM, Trifari S, Crellin NK, et al. Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12(11):1055–1062. doi: 10.1038/ni.2104. [DOI] [PubMed] [Google Scholar]
  • 7.Ebihara T, Taniuchi I. Transcription factors in the development and function of group 2 innate lymphoid cells. Int J Mol Sci. 2019;20(6):1377–1377. doi: 10.3390/ijms20061377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Tufa DM, Yingst AM, Shank T, et al. Transient expression of GATA3 in hematopoietic stem cells facilitates helper innate lymphoid cell differentiation. Front Immunol. 2019;3(10):510–510. doi: 10.3389/fimmu.2019.00510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Wong SH, Walker JA, Jolin HE, et al. Transcription factor RORα is critical for nuocyte development. Nat Immunol. 2012;13(3):229–236. doi: 10.1038/ni.2208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Spooner CJ, Lesch J, Yan D, et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol. 2013;14(12):1229–1236. doi: 10.1038/ni.2743. [DOI] [PubMed] [Google Scholar]
  • 11.Yang Q, Monticelli LA, Saenz SA, et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity. 2013;38(4):694–704. doi: 10.1016/j.immuni.2012.12.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Christina CA, Goplen NP, Zafar I, et al. Persistence of asthma requires multiple feedback circuits involving type 2 innate lymphoid cells and IL-33. J Allergy Clin Immunol. 2015;136(1):59–68. doi: 10.1016/j.jaci.2014.11.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Barlow JL, Peel S, Fox J, et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes(type 2 innate lymphoid cells)and airway contraction. J Allergy Clin Immunol. 2013;132(4):933–941. doi: 10.1016/j.jaci.2013.05.012. [DOI] [PubMed] [Google Scholar]
  • 14.Barlow JL, Bellosi A, Hardman CS, et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol. 2012;129(1):191–198. doi: 10.1016/j.jaci.2011.09.041. [DOI] [PubMed] [Google Scholar]
  • 15.Alshami A, Spolski R, Kelly J, et al. A role for TSLP in the development of inflammation in an asthma model. J Exp Med. 2005;202(6):829–839. doi: 10.1084/jem.20050199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Meylan F, Hawley ET, Barron L, et al. The TNF-family cytokine TL1A promotes allergic immunopathology through group 2 innate lymphoid cells. Mucosal Immunol. 2014;7(4):958–968. doi: 10.1038/mi.2013.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Yu X, Pappu R, Ramirez-Carrozzi V, et al. TNF superfamily member TL1A elicits type 2 innate lymphoid cells at mucosal barriers. Mucosal Immunol. 2014;7(3):730–740. doi: 10.1038/mi.2013.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ferdinand JR, Richard AC, Meylan F, et al. Cleavage of TL1A differentially regulates its effects on innate and adaptive immune cells. J Immunol. 2018;200(4):1360–1369. doi: 10.4049/jimmunol.1700891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Maazi H, Patel N, Sankaranarayanan I, et al. ICOS: ICOS-ligand interaction is required for type 2 innate lymphoid cell function, homeostasis, and induction of airway hyperreactivity. Immunity. 2015;42(3):538–551. doi: 10.1016/j.immuni.2015.02.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Salimi M, Barlow JL, Saunders SP, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–2950. doi: 10.1084/jem.20130351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Doherty TA, Khorram N, Lund S, et al. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates Th2 cytokine production. J Allergy Clin Immunol. 2013;132(1):205–213. doi: 10.1016/j.jaci.2013.03.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Lund SJ, Portillo A, Cavagnero K, et al. Leukotriene C4 potentiates IL-33-Induced group 2 innate lymphoid cell activation and lung inflammation. J Immunol. 2017;199(3):1096–1104. doi: 10.4049/jimmunol.1601569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol. 2014;133(4):1184–1194. doi: 10.1016/j.jaci.2013.10.056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Maric J, Ravindran A, Mazzurana L, et al. Cytokine-induced endogenous production of prostaglandin D2 is essential for human group 2 innate lymphoid cell activation. J Allergy Clin Immunol. 2019;143(6):2202–2214. doi: 10.1016/j.jaci.2018.10.069. [DOI] [PubMed] [Google Scholar]
  • 25.Zhou W, Toki S, Zhang J, et al. Prostaglandin I2 signaling and inhibition of group 2 innate lymphoid cell responses. Am J Respir Crit Care Med. 2016;193(1):31–42. doi: 10.1164/rccm.201410-1793OC. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Barnig C, Cernadas M, Dutile S, et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med. 2013;5(1):174–174. doi: 10.1126/scitranslmed.3004812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lu X, Fu H, Han F, et al. Lipoxin A4 regulates PM2.5-induced severe allergic asthma in mice via the Th1/Th2 balance of group 2 innate lymphoid cells. J Thorac Dis. 2018;10(3):1449–1459. doi: 10.21037/jtd.2018.03.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Krishnamoorthy N, Burkett PR, Dalli J, et al. Cutting edge: Maresin-1 Engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol. 2015;194(3):863–867. doi: 10.4049/jimmunol.1402534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Laffont S, Blanquart E, Savignac M, et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J Exp Med. 2017;214(6):1581–1592. doi: 10.1084/jem.20161807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Singh PB, Pua HH, Happ HC, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and function in allergic inflammation. J Exp Med. 2017;214(12):3627–3643. doi: 10.1084/jem.20170545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Johansson K, Malmhäll C, Ramos-Ramírez P, et al. MicroRNA-155 is a critical regulator of type 2 innate lymphoid cells and IL-33 signaling in experimental models of allergic airway inflammation. J Allergy Clin Immunol. 2017;139(3):1007–1016. doi: 10.1016/j.jaci.2016.06.035. [DOI] [PubMed] [Google Scholar]
  • 32.Talbot S, Abdulnour RE, Burkett PR, et al. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron. 2015;87(2):341–354. doi: 10.1016/j.neuron.2015.06.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Cardoso V, Chesné J, Ribeiro H, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature. 2017;549(7671):277–281. doi: 10.1038/nature23469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Wallrapp A, Riesenfeld SJ, Burkett PR, et al. Type 2 innate lymphoid cells in the induction and resolution of tissue inflammation. Immunol Rev. 2018;286(1):53–73. doi: 10.1111/imr.12702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Shin YS, Ju ng, C G, Park HS, et al. Prevalence and clinical characteristics of local allergic rhinitis to house dust mites. Curr Opin Allergy Clin Immunol. 2018;18(1):10–15. doi: 10.1097/ACI.0000000000000413. [DOI] [PubMed] [Google Scholar]
  • 36.Doherty TA, Scott D, Walford HH, et al. Allergen challenge in allergic rhinitis rapidly induces increased peripheral blood type 2 innate lymphoid cells that express CD84. J Allergy Clin Immunol. 2014;133(4):1203–1205. doi: 10.1016/j.jaci.2013.12.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Lao-Araya M, Steveling E, Scadding GW, et al. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J Allergy Clin Immunol. 2014;134(5):1193–1195. doi: 10.1016/j.jaci.2014.07.029. [DOI] [PubMed] [Google Scholar]
  • 38.Fan D, Wang X, Wang M, et al. Allergen-dependent differences in ILC2 s frequencies in patients with allergic rhinitis. Allergy Asthma Immunol Res. 2016;8(3):216–222. doi: 10.4168/aair.2016.8.3.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Zhong H, Fan XL, Yu QN, et al. Increased innate type 2 immune response in house dust mite-allergic patients with allergic rhinitis. Clin Immunol. 2017;183(2):293–299. doi: 10.1016/j.clim.2017.09.008. [DOI] [PubMed] [Google Scholar]
  • 40.Bartemes KR, Kephart GM, Fox SJ, et al. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J Allergy Clin Immunol. 2014;134(3):671–678. doi: 10.1016/j.jaci.2014.06.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Lin L, Dai F, Wei JJ, et al. Allergic inflammation is exacerbated by allergen-induced type 2 innate lymphoid cells in a murine model of allergic rhinitis. Rhinology. 2017;55(4):339–347. doi: 10.4193/Rhin17.065. [DOI] [PubMed] [Google Scholar]
  • 42.Lin L, Chen Z, Wei JJ, et al. CD4+T cells induce productions of IL-5 and IL-13 through MHCⅡ on ILC2 s in a murine model of allergic rhinitis. Auris Nasus Larynx. 2019;46(4):533–541. doi: 10.1016/j.anl.2018.12.004. [DOI] [PubMed] [Google Scholar]
  • 43.Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007;316(4):608–611. doi: 10.1126/science.1139253. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Otorhinolaryngology, Head, and Neck Surgery are provided here courtesy of Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery

RESOURCES