Skip to main content
Journal of Clinical Otorhinolaryngology Head and Neck Surgery logoLink to Journal of Clinical Otorhinolaryngology Head and Neck Surgery
. 2022 May 3;36(5):397–401. [Article in Chinese] doi: 10.13201/j.issn.2096-7993.2022.05.016

甲状旁腺自体荧光显像技术的研究进展

Research progress of autofluorescence imaging of parathyroid glands

郭 飞跃 1, 耿 胜杰 2, 张 静 1,*
PMCID: PMC10128258  PMID: 35483695

Abstract

甲状旁腺误切和(或)血运受损是甲状旁腺功能减退的主要原因,因此甲状腺或甲状旁腺术中如何精准识别和原位保留甲状旁腺已成为困扰内分泌外科医生的难题之一。近年来,近红外自体荧光显像技术因其简单安全、准确实时、不使用对比剂、非侵入性等特点逐渐受到越来越多外科医生的关注。目前国内关于此技术的研究尚处于起步阶段,本文就近年来甲状旁腺自体荧光显像技术的发展史、临床应用和应用前景作一综述。

Keywords: 甲状腺, 甲状旁腺, 术中旁腺定位, 近红外自体荧光显像


近年来,甲状腺癌的发病率逐渐增加,居女性恶性肿瘤的第4位,越来越多的患者接受了甲状腺手术[1-3]。根治术为甲状腺癌的主要手术方式,其主要并发症为甲状旁腺和喉返神经损伤。喉返神经的损伤率因神经检测仪的出现而极大降低,而甲状旁腺由于体积较小、着色不明显、数量不定、位置多变等特性难以实现术中精确定位[4]。甲状旁腺的无意切除或血流受损可能导致暂时性或永久性低钙血症[5]。低钙血症引起的抽搐、感觉异常等症状会影响患者的生活质量,严重时会危及生命,因此,甲状旁腺的精准识别和原位保留成为甲状腺外科医生关注的问题。术中甲状旁腺素(parathyroid hormone,PTH)快速测定、甲状旁腺穿刺洗脱液检测和吲哚菁绿显像等是目前常用的甲状旁腺识别方法[6-7],但这些检查均不能用于术中甲状旁腺的实时定位,且存在一定的局限性。近年来一些研究发现甲状旁腺近红外自体荧光显像(near-infrared autofluorescence imaging,NIRAF)作为一项崭新的识别技术,可能有助于降低术后低钙血症的发生率并改善甲状腺术后甲状旁腺的存活率[8-9]。目前此技术已在国外进入临床实践应用,而国内关于此技术的研究尚处于起步阶段,本文就近年来甲状旁腺自体荧光显影技术的研究进展作一综述。

1. 甲状旁腺自体荧光显像的发展史

2006年Das等[10]首次报告甲状旁腺组织被近红外光照射时,会释放出800~900 nm的自体荧光,并提出自体荧光可能可以用来区分甲状旁腺腺瘤和增生。2011年Paras等[11]发现甲状旁腺暴露于785 nm的激光时会释放波长为820~830 nm的自体荧光,其荧光强度为甲状腺组织的2~11倍,表明近红外自体荧光有可能成为一个很好的定位甲状旁腺组织的光学工具。2014年McWade等[12]首次报告了NIRAF用于甲状旁腺切除术和/或甲状腺切除术期间甲状旁腺的实时定位,结果表明,甲状旁腺的自体荧光强度显著高于脂肪、气管、肌肉等周围组织,是其强度的2.4~8.5倍;同时该研究还发现甲状旁腺疾病状态会显著影响自体荧光的信号强度。后续多项国内外研究证实NIRAF是一项开创性的技术,可以提供准确、实时的甲状旁腺图像。此外,该技术还具有不使用染料作为对比剂以及非侵入性等特点,可以有效识别和保护甲状旁腺[13-14]。2018年Fluobeam影像系统(法国)和PTeye(美国)两种自体荧光设备获得美国食品药品监督管理局批准,应用于甲状旁腺术中定位。在相对较短的时间内,NIRAF作为一项崭新的技术,经历了重大的发展和进步并逐渐受到越来越多外科医师的关注。

2. 甲状旁腺自体荧光显像的机制

甲状旁腺自体荧光的产生机制尚不清楚。有的研究认为该特性是由生物荧光团引起的,该荧光团是一种含有芳香族基团的荧光化合物,其分子量约为15 000 Da,具有蛋白激酶抵抗性和耐热性,可在激发后重新发光[15-16]。以前没有其他荧光峰值高于700 nm的生物荧光团的报道[17]。甲状腺和甲状旁腺具有相似的荧光峰值,研究人员推测这两种组织包含相同的荧光团[18-19]。然而,甲状旁腺的自体荧光强度为甲状腺组织的数倍,更深入地了解导致甲状旁腺荧光强度变化的原因是必要的。近红外荧光显微镜显示,除少量荧光来自细胞膜或细胞核之外,自体荧光主要来自甲状旁腺实质细胞的细胞质。据推测,维生素D受体、钙敏感受体为可能的研究靶点[20]

3. 自体荧光显像技术在甲状腺术中的应用

甲状旁腺功能减退是甲状腺全切术后的常见并发症,甲状旁腺误切和(或)血管损伤是引起甲状旁腺功能减退的主要原因。因此NIRAF技术能否有效、可靠地提高甲状腺术中甲状旁腺的识别率,从而有效保护甲状旁腺,防止误切和损伤血管,成为甲状腺外科医师关注的重点[21-22]

Kose等[8]报道接受甲状腺手术的173例患者中,通过外科医生的专业鉴定和/或病理证实鉴定出甲状旁腺503例,其中496例(98.6%)表现出自体荧光;此外,有162例(32.2%)甲状旁腺在外科医生进行解剖和肉眼识别之前已经被NIRAF准确识别。同时该研究通过NIRAF技术对550个甲状旁腺标本成像,然后再进行病理检测,结果发现,NIRAF的阳性预测值为95%,阴性预测值为99%,用于识别甲状旁腺具有较高的准确性。一项纳入210例患者的多中心(美国、法国和阿根廷)研究发现应用NIRAF探查甲状旁腺的敏感性很高,为97%~99%[23];并且研究还发现77%的患者中至少有一个甲状旁腺在解剖和肉眼识别前可以用NIRAF探查到。综上所述,NIRAF探查甲状旁腺具有较高的准确性和敏感性。然而NIRAF技术能否通过降低术后低钙血症的发生率及术中甲状旁腺的误切率,从而实现其临床应用价值仍存在争议。Benmiloud等[24]报道,甲状腺术中应用NIRAF改善了甲状旁腺的术中识别,显著降低了术后低钙血症的发生率,NIRAF组低钙血症的发生率为5.2%,明显低于对照组的20.9%,差异有统计学意义(P < 0.001)。随后,该作者发表了一项多中心随机对照研究,结果显示低钙血症的发生率从22%降至9%。但是,一些研究认为,应用NIRAF并不能降低甲状腺术后低钙血症的发生率[25-27]。Papavramidis等[27]发现NIRAF显著降低了甲状腺术中甲状旁腺的误切率,NIRAF组的甲状旁腺误切率为14.4%,而对照组为28.9%,差异有统计学意义(P=0.02)。但是,DiMarco等[28]报道NIRAF能够帮助识别被误切的甲状旁腺,利于甲状旁腺自体移植的实施,但其并没有降低甲状旁腺的误切率,NIRAF组的误切率为12.3%,而对照组为10.4%,差异无统计学意义(P=0.08)。

4. 自体荧光显像技术在甲状旁腺术中的应用

甲状旁腺是机体重要的内分泌器官,其分泌的PTH可以调节体内钙、磷的代谢,维持机体内环境的稳定。甲状旁腺功能亢进出现的原因是一个或多个甲状旁腺病理性合成过量的PTH,故切除的病变甲状旁腺是治疗甲状旁腺功能亢进的主要手段,精确定位病变甲状旁腺则是手术成功的关键[29]。术中PTH快速测定和冷冻病理切片是目前确定病变甲状旁腺的主要方法,但这些方法有创并且耗时较长。准确、实时、无创等优点使NIRAF技术受到越来越多外科医师的青睐,用于原发性或继发性甲状旁腺功能亢进症手术中病变甲状旁腺的识别。

Wolf等[30]通过对39例甲状旁腺功能亢进患者进行术中自体荧光检查,发现NIRAF技术的灵敏度在原发性和继发性甲状旁腺功能亢进中分别为90%和83%,阳性预测值分别为93%和100%。McWade等[12]发现甲状旁腺疾病状态、体质指数、维生素D水平和血钙浓度均会影响自体荧光的信号强度,与正常甲状旁腺相比,继发性甲状旁腺功能亢进患者甲状旁腺的自体荧光信号强度较弱。Thomas等[31]得到了相同的结论。Falco等[9]研究发现在原发性甲状旁腺功能亢进下,甲状旁腺腺瘤的自体荧光强度高于正常甲状旁腺。然而,Kose等[8]在相同设备和疾病的情况下,得出甲状旁腺腺瘤的荧光强度较正常甲状旁腺降低的矛盾结果。此外,一些研究认为在原发性甲状旁腺功能亢进症患者中,病变甲状旁腺的自体荧光强度与正常甲状旁腺无明显差异[1532]。综上所述,根据甲状旁腺的自体荧光强度来区分病变和正常甲状旁腺的可行性仍待商榷,需要更多大样本、高质量的研究来证实。

5. 自体荧光显像技术在切除标本中的应用

由于甲状旁腺体积小且颜色与脂肪组织相似,即便是经验丰富的外科医生,也可能会误切甲状旁腺。Sitges-Serra等[33]报道甲状腺手术中甲状旁腺的误切率约为22%。误切是甲状旁腺功能减退发生的主要原因之一,多个研究已证实正确自体移植1~2个被误切的甲状旁腺便能有效降低术后严重甲状旁腺功能减退的发生率[34-35]。自体荧光显像技术能否在切除标本中识别被误切的甲状旁腺,提高自体移植率,也逐渐受到甲状腺外科医生的关注。

Shinden等[36]发现甲状旁腺的自体荧光与其有无血供无关,甲状旁腺组织在切除后的2 h内仍可以呈现自体荧光,并且其荧光强度明显高于其他组织,包括甲状腺、淋巴结和脂肪组织。De Leeuw等[13]通过分析28个切除标本得出NIRAF技术的敏感性和特异性分别为94.1%和80%;除此之外,还发现甲状旁腺自体荧光的信号强度在切除后1 h内仍保持稳定,并且不受甲醛固定液的影响。Kose等[8]用NIRAF技术分析了550个标本,其敏感性、特异性、阳性和阴性预测值分别为98.5%、97.2%、95.1%和99.1%。综上所述,NIRAF技术能辅助识别标本中误切的甲状旁腺,然后进行自体移植,从而减少术后并发症的发生。

6. 自体荧光显像技术的不足

尽管NIRAF识别切除标本中甲状旁腺组织的能力很强,但在外科医生肉眼识别之前原位发现甲状旁腺的能力却很低。Kose等[8]研究发现仅有33%的甲状旁腺在甲状腺被膜解剖前被NIRAF准确识别。Dip等[25]根据有无应用NIRAF将170例行甲状腺全切的患者分为实验组和对照组,研究结果发现在甲状腺被膜解剖前通过NIRAF技术识别的甲状旁腺平均数目与甲状腺被膜解剖后通过肉眼确定的数目相同(3.5 vs 3.6);此外,在实验组中,当白光转化为近红外光时检测到的甲状旁腺数量从2.6增加到3.5(P < 0.001)。甲状旁腺未显露前,NIRAF技术探测到甲状旁腺的能力较差,表明该技术的组织穿透力较弱仅有几毫米,当甲状旁腺被其他结缔组织或脂肪覆盖时,自体荧光信号的传递或收集会受到巨大的影响[37]。因此NIRAF在组织穿透力方面需要进一步完善。NIRAF技术的另一弊端是不能协助判断甲状旁腺血供是否受损。甲状旁腺血运受损是引起甲状旁腺功能减退的主要原因之一,因此甲状腺或甲状旁腺术中正确评估其血运状态,对指导是否需要进行甲状旁腺自体移植至关重要。目前主要通过观察甲状旁腺的颜色变化来判断其血供,但是这种方法主观性较强。此外,还有研究通过吲哚菁绿血管造影来评估甲状旁腺的血液供应[38]。然而,能否将NIRAF与吲哚菁绿血管造影结合来评估甲状旁腺的血供尚不清楚。

7. 小结与展望

甲状腺或甲状旁腺术中应用NIRAF技术探查甲状旁腺具有较高的准确性和敏感性,并且能辅助识别标本中误切的甲状旁腺。但在甲状腺被膜解剖前,NIRAF技术探测甲状旁腺的能力较差,说明NIRAF技术不能替代术中外科医生的精细解剖。此外,NIRAF技术不能协助判断甲状旁腺的血供是否受损,并且根据甲状旁腺自体荧光强度来区分病变和正常甲状旁腺的可行性仍待商榷。综上所述,NIRAF是一项开创性的技术,可以提供准确、实时的甲状旁腺图像,应用此技术探查甲状旁腺将成为内分泌外科手术的核心趋势。但同其他创新性技术一样,NIRAF技术在得到大多数外科医师认可之前,需要经历一系列的改革与完善,才能更好地应用于临床。

Footnotes

利益冲突  所有作者均声明不存在利益冲突

References

  • 1.Wang J, Yu F, Shang Y, et al. Thyroid cancer: incidence and mortality trends in China, 2005-2015. Endocrine. 2020;68(1):163–173. doi: 10.1007/s12020-020-02207-6. [DOI] [PubMed] [Google Scholar]
  • 2.Miranda-Filho A, Lortet-Tieulent J, Bray F, et al. Thyroid cancer incidence trends by histology in 25 countries: a population-based study. Lancet Diabetes Endocrinol. 2021;9(4):225–234. doi: 10.1016/S2213-8587(21)00027-9. [DOI] [PubMed] [Google Scholar]
  • 3.中华人民共和国国家卫生健康委员会 甲状腺癌诊疗规范(2018年版) 中华普通外科学文献(电子版) 2019;13(1):1–15. doi: 10.3877/cma.j.issn.1674-0793.2019.01.001. [DOI] [Google Scholar]
  • 4.张 颖超, 伍 波, 樊 友本. 术中甲状旁腺光学定位与活性判断在甲状腺和甲状旁腺外科的应用前景. 中华内分泌外科杂志. 2020;14(5):432–435. doi: 10.3760/cma.j.cn.115807-20200426-00136. [DOI] [Google Scholar]
  • 5.Kim SW, Lee HS, Ahn YC, et al. Near-Infrared Autofluorescence Image-Guided Parathyroid Gland Mapping in Thyroidectomy. J Am Coll Surg. 2018;226(2):165–172. doi: 10.1016/j.jamcollsurg.2017.10.015. [DOI] [PubMed] [Google Scholar]
  • 6.Zaidi N, Bucak E, Yazici P, et al. The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy. J Surg Oncol. 2016;113(7):775–778. doi: 10.1002/jso.24237. [DOI] [PubMed] [Google Scholar]
  • 7.Zou X, Shi L, Zhu G, et al. Fine-needle aspiration with rapid parathyroid hormone assay to identify parathyroid gland in thyroidectomy. Medicine(Baltimore) 2020;99(16):e19840. doi: 10.1097/MD.0000000000019840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kose E, Rudin AV, Kahramangil B, et al. Autofluorescence imaging of parathyroid glands: An assessment of potential indications. Surgery. 2020;167(1):173–179. doi: 10.1016/j.surg.2019.04.072. [DOI] [PubMed] [Google Scholar]
  • 9.Falco J, Dip F, Quadri P, et al. Increased identification of parathyroid glands using near infrared light during thyroid and parathyroid surgery. Surg Endosc. 2017;31(9):3737–3742. doi: 10.1007/s00464-017-5424-1. [DOI] [PubMed] [Google Scholar]
  • 10.Das K, Stone N, Kendall C, et al. Raman spectroscopy of parathyroid tissue pathology. Lasers Med Sci. 2006;21(4):192–197. doi: 10.1007/s10103-006-0397-7. [DOI] [PubMed] [Google Scholar]
  • 11.Paras C, Keller M, White L, et al. Near-infrared autofluorescence for the detection of parathyroid glands. J Biomed Opt. 2011;16(6):067012. doi: 10.1117/1.3583571. [DOI] [PubMed] [Google Scholar]
  • 12.McWade MA, Paras C, White LM, et al. Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. J Clin Endocrinol Metab. 2014;99(12):4574–4580. doi: 10.1210/jc.2014-2503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.De Leeuw F, Breuskin I, Abbaci M, et al. Intraoperative Near-infrared Imaging for Parathyroid Gland Identification by Auto-fluorescence: A Feasibility Study. World J Surg. 2016;40(9):2131–2138. doi: 10.1007/s00268-016-3571-5. [DOI] [PubMed] [Google Scholar]
  • 14.Ladurner R, Sommerey S, Arabi NA, et al. Intraoperative near-infrared autofluorescence imaging of parathyroid glands. Surg Endosc. 2017;31(8):3140–3145. doi: 10.1007/s00464-016-5338-3. [DOI] [PubMed] [Google Scholar]
  • 15.Ladurner R, Al Arabi N, Guendogar U, et al. Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery. Ann R Coll Surg Engl. 2018;100(1):33–36. doi: 10.1308/rcsann.2017.0102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Martynov VI, Pakhomov AA, Popova NV, et al. Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae. 2016;8(4):33–46. doi: 10.32607/20758251-2016-8-4-33-46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Solórzano CC, Thomas G, Baregamian N, et al. Detecting the Near Infrared Autofluorescence of the Human Parathyroid: Hype or Opportunity? Ann Surg. 2020;272(6):973–985. doi: 10.1097/SLA.0000000000003700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Di Marco AN, Palazzo FF. Near-infrared autofluorescence in thyroid and parathyroid surgery. Gland Surg. 2020;9(Suppl 2):S136–S146. doi: 10.21037/gs.2020.01.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Liu J, Wang X, Wang R, et al. Near-infrared auto-fluorescence spectroscopy combining with Fisher's linear discriminant analysis improves intraoperative real-time identification of normal parathyroid in thyroidectomy. BMC Surg. 2020;20(1):4. doi: 10.1186/s12893-019-0670-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Moore EC, Rudin A, Alameh A, et al. Near-infrared imaging in re-operative parathyroid surgery: first description of autofluorescence from cryopreserved parathyroid glands. Gland Surg. 2019;8(3):283–286. doi: 10.21037/gs.2018.12.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Alesina PF, Meier B, Hinrichs J, et al. Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbecks Arch Surg. 2018;403(3):395–401. doi: 10.1007/s00423-018-1665-2. [DOI] [PubMed] [Google Scholar]
  • 22.Solórzano CC, Thomas G, Berber E, et al. Current state of intraoperative use of near infrared fluorescence for parathyroid identification and preservation. Surgery. 2021;169(4):868–878. doi: 10.1016/j.surg.2020.09.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kahramangil B, Dip F, Benmiloud F, et al. Detection of Parathyroid Autofluorescence Using Near-Infrared Imaging: A Multicenter Analysis of Concordance Between Different Surgeons. Ann Surg Oncol. 2018;25(4):957–962. doi: 10.1245/s10434-018-6364-2. [DOI] [PubMed] [Google Scholar]
  • 24.Benmiloud F, Rebaudet S, Varoquaux A, et al. Impact of autofluorescence-based identification of parathyroids during total thyroidectomy on postoperative hypocalcemia: a before and after controlled study. Surgery. 2018;163(1):23–30. doi: 10.1016/j.surg.2017.06.022. [DOI] [PubMed] [Google Scholar]
  • 25.Dip F, Falco J, Verna S, et al. Randomized Controlled Trial Comparing White Light with Near-Infrared Autofluorescence for Parathyroid Gland Identification During Total Thyroidectomy. J Am Coll Surg. 2019;228(5):744–751. doi: 10.1016/j.jamcollsurg.2018.12.044. [DOI] [PubMed] [Google Scholar]
  • 26.Kim YS, Erten O, Kahramangil B, et al. The impact of near infrared fluorescence imaging on parathyroid function after total thyroidectomy. J Surg Oncol. 2020;122(5):973–979. doi: 10.1002/jso.26098. [DOI] [PubMed] [Google Scholar]
  • 27.Papavramidis TS, Chorti A, Tzikos G, et al. The effect of intraoperative autofluorescence monitoring on unintentional parathyroid gland excision rates and postoperative PTH concentrations-a single-blind randomized-controlled trial. Endocrine. 2021;72(2):546–552. doi: 10.1007/s12020-020-02599-5. [DOI] [PubMed] [Google Scholar]
  • 28.DiMarco A, Chotalia R, Bloxham R, et al. Does fluoroscopy prevent inadvertent parathyroidectomy in thyroid surgery? Ann R Coll Surg Engl. 2019;101(7):508–513. doi: 10.1308/rcsann.2019.0065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.崔 铭, 王 鸥, 廖 泉. 原发性甲状旁腺功能亢进症诊断及手术治疗进展. 协和医学杂志. 2020;11(4):395–401. [Google Scholar]
  • 30.Wolf HW, Grumbeck B, Runkel N. Intraoperative verification of parathyroid glands in primary and secondary hyperparathyroidism using near-infrared autofluorescence(IOPA) Updates Surg. 2019;71(3):579–585. doi: 10.1007/s13304-019-00652-1. [DOI] [PubMed] [Google Scholar]
  • 31.Thomas G, McWade MA, Paras C, et al. Developing a Clinical Prototype to Guide Surgeons for Intraoperative Label-Free Identification of Parathyroid Glands in Real Time. Thyroid. 2018;28(11):1517–1531. doi: 10.1089/thy.2017.0716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Squires MH, Jarvis R, Shirley LA, et al. Intraoperative Parathyroid Autofluorescence Detection in Patients with Primary Hyperparathyroidism. Ann Surg Oncol. 2019;26(4):1142–1148. doi: 10.1245/s10434-019-07161-w. [DOI] [PubMed] [Google Scholar]
  • 33.Sitges-Serra A, Ruiz S, Girvent M, et al. Outcome of protracted hypoparathyroidism after total thyroidectomy. Br J Surg. 2010;97(11):1687–1695. doi: 10.1002/bjs.7219. [DOI] [PubMed] [Google Scholar]
  • 34.Su A, Gong Y, Wu W, et al. Effect of autotransplantation of a parathyroid gland on hypoparathyroidism after total thyroidectomy. Endocr Connect. 2018;7(2):286–294. doi: 10.1530/EC-17-0313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Sung TY, Lee YM, Yoon JH, et al. Importance of the intraoperative appearance of preserved parathyroid glands after total thyroidectomy. Surg Today. 2016;46(3):356–362. doi: 10.1007/s00595-015-1216-1. [DOI] [PubMed] [Google Scholar]
  • 36.Shinden Y, Nakajo A, Arima H, et al. Intraoperative Identification of the Parathyroid Gland with a Fluorescence Detection System. World J Surg. 2017;41(6):1506–1512. doi: 10.1007/s00268-017-3903-0. [DOI] [PubMed] [Google Scholar]
  • 37.吴 超杰, 乔 高昂, 笪 东祝, et al. 甲状腺术中甲状旁腺识别技术的转化研究进展. 中华普通外科学文献(电子版) 2020;14(1):68–71. doi: 10.3877/cma.j.issn.1674-0793.2020.01.021. [DOI] [Google Scholar]
  • 38.Rudin AV, McKenzie TJ, Thompson GB, et al. Evaluation of Parathyroid Glands with Indocyanine Green Fluorescence Angiography After Thyroidectomy. World J Surg. 2019;43(6):1538–1543. doi: 10.1007/s00268-019-04909-z. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Otorhinolaryngology, Head, and Neck Surgery are provided here courtesy of Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery

RESOURCES