Abstract
目的
分析甘肃地区阻塞性睡眠呼吸暂停(OSA)继发红细胞增多症的相关因素。
方法
收集2013年1月—2021年1月长居甘肃的汉族OSA患者448例,按照血红蛋白(Hb)值分为A、B、C、D、E组,分别为正常(Hb 120~160 g/L)41例、轻度增高(Hb 161~179 g/L)142例、中度增高(Hb 180~199 g/L)156例、重度增高(Hb 200~219 g/L)79例、极重度增高(Hb≥220 g/L)30例。对所有患者进行PSG监测,比较三组的一般临床资料、居住地海拔高度、病程、呼吸暂停低通气指数(AHI)、最低血氧饱和度(LSpO2)、平均血氧饱和度(MSpO2),并用多因素回归及ROC曲线分析OSA继发红细胞增多症的影响因素。
结果
A、B、C、D、E组间年龄、性别及病程的差异无统计学意义(P>0.05)。E组海拔高度高于A、B、C、D组(P < 0.05),A、B、C、D组之间海拔高度的差异无统计学意义(P>0.05);各组间的AHI差异有统计学意义(P < 0.05),其中C、D、E组显著高于A组,D组显著高于B、C组;各组间的LSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组;各组间的MSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组。多因素回归显示:海拔越高、MSpO2越低,引起继发髙血红蛋白血症的程度越严重;年龄、病程、AHI及LSpO2均不是OSA继发血红蛋白增多的影响因素。MSpO2、海拔高度预测Hb≥180 g/L的ROC曲线下面积分别为0.694(P < 0.001)、0.570(P=0.009),差异有统计学意义(Z=3.205,P=0.001)。
结论
海拔高度、MSpO2是引起OSA继发红细胞增多症的独立危险因素;MSpO2预测OSA患者Hb≥180 g/L优于海拔高度。
Keywords: 睡眠呼吸暂停,阻塞性, 继发红细胞增多症, 平均血氧饱和度, 海拔高度
Abstract
Objective
To analyze the related factors of secondary erythrocytosis of obstructive sleep apnea(OSA) in Gansu province.
Methods
Polysomnography recording and analysis from January 2013 to January 2021, A total of 448 OSA patients of long-resident Han nationality in Gansu province. Hemoglobin(Hb) values were divided into group A(Hb 120-160 g/L) 41 cases, B(Hb 161-179 g/L) 142 cases, C(Hb 180-199 g/L) 152 cases, D(Hb 200-219 g/L) 79 cases, and E(Hb ≥220 g/L) 30 cases. General clinical data, altitude of residence, disease course, apnea hypopnea index (AHI), and Lowest oxyhemoglobin(LSpO2) were compared among these groups. Multivariate regression and ROC curves were used to analyze the influencing factors of OSA secondary erythrocytosis.
Results
There were no significant differences in age, sex, and course of disease among groups A, B, C, D, and E (P>0.05).The altitude of group E was higher than that of groups A, B, C, and D (P < 0.05), but there was no significant difference between groups A, B, C and D (P>0.05).AHI was significantly different among groups A, B, C, D, and E (P < 0.05), groups C, D, and E were significantly higher than A; group D was significantly higher than B, C.LSpO2 was significantly different among groups A, B, C, D, and E (P < 0.05), groups B, C, D, and E was significantly lower than A; group D, E was significantly lower than B, C.MSpO2was significantly different among groups A, B, C, D, and E (P < 0.05), groups B, C, D, and E was significantly lower A; groups D, E was significantly lower than B, C.Multivariate regression showed that the higher the altitude, the lower the MSpO2, the more serious the secondary hyperhemoglobinemia.Age, course of the disease, AHI, and LSpO2 were not the influencing factors of OSA secondary hemoglobin increase.The areas under the ROC curve for MSpO2 and altitude to predict Hb≥180 g/L were 0.694(P < 0.001) and 0.570(P=0.009), with statistically significant differences(Z=3.205, P=0.001).
Conclusion
Altitude and MSpO2were independent risk factors for OSA secondary erythrocytosis; MSpO2predicted that Hb≥180 g/L in OSA patients was better than altitude.
Keywords: sleep apnea, obstructive; secondary erythrocytosis; MSpO2; altitude
阻塞性睡眠呼吸暂停(OSA)是在睡眠中反复发生上气道阻塞,造成间歇性低氧血症、高碳酸血症和睡眠结构紊乱,导致全身多系统的损害[1]。OSA是引起继发性红细胞增多症的病因之一[2-3]。红细胞增多症是指血红蛋白(Hb)或红细胞压积的绝对增加[4-5],红细胞增多与血栓、冠心病及代谢综合征等多种疾病相关[6-8]。有研究显示,OSA继发红细胞增多症的发生率达40.6%[9]。本研究收集在甘肃省睡眠医学中心及分中心就诊的患者资料,探讨OSA继发红细胞增多症的影响因素。
1. 资料与方法
1.1. 临床资料
收集2013年1月—2021年1月在甘肃省睡眠医学中心及分中心就诊,来自甘肃省14个地、州、市的汉族OSA患者865例,依据纳入及排除标准筛选研究对象448例,男430例,女18例,均为长住居民(≥1年)。按照Hb值分为A、B、C、D、E组,分别为正常(Hb 120~160 g/L)41例、轻度增高(Hb 161~179 g/L)142例、中度增高(Hb 180~199 g/L)156例、重度增高(Hb 200~219 g/L)79例、极重度增高(Hb≥220 g/L)30例。所有研究对象均填写统一的调查表。本研究获得甘肃省人民医院伦理委员会的批准。
纳入标准:当地长期居民,年龄≥18岁,经整夜多道睡眠监测(PSG)明确诊断为OSA[呼吸暂停低通气指数(AHI)≥5次/h]。
排除标准:①诊断为OSA且接受CPAP治疗≥3个月;②合并慢性肺部疾病(慢性阻塞性肺病,支气管哮喘,肺纤维化等);③肥胖低通气、肺泡低通气及睡眠相关低通气等;④原发性红细胞增多症;⑤合并甲状腺功能减退症、库欣综合征、肢端肥大症、垂体瘤、神经肌肉类疾病;⑥合并严重的其他躯体疾病如大面积脑梗死、脑出血、心功能衰竭、心源性休克及恶性心律失常患者;⑦长期服用镇静类或肌松药物及有精神类疾病者。
1.2. PSG数据的采集
所有患者进行PSG监测,监测室温度20~22℃;受试者按平时作息时间进入监测室,当晚不服用睡眠药物。受试者接受红外线视频/音频同步记录的整夜睡眠监测,整夜测试记录7 h(晚23:00—6:00)。信号采集:除同步音频、视频数据外还包括左右眼电(LOC:E1-M2/ROC:E2-M2),2导下颌肌电(EMG:Chin1-2),双侧额、中央、枕部脑电图(EEG:F4-M1/C4-M1/O2-M1,F3-M2/C3-M2/O1-M2),双侧下肢胫前肌肌电(LEG-L/LEG-R)、鼻气流压力、口鼻气流热敏、胸腹呼吸运动、手指末端血氧饱和度。睡眠脑电图记录由取得国际认证的睡眠技师共同分析,睡眠分期按照美国睡眠医学会颁布的《睡眠及其相关事件判读手册》(1.0版)的标准执行。依据2018年中华医学会呼吸病学会制定的《成人阻塞性睡眠呼吸暂停低通气综合征诊治指南》,轻中度OSA:AHI 5~ < 30次/h,重度OSA:AHI≥30次/h;轻度低氧血症:最低血氧饱和度(LSpO2)85%~90%,中度低氧血症:LSpO280%~84%,重度低氧血症:LSpO2 < 80%。
1.3. 血液检查
所有患者入院后次晨空腹采静脉血,采用日立7180全自动生化分析仪进行血常规测定。
1.4. 统计学分析
所有数据用SPSS 20统计软件进行处理。计量资料数据以X±S表示,组间比较用t及F检验。计数资料组间比较用χ2检验。采用有序logistic回归分析等统计学方法对结果进行相关性分析。采用MedCalc 20进行ROC曲线分析。P < 0.05为差异有统计学意义。
2. 结果
2.1. 一般资料比较
各组一般资料比较见表 1。A、B、C、D、E各组间年龄、性别及病程差异无统计学意义(P>0.05);各组间Hb差异有统计学意义(P < 0.05),其中B组显著高于A组,C组显著高于A、B组,D组显著高于A、B、C组,E组显著高于A、B、C、D组。
表 1.
各组一般资料比较
| 项目 | A组(n=41) | B组(n=142) | C组(n=156) | D组(n=79) | E组(n=30) |
| 与A组比较,1)P < 0.05;与B组比较,2)P < 0.05;与C比较,3)P < 0.05;与D组比较,4)P < 0.05。 | |||||
| 年龄/岁 | 46.073±8.624 | 45.873±10.606 | 48.865±12.660 | 46.620±12.253 | 51.200±12.246 |
| 性别 | |||||
| 男/例 | 39 | 138 | 148 | 76 | 29 |
| 女/例 | 2 | 4 | 8 | 3 | 1 |
| 病程/年 | 9.270±8.285 | 9.150±7.271 | 10.900±8.976 | 10.410±8.259 | 10.630±9.261 |
| Hb/(g·L-1) | 148.707±9.634 | 172.338±4.3551) | 187.955±5.8481)2) | 207.937±5.3651)2)3) | 231.800±9.8131)2)3)4) |
2.2. 居住地海拔高度及PSG结果比较
居住地海拔高度及PSG结果比较见表 2。E组海拔高度高于A、B、C、D组,差异有统计学意义(P < 0.05),A、B、C、D组之间海拔高度的差异无统计学意义(P>0.05);各组间的AHI差异有统计学意义(P < 0.05),其中C、D、E组显著高于A组,D组显著高于B、C组;各组间的LSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组;各组间的MSpO2差异有统计学意义(P < 0.05),其中B、C、D、E组显著低于A组,D、E组显著低于B、C组。
表 2.
各组居住地海拔高度及PSG结果比较
| 项目 | A组(n=41) | B组(n=142) | C组(n=156) | D组(n=79) | E组(n=30) |
| 与E组比较,1)P < 0.05;与A组比较,2)P < 0.05;与D组比较,3)P < 0.05。 | |||||
| 海拔/m | 1 962.207±413.8051) | 1 911.394±364.6851) | 1 990.814±386.3081) | 1 996.177±401.0561) | 2 250.367±470.273 |
| AHI/(次·h-1) | 42.251±26.310 | 49.950±22.4173) | 51.470±23.4522)3) | 58.561±22.2792) | 56.330±24.0042) |
| LSpO2/% | 72.781±13.378 | 64.597±18.1381)2)3) | 62.420±18.9731)2)3) | 52.304±17.9912) | 53.133±17.7702) |
| MSpO2/% | 91.234±5.812 | 88.145±6.3611)2)3) | 85.825±8.6341)2)3) | 80.266±10.4872) | 80.767±7.9822) |
2.3. OSA继发红细胞增多症相关因素回归分析
将年龄、病程、海拔高度、AHI、LSpO2及MSpO2等可能影响OSA患者红细胞增多的因素进行有序logistic回归,并通过平行性检验(χ2=9.676,P=0.942),结果显示:海拔高度、MSpO2是引起OSA继发红细胞增多症的独立危险因素,即海拔越高、MSpO2越低,引起继发髙血红蛋白血症的程度越严重;年龄、病程、AHI及LSpO2均不是OSA继发血红蛋白增多的影响因素。见表 3。
表 3.
OSA继发红细胞增多症相关因素回归分析
| 因素 | 系数 | Wald值 | 95%CI | P值 | |
| 下限 | 上限 | ||||
| 年龄 | 0.012 | 2.257 | -0.003 | -0.027 | 0.112 |
| 病程 | 0.008 | 0.517 | -0.030 | 0.014 | 0.472 |
| 海拔 | 0.001 | 17.417 | 0.000 | 0.001 | < 0.001 |
| AHI | 0.003 | 0.514 | -0.005 | 0.011 | 0.473 |
| LSpO2 | -0.003 | 0.190 | -0.017 | 0.011 | 0.663 |
| MSpO2 | -0.080 | 27.184 | -0.110 | -0.050 | < 0.001 |
2.4. 海拔高度和MSpO2在评估OSA继发红细胞增多症中的作用
对海拔高度、MSpO2预测OSA患者Hb≥180 g/L的临界值进行ROC曲线分析。海拔高度约登指数最大值为0.137,对应临界值为海拔高度>2027 m,其敏感度、特异度分别为37.740%、75.960%,曲线下面积(AUC)为0.570(95%CI:0.523~0.617,P=0.009);MSpO2约登指数最大值为0.317,对应临界值为MSpO2≤86.7%,其敏感度、特异度分别为57.360%、74.320%,AUC为0.694(95%CI:0.649~0.736,P < 0.001)。海拔高度与MSpO2进行ROC曲线比较(图 1):AUC为0.570(95%CI:0.045~0.199,Z=3.205,P=0.001),MSpO2预测能力显著优于海拔高度。
图 1.

海拔高度、MSpO2预测OSA患者Hb≥180 g/L的ROC曲线
3. 讨论
本研究结果显示,MSpO2是OSA继发高血红蛋白血症的高危因素,而与AHI、LSpO2不相关。研究表明,持续的低氧通过MSpO2反应,激活缺氧诱导因子-1(HIF-1),导致促红细胞生成素(EPO)表达增加和红细胞增多[10]。动物研究[11-12]报道,间歇性低氧可促进HIF-1α和EPO的产生,导致Hb显著增加。缺氧对Hb的影响在很大程度上取决于缺氧刺激的持续时间和强度,OSA导致红细胞增多,其主要取决于间歇性缺氧循环的强度、频率和持续时间[13]。越来越多的研究证实,OSA继发红细胞增多与AHI无关[14-15],MSpO2为其独立危险因子[16]。本研究结果显示,MSpO2预测Hb≥180 g/L优于海拔高度。AHI、LSpO2虽为评价OSA严重程度的指标,但均不能反映整夜血氧水平。
本研究显示,海拔为OSA继发红细胞增多症的独立危险因素。暴露在高海拔环境下会直接改变呼吸生理,随着海拔升高,氧分压降低,位于颈动脉体的外周化学感受器通过增加微小通气来响应动脉氧合减少,进而减少动脉二氧化碳,导致呼吸性碱中毒,急性减弱低氧通气反应,形成临时的负反馈循环[17]。随着海拔增高,OSA患者的AHI增加、部分阻塞性呼吸事件转化为中枢性呼吸事件[18]。进一步研究显示,OSA患者停留在海拔1600 m以上时,由于中枢性呼吸暂停次数显著增加,导致间歇性和持续缺氧加剧[19]。本研究中,我们试将研究对象依据居住地海拔高度分为1500 m,1501~2000 m,2001~2500 m,2501~3500 m四组,比较了各组AHI、LSpO2及MSpO2,未发现各组间的差异有统计学意义(P>0.05)。本研究中的研究对象同处于高海拔,但Hb随海拔高度的增加而增加,特别是海拔在(2250.367±470.273) m时Hb可增至(231.800±9.813) g/L。一项随机试验显示,OSA患者在高原停留期间,使用乙酰唑胺比未使用更能显著改善血氧和睡眠呼吸暂停[20]。
本研究中男性患者占95.98%。研究显示,OSA男性较女性更易继发红细胞增生[21-22]。可能的机制为:男性的睾酮水平较高,有利于红细胞生成[23];17β-雌二醇影响缺氧诱导基因的表达,减少缺氧诱导EPO基因的表达[24];在严重缺氧应激的急性暴露中,女性对间歇性缺氧诱导的上呼吸道肌肉功能障碍的恢复能力存在,但男性患者肌肉功能的损失更大[25];暴露于低氧环境中,女性的低氧通气反应明显高于男性[26]。本研究对象均为汉族。有研究显示,高海拔久居藏族人群可始终保持较低的Hb水平,这种独特的适应性与TMEM247、EPAS1等多种基因变异体的交互作用有关[27]。
甘肃省14个地、州、市大部分地区属于高原(海拔≥1500 m),有以回、藏、东乡为主的54个少数民族,具有独特的地域及民族特点。但目前尚无在不同程度高海拔及睡眠呼吸暂停双重低氧情况下,不同性别、年龄、民族的OSA人群继发红细胞增多的严重程度研究。以后我们将继续联合省内多个睡眠医学临床研究分中心深入探讨OSA继发红细胞增多症在不同海拔地区、年龄、民族、性别中的差异,为指导开展此类疾病的预防提供理论依据。
Funding Statement
国家自然科学基金(No:81560228,61962034);2019年甘肃省卫生行业科研计划项目(No:GSWSKY-2019-88);甘肃省科技计划项目(No:20JR10RA437);甘肃省人民医院院内基金项目(No:18GSSY4-19,21GSSYC-25)
Footnotes
利益冲突 所有作者均声明不存在利益冲突
References
- 1.张 香侠, 厉 雪艳, 陈 贵海, et al. REM相关阻塞性睡眠呼吸暂停的临床研究进展. 临床耳鼻咽喉头颈外科杂志. 2022;36(2):145–148. doi: 10.13201/j.issn.2096-7993.2022.02.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Keohane C, McMullin MF, Harrison C. The diagnosis and management of erythrocytosis. BMJ. 2013;347:f6667. doi: 10.1136/bmj.f6667. [DOI] [PubMed] [Google Scholar]
- 3.McMullin MF, Harrison CN, Ali S, et al. A guideline for the diagnosis and management of polycythaemia vera.A British Society for Haematology Guideline. Br J Haematol. 2019;184(2):176–191. doi: 10.1111/bjh.15648. [DOI] [PubMed] [Google Scholar]
- 4.Gordeuk VR, Key NS, Prchal JT. Re-evaluation of hematocrit as a determinant of thrombotic risk in erythrocytosis. Haematologica. 2019;104(4):653–658. doi: 10.3324/haematol.2018.210732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.McMullin MF. Investigation and Management of Erythrocytosis. Curr Hematol Malig Rep. 2016;11(5):342–347. doi: 10.1007/s11899-016-0334-1. [DOI] [PubMed] [Google Scholar]
- 6.Mithoowani S, Laureano M, Crowther MA, et al. Investigation and management of erythrocytosis. CMAJ. 2020;192(32):E913–E918. doi: 10.1503/cmaj.191587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Hashimoto Y, Tanaka M, Kimura T, et al. Hemoglobin concentration and incident metabolic syndrome: a population-based large-scale cohort study. Endocrine. 2015;50(2):390–396. doi: 10.1007/s12020-015-0587-9. [DOI] [PubMed] [Google Scholar]
- 8.Kunnas T, Solakivi T, Huuskonen K, et al. Hematocrit and the risk of coronary heart disease mortality in the TAMRISK study, a 28-year follow-up. Prev Med. 2009;49(1):45–47. doi: 10.1016/j.ypmed.2009.04.015. [DOI] [PubMed] [Google Scholar]
- 9.陈 东梅, 蒋 雪龙, 张 庆龙, et al. OSAHS患者合并髙血红蛋白症的临床分析. 新疆医学. 2020;50(11):1147–1149. [Google Scholar]
- 10.Song J, Sundar K, Gangaraju R, et al. Regulation of erythropoiesis after normoxic return from chronic sustained and intermittent hypoxia. J Appl Physiol(1985) 2017;123(6):1671–1675. doi: 10.1152/japplphysiol.00119.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Ishii M, Iwamoto T, Nagai A, et al. Polycythemia and changes in erythropoietin concentration in rats exposed to intermittent hypoxia. Adv Exp Med Biol. 2010;662:121–126. doi: 10.1007/978-1-4419-1241-1_17. [DOI] [PubMed] [Google Scholar]
- 12.Alvarez-Martins I, Remédio L, Matias I, e t, a l. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment. Pflugers Arch. 2016;468(5):919–932. doi: 10.1007/s00424-016-1797-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Kang J, Li Y, Hu K, et al. Chronic intermittent hypoxia versus continuous hypoxia: Same effects on hemorheology? Clin Hemorheol Microcirc. 2016;63(3):245–255. doi: 10.3233/CH-151973. [DOI] [PubMed] [Google Scholar]
- 14.Solmaz S, Duksal F, Ganidaǧlı S. Is obstructive sleep apnoea syndrome really one of the causes of secondary polycythaemia? Hematology. 2015;20(2):108–111. doi: 10.1179/1607845414Y.0000000170. [DOI] [PubMed] [Google Scholar]
- 15.Nguyen CD, Holty JC. Does untreated obstructive sleep apnea cause secondary erythrocytosis? Respir Med. 2017;130:27–34. doi: 10.1016/j.rmed.2017.07.003. [DOI] [PubMed] [Google Scholar]
- 16.Li N, Li HP, Wang P, et al. Nocturnal Mean Oxygen Saturation Is Associated with Secondary Polycythemia in Young Adults with Obstructive Sleep Apnea, Especially in Men. Nat Sci Sleep. 2019;11:377–386. doi: 10.2147/NSS.S226143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Storz JF. High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology. Mol Biol Evol. 2021;38(7):2677–2691. doi: 10.1093/molbev/msab064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Hoshikawa M, Uchida S, Sugo T, et al. Changes in sleep quality of athletes under normobaric hypoxia equivalent to 2, 000-m altitude: a polysomnographic study. J Appl Physiol(1985) 2007;103(6):2005–2011. doi: 10.1152/japplphysiol.00315.2007. [DOI] [PubMed] [Google Scholar]
- 19.Bloch KE, Latshang TD, Ulrich S. Patients with Obstructive Sleep Apnea at Altitude. High Alt Med Biol. 2015;16(2):110–116. doi: 10.1089/ham.2015.0016. [DOI] [PubMed] [Google Scholar]
- 20.Latshang TD, Bloch KE. How to treat patients with obstructive sleep apnea syndrome during an altitude sojourn. High Alt Med Biol. 2011;12(4):303–307. doi: 10.1089/ham.2011.1055. [DOI] [PubMed] [Google Scholar]
- 21.Solmaz S, Duksal F, Ganidaǧlı S. Is obstructive sleep apnoea syndrome really one of the causes of secondary polycythaemia? Hematology. 2015;20(2):108–111. doi: 10.1179/1607845414Y.0000000170. [DOI] [PubMed] [Google Scholar]
- 22.Wimms A, Woehrle H, Ketheeswaran S, et al. Obstructive Sleep Apnea in Women: Specific Issues and Interventions. Biomed Res Int. 2016;2016:1764837. doi: 10.1155/2016/1764837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Grau M, Cremer JM, Schmeichel S, et al. Comparisons of Blood Parameters, Red Blood Cell Deformability and Circulating Nitric Oxide Between Males and Females Considering Hormonal Contraception: A Longitudinal Gender Study. Front Physiol. 2018;9:1835. doi: 10.3389/fphys.2018.01835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Alvarez-Martins I, Remédio L, Matias I, et al. The impact of chronic intermittent hypoxia on hematopoiesis and the bone marrow microenvironment. Pflugers Arch. 2016;468(5):919–932. doi: 10.1007/s00424-016-1797-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.O'Halloran KD, Lewis P, McDonald F. Sex, stress and sleep apnoea: Decreased susceptibility to upper airway muscle dysfunction following intermittent hypoxia in females. Respir Physiol Neurobiol. 2017;245:76–82. doi: 10.1016/j.resp.2016.11.009. [DOI] [PubMed] [Google Scholar]
- 26.Soliz J, Thomsen JJ, Soulage C, et al. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol. 2009;296(6):R1837–1846. doi: 10.1152/ajpregu.90967.2008. [DOI] [PubMed] [Google Scholar]
- 27.Deng L, Zhang C, Yuan K, et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl Sci Rev. 2019;6(6):1201–1222. doi: 10.1093/nsr/nwz108. [DOI] [PMC free article] [PubMed] [Google Scholar]
