Abstract
Background/Aim:
Chimeric antigen receptor (CAR) T cells with tumor specificity are being increasingly investigated. Phase I trials are the first step of testing for safety of novel CAR-T therapy to determine the maximum tolerated dose (MTD). Several dose escalation methods have been developed over time including rule-based, model-based and model-assisted designs. The goal of this project is to overview the phase I designs used in current CAR-T trials.
Materials and Methods:
We searched PubMed for peer-reviewed literature published between January 1, 2015 and December 31, 2021. The search was limited to human studies in the English language using the keywords “CAR-T phase I”, “clinical trials”, and “full text”.
Results:
One hundred nine papers with at least partial phase I components were included for analysis. 31.2% of the trials used the traditional 3+3 or a variation of said design, and 60.6% did not mention the dose escalation design. The majority of the manuscripts (59.6%) did not report cohort size while 19.3% did not specify the timing of evaluation. Although most of the studies were registered with CT.gov, only 33.9% had any results submitted or posted to CT.gov. These trends persisted even in manuscripts published in journals with high impact factors.
Conclusion:
Standardizing the publication criteria and providing basic elements of phase I clinical trials are critical to ensure high quality of manuscripts. With the quick development and high costs of CAR-T cell therapy, adoption of advanced designs such as model-based and model-assisted should increase to improve efficiency of clinical trials.
Keywords: CAR-T, phase I, clinical trial, study design, dose escalation, reporting
Chimeric antigen receptor (CAR) T cells with a tumor specificity have been increasingly investigated as revolutionary cancer immunotherapy. Over the past decade, the use of CAR T cell therapy has rapidly emerged as a novel therapeutic option for cancer treatment. Since the safety and efficacy of CD19 CAR-T cells used in lymphoma was initially reported in 2010, development of new targets used for generating the CAR-T cells and their clinical applications, along with the number of early phase clinical trials of CAR-T cell therapies, has increased dramatically. Different CAR-T therapeutic approaches have been investigated, and the number of clinical trials has increased to demonstrate remarkable response outcomes. The Food and Drug Administration (FDA) agency has approved several CAR-T cell therapies for treating certain patients with multiple myeloma, acute lymphocytic leukemia (ALL), and advanced lymphomas (1–5). Many other CAR-T therapies are also in development, with CD19 remaining the most popular cell therapy target. These trials aim to improve safety and efficacy of CAR-T cell therapies and help in ensuring their continued approval.
Phase I trials, also known as dose finding studies, are usually the first step with the goal of testing for safety of novel CAR-T cell therapies to evaluate the safety at accelerating dose levels and determine the maximum tolerated dose (MTD). The principle of phase I trials is to treat fewer patients at sub-optimal doses while maintaining accelerated dose escalations without compromising patient safety. Several dose escalation methods have been developed over time including rule-based designs, model-based designs, and the relatively new class of model-assisted designs (6–13). Although these novel designs showed favorable operating characteristics to improve efficiency and accuracy of finding the MTD, the adoption of these designs has not increased in clinical trials. Despite poor performance and lack of flexibility(13–17), the 3+3 design continues to be used in the majority of phase I trials (18).
Given the high costs of CAR-T cell therapy development and the high failure rate of early phase trials (19), it is essential to consider alternative designs to optimize the clinical development process and ensure efficiency and patient safety. The goal of this project is to review and assess the phase I designs and quality of reporting of current CAR-T clinical trials.
Materials and Methods
We searched PubMed for all the peer-reviewed literatures published between January 1, 2015, and December 31, 2021. The search was limited to human studies in the English language using the keywords “CAR-T phase I”, “clinical trials”, and “full text”. One hundred fifty-six papers were retrieved from 47 journals, and forty-seven that did not meet the selection criteria (1 animal study, 1 cohort study, 1 treatment guidelines paper, 1 transcriptome profiling paper, 1 paper unrelated to CAR-T therapy, 1 device study, 1 pilot study, 3 design papers, 4 letters to the editor, 4 secondary analyses, 6 case reports, and 23 phase II trials) were excluded. Publication characteristics, study design aspects, and objectives/reporting information were summarized using descriptive statistics. The phase I/II studies were only summarized based on their phase I components.
Results
Characteristics of the reviewed studies are presented in Table I. One hundred fifty-six papers were retrieved, and 109 (69.9%) of these papers with at least partial phase I components were included for analysis (20–128). Out of 109, 30 (27.5%) had partial phase II components (27, 28, 47, 49, 52, 53, 57, 59, 61, 63, 64, 69, 73, 75, 78, 81, 87–89, 93, 94, 97, 98, 101, 103, 112, 115, 124, 127, 128), and 79 (72.5%) were solely phase I studies (20–26, 29–46, 48, 50, 51, 54–56, 58, 60, 62, 65–68, 70–72, 74, 76, 77, 79, 80, 82–86, 90–92, 95, 96, 99, 100, 102, 104–111, 113, 114, 116–123, 125, 126). The number of CAR-T publications gradually increased over the specified years. Nearly 50% of the trials were conducted in the United States and the majority of the trials (88.1%) were registered with ClinicalTrials.gov. Over 75% of these trials were published in journals with high impact factor (IF, high as ≥10).
Table 1:
Characteristics of reviewed phase I studies.
| Characteristics | (N=109) | Characteristics | (N=109) |
|---|---|---|---|
| n (%) | n (%) | ||
| Publication characteristics | Dose level and infusions | ||
| Publication Year | Number of Dose Levels | ||
| 2015 | 4 (3.7%) | 1 | 23 (21.1%) |
| 2016 | 13 (11.9%) | 2 | 14 (12.8%) |
| 2017 | 14 (12.8%) | 3 | 30 (27.5%) |
| 2018 | 16 (14.7%) | 4 | 9 (8.3%) |
| 2019 | 20 (18.4%) | 5 | 2 (1.8%) |
| 2020 | 20 (18.4%) | 6 | 2 (1.8%) |
| 2021 | 22 (20.2%) | 8 | 1 (0.9%) |
| Publication Location | Range | 17 (15.6%) | |
| US | 50 (45.9%) | NA/Unreported/Unclear | 11 (10.1%) |
| China | 26 (23.9%) | Number of Infusions | |
| Others | 31 (28.4%) | Single | 80 (73.4%) |
| Multi-country | 2 (1.8%) | Multiple | 25 (22.9%) |
| Registered with CT.gov | Various | 3 (2.7%) | |
| Yes | 96 (88.1%) | NA/Unreported | 1 (0.9%) |
| No | 13 (11.9%) | Study design | |
| Journals | |||
| Blood | 14 (12.8%) | Study Phase | |
| Clin Cancer Res | 8 (7.3%) | Phase I | 79 (72.5%) |
| J Clin Oncol | 8 (7.3%) | Phase I/II | 30 (27.5%) |
| Nat Med | 8 (7.3%) | Sample Size | |
| J Clin Invest | 7 (6.4%) | ≤30 | 83 (76.2%) |
| J Hematol Oncol | 6 (5.5%) | >30 | 26 (23.9%) |
| Mol Ther | 5 (4.6%) | Phase I Design | |
| N Engl J Med | 4 (3.7%) | Rule-based 3+3 | 34 (31.2%) |
| Others | 49 (45.0%) | Rule-based other | 3 (2.8%) |
| Impact Factor | Model-based/model-assisted | 6 (5.5%) | |
| High (≥10) | 82 (75.2%) | NA/Unreported | 66 (60.6%) |
| Low (<10) | 27 (24.8%) | Cohort Size | |
| Disease and study population | 2 | 3 (2.8%) | |
| 3 | 41 (37.6%) | ||
| Disease | NA/Unreported | 65 (59.6%) | |
| Leukemia | 35 (32.1%) | Safety Evaluation Period | |
| Lymphoma | 21 (19.3%) | ≤W4 | 27 (24.8%) |
| Myeloma | 10 (9.2%) | >W4-W6 | 42 (38.5%) |
| Solid | 26 (23.9%) | >W6 | 19 (17.4%) |
| Leukemia/Lymphoma | 14 (12.8%) | NA/Unreported | 21 (19.3%) |
| Leukemia/Lymphoma/Solid | 2 (1.8%) | Results | |
| Leukemia/Myeloma | 1 (0.9%) | ||
| Study Population | Dose Limiting Toxicities (DLTs) | ||
| Adult | 75 (68.8%) | 0 | 35 (32.1%) |
| Pediatric | 3 (2.8%) | 1 or more | 25 (22.9%) |
| Adult/Pediatric | 30 (27.5%) | NA/Unreported | 49 (45.0%) |
| NA/Unreported | 1 (0.9%) | Cytokine Release Syndrome (CRS) ≥ grade 3 | |
| T-Cell Source | 0 | 36 (33.0%) | |
| Autologous | 102 (93.6%) | 1 or more | 57 (52.3%) |
| Allogeneic | 7 (6.4%) | NA/Unreported | 16 (14.7%) |
| CAR-T Type | Neurotoxicity ≥ grade 3 | ||
| CD19 | 67 (61.5%) | 0 | 37 (33.9%) |
| Others | 42 (38.5%) | 1 or more | 50 (45.9%) |
| CAR-T Generation | NA/Unreported | 22 (20.2%) | |
| I | 6 (5.5%) | Objectives and reporting | |
| I/II | 1 (0.9%) | ||
| II | 82 (75.2%) | Primary Endpoint | |
| III | 19 (17.4%) | Safety | 101 (92.7%) |
| IV | 1 (0.9%) | Response/Efficacy | 8 (7.3%) |
| Lymphodepletion | Secondary Endpoint | ||
| Yes | 83 (76.2%) | Response | 62 (56.9%) |
| No | 14 (12.8%) | Safety | 29 (26.6%) |
| Various | 5 (4.6%) | Survival | 12 (11.0%) |
| NA/Unreported | 7 (6.4%) | NA/Unreported | 6 (5.5%) |
| Results | |||
| Reported | 106 (97.3%) | ||
| NA/Unreported | 3 (2.8%) | ||
| CT.gov Results | |||
| Posted | 37 (33.9%) | ||
| NA/Unreported/Unposted | 72 (66.1%) | ||
About 64.2% of the phase I manuscripts centered on either leukemia, lymphoma, or a combination of the two as the disease of interest. The vast majority of the trials (96.3%) studied adults or a combination of adults and pediatric patients, with 93.6% using autologous T cells, 61.5% targeting CD19, and 94.5% using at least 2nd generation CARs. Lymphodepletion chemotherapy was given in 76.2% of the trials prior to the T cell infusions with either single (73.4%) or multiple (22.9%) infusions at 1–3 dose levels (61.4%).
Concerning the trials with phase I components, 60.6% did not mention the dose escalation design, and 31.2% used the traditional 3+3 or a variation of said design. Only 6 (5.5%) used model-based or model-assisted designs, with 3 being model-based [Bayesian adaptive dose-finding design based on Efficacy-Toxicity Trade-Offs (EffTox) and modified continual reassessment method (mCRM)] (44, 88, 103) and 3 being model-assisted [modified toxicity probability interval (mTPI) and Bayesian Optimal Interval (BOIN)] (45, 78, 106). Almost 76.2% of the phase I trials had sample sizes of 30 or less. More than half of the phase I trials (59.6%) did not report cohort size, and those that did report had sizes of 2 (2.8%) or 3 (37.6%). Approximately, 63.3% of the trials had a safety evaluation period within 6 weeks, while 19.3% did not specify the timing of evaluation. We also examined a subset of 75 trials with multiple dose levels, and among these, 46.7% did not mention the dose escalation design, 45.3% did not report cohort size, and 20.0% did not specify the safety evaluation period (data not shown). About 22.9% of the trials reported at least one DLT, 52.3% had ≥ grade 3 CRS and 45.9% had ≥ grade 3 neurotoxicity. The vast majority of the trials (92.7%) had safety as the primary endpoint, and 56.9% had response as the secondary endpoint. Although a majority of the phase I studies were registered with CT.gov, only 33.9% had any results submitted or posted to ClinicalTrials.gov. This might be due to the fact that result submission is not required under FDAAA 801 for phase I trials that are not applicable clinical trials.
The key items of reporting are described in Table II. About 60.6% of trials did not explicitly describe study design with 10.1% not reporting numbers of dose levels, 59.6% having no information about cohort size, and 19.3% not specifying time frame for safety evaluation. In addition, 45.0% did not report dose limiting toxicity (DLT) with no clear statement on cytokine release syndrome (CRS) (14.7%) and neurotoxicity (20.2%). We observed that study design was poorly reported even in the high impact factor (IF) journals with 58.5% not reporting study design.
Table II.
Reporting quality of key items.
| Study aspects | Unreported or Unclear N (%) | ||
|---|---|---|---|
| All (N=109) | High IF (IF≥10) (N=82) | Low IF (IF<10) (N=27) | |
| Design essentials | |||
| Study design | 66 (60.6) | 48 (58.5) | 18 (66.7) |
| Number of dose levels | 11 (10.1) | 8 (9.8) | 3 (11.1) |
| Cohort size | 65 (59.6) | 48 (58.5) | 17 (63.0) |
| Safety evaluation period | 21 (19.3) | 12 (14.6) | 9 (33.3) |
| Safety outcomes | |||
| DLTs | 49 (45.0) | 30 (36.6) | 19 (70.4) |
| CRS events | 16 (14.7) | 8 (9.8) | 8 (29.6) |
| Neurotoxicity | 22 (20.2) | 11 (13.4) | 11 (40.7) |
IF: Impact factor, DLTs: Dose-limiting toxicities, CRS: Cytokine release syndrome
Discussion
Our results showed that the basic elements and key points of publications were illustrated in only a fraction of papers (Table II). More than 50% of the trials did not report their study designs, and a number of trials did not clearly describe or report the relevant components for the design of these phase I trials such as number of dose levels, cohort size, and time frame of safety evaluation.
Table III lists criteria and essential items concerning phase I clinical trials in general. Specifically, the description of any DLTs as well as the MTD chosen are listed as essential items to include. Additionally, explicit definitions of the primary and secondary objectives, as well as information on safety and efficacy outcomes, are listed as items that should be reported. Lastly, more statistics focused items, such as cohort size and the number of patients on each dose level, as well as the number of dose levels, are also stated to be essential items. Many of the items listed, like these, are the exact items we’ve found to be lacking in overall reporting.
Table III.
Proposed detailed criteria and essential items for reporting Phase I trials.
| General aspects |
| Rational for study |
| Current status of study |
| Study population and disease type |
| Description of CAR-T (type, generation) |
| Primary and secondary objectives (endpoints) |
| Description of treatment (including number of infusions w/o lymphodepletion, dose, treatment cycles/schedule) |
| Statistical aspects |
| Study dose escalation design and safety monitoring method |
| Cohort size |
| Definition of DLT, MTD |
| Toxicity evaluation period |
| Number of patients treated at each dose level and overall |
| Outcome aspects |
| Safety outcomes |
| DLT encountered on study |
| Description of grade 3 toxicity and above at least possibly related to study drug |
| Description of cytokine release syndrome (>=grade 3) |
| Description of neurotoxicity (>=grade 3) |
| Conclusion explicitly states MTD, RP2D or reason for early trial closure |
| Efficacy outcome |
CAR-T: Chimeric antigen receptor T-cells, DLT: Dose-limiting toxicity, MTD: Maximum tolerated dose, RP2D: Recommended phase II dose
Our findings revealed that 31.2% of trials used rule-based designs, such as the 3+3 and its variations. These designs continued to be commonly used for phase I trials and are broadly recognized by clinicians primarily because of their simplicity and transparency. However, these designs are deemed less accurate in estimating the toxicity rates and allocate more patients to sub-optimal dose levels, which can potentially result in high costs and long trial durations. Selecting an optimal dose for subsequent trials to provide a higher chance of sufficient effectiveness in treating patients is an important objective for phase I trials. Many new dose escalation methods have been proposed in recent years to improve operating characteristics of phase I trials, and they were proved to outperform the 3+3 design (13, 129–132) in terms of accuracy to identify the MTD, under or overdose control, and trial duration. Unlike the rule-based designs that are easy to understand and implement for non-statisticians, these innovative model-based designs remain unfamiliar to, and are used less by, large parts of the clinical community due to the fact that they are complicated and require computations and advanced statistics. Although software packages are available for these model-based designs, they don’t fit all of the trial characteristics and that makes implementation challenging. To promote the use of model-based designs, publications need to more clearly enumerate the statistical properties and aspects of the trials (133). The new model-assisted designs such as BOIN design have comparable performance to the model-based designs with the characteristics of simplicity and flexibility (7, 15). In recent years, model-based and model–assisted designs extended to monitor efficacy in addition to safety in seamless phase I/II trials (134–136). Nevertheless, they may not be commonly known to the peers and applied in the clinical trials.
Conclusion
We performed a review of phase I clinical trials for CAR-T immunotherapy from a range of journals. The quality of reporting phase I CAR-T trials was poor even in high IF journals. Standardizing the criteria and basic elements of publications are critical to ensure high-quality reports of phase I clinical trials. As previously stated, many of the reviewed trials still use rule-based designs, such as the traditional 3+3 design. With the quick development and high costs of CAR-T cell therapy, adoption of advanced designs such as model-based and model-assisted should increase to improve efficiency of clinical trials and expedite the drug development process.
Acknowledgements
This work was supported by the Dan L. Duncan Comprehensive Cancer Center at Baylor College of Medicine through a support grant P30CA125123 from the National Cancer Institute.
Footnotes
Conflicts of Interest
We have no conflicts of interest to disclose.
References
- 1.Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, Qayed M, De Moerloose B, Hiramatsu H, Schlis K, Davis KL, Martin PL, Nemecek ER, Yanik GA, Peters C, Baruchel A, Boissel N, Mechinaud F, Balduzzi A, Krueger J, June CH, Levine BL, Wood P, Taran T, Leung M, Mueller KT, Zhang Y, Sen K, Lebwohl D, Pulsipher MA and Grupp SA: Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia. N Engl J Med 378(5): 439–448, 2018. DOI: 10.1056/NEJMoa1709866 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Munshi NC, Anderson LD Jr., Shah N, Madduri D, Berdeja J, Lonial S, Raje N, Lin Y, Siegel D, Oriol A, Moreau P, Yakoub-Agha I, Delforge M, Cavo M, Einsele H, Goldschmidt H, Weisel K, Rambaldi A, Reece D, Petrocca F, Massaro M, Connarn JN, Kaiser S, Patel P, Huang L, Campbell TB, Hege K and San-Miguel J: Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 384(8): 705–716, 2021. DOI: 10.1056/NEJMoa2024850 [DOI] [PubMed] [Google Scholar]
- 3.Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, Timmerman JM, Stiff PJ, Friedberg JW, Flinn IW, Goy A, Hill BT, Smith MR, Deol A, Farooq U, McSweeney P, Munoz J, Avivi I, Castro JE, Westin JR, Chavez JC, Ghobadi A, Komanduri KV, Levy R, Jacobsen ED, Witzig TE, Reagan P, Bot A, Rossi J, Navale L, Jiang Y, Aycock J, Elias M, Chang D, Wiezorek J and Go WY: Axicabtagene ciloleucel car t-cell therapy in refractory large b-cell lymphoma. N Engl J Med 377(26): 2531–2544, 2017. DOI: 10.1056/NEJMoa1707447 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak O, Brogdon JL, Pruteanu-Malinici I, Bhoj V, Landsburg D, Wasik M, Levine BL, Lacey SF, Melenhorst JJ, Porter DL and June CH: Chimeric antigen receptor t cells in refractory b-cell lymphomas. N Engl J Med 377(26): 2545–2554, 2017. DOI: 10.1056/NEJMoa1708566 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, Timmerman JM, Holmes H, Jaglowski S, Flinn IW, McSweeney PA, Miklos DB, Pagel JM, Kersten MJ, Milpied N, Fung H, Topp MS, Houot R, Beitinjaneh A, Peng W, Zheng L, Rossi JM, Jain RK, Rao AV and Reagan PM: Kte-x19 car t-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 382(14): 1331–1342, 2020. DOI: 10.1056/NEJMoa1914347 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Yuan Y, Lee JJ and Hilsenbeck SG: Model-assisted designs for early-phase clinical trials: Simplicity meets superiority. JCO Precis Oncol 3: PO.19.00032, 2019. DOI: 10.1200/PO.19.00032 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Yuan Y, Hess KR, Hilsenbeck SG and Gilbert MR: Bayesian optimal interval design: A simple and well-performing design for phase i oncology trials. Clin Cancer Res 22(17): 4291–4301, 2016. DOI: 10.1158/1078-0432.CCR-16-0592 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.O’Quigley J, Pepe M and Fisher L: Continual reassessment method: A practical design for phase 1 clinical trials in cancer. Biometrics 46(1): 33–48, 1990. [PubMed] [Google Scholar]
- 9.Piantadosi S, Fisher JD and Grossman S: Practical implementation of a modified continual reassessment method for dose-finding trials. Cancer Chemother Pharmacol 41(6): 429–436, 1998. DOI: 10.1007/s002800050763 [DOI] [PubMed] [Google Scholar]
- 10.Goodman SN, Zahurak ML and Piantadosi S: Some practical improvements in the continual reassessment method for phase i studies. Stat Med 14(11): 1149–1161, 1995. DOI: 10.1002/sim.4780141102 [DOI] [PubMed] [Google Scholar]
- 11.Korn EL, Midthune D, Chen TT, Rubinstein LV, Christian MC and Simon RM: A comparison of two phase i trial designs. Stat Med 13(18): 1799–1806, 1994. DOI: 10.1002/sim.4780131802 [DOI] [PubMed] [Google Scholar]
- 12.Skolnik JM, Barrett JS, Jayaraman B, Patel D and Adamson PC: Shortening the timeline of pediatric phase i trials: The rolling six design. J Clin Oncol 26(2): 190–195, 2008. DOI: 10.1200/JCO.2007.12.7712 [DOI] [PubMed] [Google Scholar]
- 13.Le Tourneau C, Lee JJ and Siu LL: Dose escalation methods in phase i cancer clinical trials. J Natl Cancer Inst 101(10): 708–720, 2009. DOI: 10.1093/jnci/djp079 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Hansen AR, Graham DM, Pond GR and Siu LL: Phase 1 trial design: Is 3 + 3 the best? Cancer Control 21(3): 200–208, 2014. DOI: 10.1177/107327481402100304 [DOI] [PubMed] [Google Scholar]
- 15.Zhou Y, Li R, Yan F, Lee JJ and Yuan Y: A comparative study of bayesian optimal interval (boin) design with interval 3+3 (i3+3) design for phase i oncology dose-finding trials. Stat Biopharm Res 13(2): 147–155, 2021. DOI: 10.1080/19466315.2020.1811147 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Simon R, Freidlin B, Rubinstein L, Arbuck SG, Collins J and Christian MC: Accelerated titration designs for phase i clinical trials in oncology. J Natl Cancer Inst 89(15): 1138–1147, 1997. DOI: 10.1093/jnci/89.15.1138 [DOI] [PubMed] [Google Scholar]
- 17.van Brummelen EM, Huitema AD, van Werkhoven E, Beijnen JH and Schellens JH: The performance of model-based versus rule-based phase i clinical trials in oncology : A quantitative comparison of the performance of model-based versus rule-based phase i trials with molecularly targeted anticancer drugs over the last 2 years. J Pharmacokinet Pharmacodyn 43(3): 235–242, 2016. DOI: 10.1007/s10928-016-9466-0 [DOI] [PubMed] [Google Scholar]
- 18.Ji Y and Wang SJ: Modified toxicity probability interval design: A safer and more reliable method than the 3 + 3 design for practical phase i trials. J Clin Oncol 31(14): 1785–1791, 2013. DOI: 10.1200/JCO.2012.45.7903 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Kessel M: The problems with today’s pharmaceutical business--an outsider’s view. Nat Biotechnol 29(1): 27–33, 2011. DOI: 10.1038/nbt.1748 [DOI] [PubMed] [Google Scholar]
- 20.Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q, Wang Y, Jia H and Han W: Phase i study of chimeric antigen receptor-modified t cells in patients with egfr-positive advanced biliary tract cancers. Clin Cancer Res 24(6): 1277–1286, 2018. DOI: 10.1158/1078-0432.CCR-17-0432 [DOI] [PubMed] [Google Scholar]
- 21.Beatty GL, O’Hara MH, Lacey SF, Torigian DA, Nazimuddin F, Chen F, Kulikovskaya IM, Soulen MC, McGarvey M, Nelson AM, Gladney WL, Levine BL, Melenhorst JJ, Plesa G and June CH: Activity of mesothelin-specific chimeric antigen receptor t cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155(1): 29–32, 2018. DOI: 10.1053/j.gastro.2018.03.029 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Lonez C, Verma B, Hendlisz A, Aftimos P, Awada A, Van Den Neste E, Catala G, Machiels JH, Piette F, Brayer JB, Sallman DA, Kerre T, Odunsi K, Davila ML, Gilham DE and Lehmann FF: Study protocol for think: A multinational open-label phase i study to assess the safety and clinical activity of multiple administrations of nkr-2 in patients with different metastatic tumour types. BMJ Open 7(11): e017075, 2017. DOI: 10.1136/bmjopen-2017-017075 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M, Burt DJ, Byatte AJ, Kirillova N, Valle JW, Sharma SK, Chester KA, Westwood NB, Halford SER, Nabarro S, Wan S, Austin E and Hawkins RE: The clinical efficacy of first-generation carcinoembryonic antigen (ceacam5)-specific car t cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 66(11): 1425–1436, 2017. DOI: 10.1007/s00262-017-2034-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Junghans RP, Ma Q, Rathore R, Gomes EM, Bais AJ, Lo AS, Abedi M, Davies RA, Cabral HJ, Al-Homsi AS and Cohen SI: Phase i trial of anti-psma designer car-t cells in prostate cancer: Possible role for interacting interleukin 2-t cell pharmacodynamics as a determinant of clinical response. Prostate 76(14): 1257–1270, 2016. DOI: 10.1002/pros.23214 [DOI] [PubMed] [Google Scholar]
- 25.Katz SC, Burga RA, McCormack E, Wang LJ, Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, Assanah EO, Davies R, Espat NJ and Junghans RP: Phase i hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified t-cell therapy for cea+ liver metastases. Clin Cancer Res 21(14): 3149–3159, 2015. DOI: 10.1158/1078-0432.CCR-14-1421 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, Zhang R, Xiong Z, Wei Z, Shen J, Luo Y, Zhang Q, Liu L, Qin H, Liu W, Wu F, Chen W, Pan F, Zhang X, Bie P, Liang H, Pecher G and Qian C: Phase i escalating-dose trial of car-t therapy targeting cea(+) metastatic colorectal cancers. Mol Ther 25(5): 1248–1258, 2017. DOI: 10.1016/j.ymthe.2017.03.010 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Lamers CH, Klaver Y, Gratama JW, Sleijfer S and Debets R: Treatment of metastatic renal cell carcinoma (mrcc) with caix car-engineered t-cells-a completed study overview. Biochem Soc Trans 44(3): 951–959, 2016. DOI: 10.1042/BST20160037 [DOI] [PubMed] [Google Scholar]
- 28.Ahmed N, Brawley VS, Hegde M, Robertson C, Ghazi A, Gerken C, Liu E, Dakhova O, Ashoori A, Corder A, Gray T, Wu MF, Liu H, Hicks J, Rainusso N, Dotti G, Mei Z, Grilley B, Gee A, Rooney CM, Brenner MK, Heslop HE, Wels WS, Wang LL, Anderson P and Gottschalk S: Human epidermal growth factor receptor 2 (her2) -specific chimeric antigen receptor-modified t cells for the immunotherapy of her2-positive sarcoma. J Clin Oncol 33(15): 1688–1696, 2015. DOI: 10.1200/JCO.2014.58.0225 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Gargett T, Yu W, Dotti G, Yvon ES, Christo SN, Hayball JD, Lewis ID, Brenner MK and Brown MP: Gd2-specific car t cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by pd-1 blockade. Mol Ther 24(6): 1135–1149, 2016. DOI: 10.1038/mt.2016.63 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.You F, Jiang L, Zhang B, Lu Q, Zhou Q, Liao X, Wu H, Du K, Zhu Y, Meng H, Gong Z, Zong Y, Huang L, Lu M, Tang J, Li Y, Zhai X, Wang X, Ye S, Chen D, Yuan L, Qi L and Yang L: Phase 1 clinical trial demonstrated that muc1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified anti-muc1 chimeric antigen receptor transduced t cells. Sci China Life Sci 59(4): 386–397, 2016. DOI: 10.1007/s11427-016-5024-7 [DOI] [PubMed] [Google Scholar]
- 31.Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J, Simpson J, Kurien A, Priceman SJ, Wang X, Harshbarger TL, D’Apuzzo M, Ressler JA, Jensen MC, Barish ME, Chen M, Portnow J, Forman SJ and Badie B: Regression of glioblastoma after chimeric antigen receptor t-cell therapy. N Engl J Med 375(26): 2561–2569, 2016. DOI: 10.1056/NEJMoa1610497 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem S, Maloney E, Shen A, Isaacs R, Mohan S, Plesa G, Lacey SF, Navenot JM, Zheng Z, Levine BL, Okada H, June CH, Brogdon JL and Maus MV: A single dose of peripherally infused egfrviii-directed car t cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9(399): eaaa0984, 2017. DOI: 10.1126/scitranslmed.aaa0984 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Hege KM, Bergsland EK, Fisher GA, Nemunaitis JJ, Warren RS, McArthur JG, Lin AA, Schlom J, June CH and Sherwin SA: Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (car)-t cells specific for tag-72 in colorectal cancer. J Immunother Cancer 5: 22, 2017. DOI: 10.1186/s40425-017-0222-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM, Melenhorst JJ, Kulikovskaya I, Brennan AL, Liu X, Lacey SF, Posey AD Jr., Williams AD, So A, Conejo-Garcia JR, Plesa G, Young RM, McGettigan S, Campbell J, Pierce RH, Matro JM, DeMichele AM, Clark AS, Cooper LJ, Schuchter LM, Vonderheide RH and June CH: Safety and efficacy of intratumoral injections of chimeric antigen receptor (car) t cells in metastatic breast cancer. Cancer Immunol Res 5(12): 1152–1161, 2017. DOI: 10.1158/2326-6066.CIR-17-0189 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Feng K, Liu Y, Guo Y, Qiu J, Wu Z, Dai H, Yang Q, Wang Y and Han W: Phase i study of chimeric antigen receptor modified t cells in treating her2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 9(10): 838–847, 2018. DOI: 10.1007/s13238-017-0440-4 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Liu Y, Guo Y, Wu Z, Feng K, Tong C, Wang Y, Dai H, Shi F, Yang Q and Han W: Anti-egfr chimeric antigen receptor-modified t cells in metastatic pancreatic carcinoma: A phase i clinical trial. Cytotherapy 22(10): 573–580, 2020. DOI: 10.1016/j.jcyt.2020.04.088 [DOI] [PubMed] [Google Scholar]
- 37.Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, Vogl DT, Weiss BM, Dengel K, Nelson A, Plesa G, Chen F, Davis MM, Hwang WT, Young RM, Brogdon JL, Isaacs R, Pruteanu-Malinici I, Siegel DL, Levine BL, June CH and Milone MC: B cell maturation antigen-specific car t cells are clinically active in multiple myeloma. J Clin Invest 129(6): 2210–2221, 2019. DOI: 10.1172/JCI126397 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Zhao WH, Liu J, Wang BY, Chen YX, Cao XM, Yang Y, Zhang YL, Wang FX, Zhang PY, Lei B, Gu LF, Wang JL, Yang N, Zhang R, Zhang H, Shen Y, Bai J, Xu Y, Wang XG, Zhang RL, Wei LL, Li ZF, Li ZZ, Geng Y, He Q, Zhuang QC, Fan XH, He AL and Zhang WG: A phase 1, open-label study of lcar-b38m, a chimeric antigen receptor t cell therapy directed against b cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J Hematol Oncol 11(1): 141, 2018. DOI: 10.1186/s13045-018-0681-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Turka A, Lam LP, Morgan RA, Friedman K, Massaro M, Wang J, Russotti G, Yang Z, Campbell T, Hege K, Petrocca F, Quigley MT, Munshi N and Kochenderfer JN: Anti-bcma car t-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 380(18): 1726–1737, 2019. DOI: 10.1056/NEJMoa1817226 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Ali SA, Shi V, Maric I, Wang M, Stroncek DF, Rose JJ, Brudno JN, Stetler-Stevenson M, Feldman SA, Hansen BG, Fellowes VS, Hakim FT, Gress RE and Kochenderfer JN: T cells expressing an anti-b-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128(13): 1688–1700, 2016. DOI: 10.1182/blood-2016-04-711903 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Xu J, Chen LJ, Yang SS, Sun Y, Wu W, Liu YF, Xu J, Zhuang Y, Zhang W, Weng XQ, Wu J, Wang Y, Wang J, Yan H, Xu WB, Jiang H, Du J, Ding XY, Li B, Li JM, Fu WJ, Zhu J, Zhu L, Chen Z, Fan XF, Hou J, Li JY, Mi JQ and Chen SJ: Exploratory trial of a biepitopic car t-targeting b cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci U S A 116(19): 9543–9551, 2019. DOI: 10.1073/pnas.1819745116 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Garfall AL, Stadtmauer EA, Hwang WT, Lacey SF, Melenhorst JJ, Krevvata M, Carroll MP, Matsui WH, Wang Q, Dhodapkar MV, Dhodapkar K, Das R, Vogl DT, Weiss BM, Cohen AD, Mangan PA, Ayers EC, Nunez-Cruz S, Kulikovskaya I, Davis MM, Lamontagne A, Dengel K, Kerr ND, Young RM, Siegel DL, Levine BL, Milone MC, Maus MV and June CH: Anti-cd19 car t cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 3(8): e120505, 2018. DOI: 10.1172/jci.insight.120505 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Wang CM, Wu ZQ, Wang Y, Guo YL, Dai HR, Wang XH, Li X, Zhang YJ, Zhang WY, Chen MX, Zhang Y, Feng KC, Liu Y, Li SX, Yang QM and Han WD: Autologous t cells expressing cd30 chimeric antigen receptors for relapsed or refractory hodgkin lymphoma: An open-label phase i trial. Clin Cancer Res 23(5): 1156–1166, 2017. DOI: 10.1158/1078-0432.CCR-16-1365 [DOI] [PubMed] [Google Scholar]
- 44.Ramos CA, Ballard B, Zhang H, Dakhova O, Gee AP, Mei Z, Bilgi M, Wu MF, Liu H, Grilley B, Bollard CM, Chang BH, Rooney CM, Brenner MK, Heslop HE, Dotti G and Savoldo B: Clinical and immunological responses after cd30-specific chimeric antigen receptor-redirected lymphocytes. J Clin Invest 127(9): 3462–3471, 2017. DOI: 10.1172/JCI94306 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Yan ZX, Li L, Wang W, OuYang BS, Cheng S, Wang L, Wu W, Xu PP, Muftuoglu M, Hao M, Yang S, Zhang MC, Zheng Z, Li J and Zhao WL: Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-cd19 chimeric antigen receptor t cells in refractory b-cell non-hodgkin’s lymphoma. Clin Cancer Res 25(23): 6995–7003, 2019. DOI: 10.1158/1078-0432.CCR-19-0101 [DOI] [PubMed] [Google Scholar]
- 46.Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, Hawkins R, Chaney C, Cherian S, Chen X, Soma L, Wood B, Li D, Heimfeld S, Riddell SR and Maloney DG: Immunotherapy of non-hodgkin’s lymphoma with a defined ratio of cd8+ and cd4+ cd19-specific chimeric antigen receptor-modified t cells. Sci Transl Med 8(355): 355ra116, 2016. DOI: 10.1126/scitranslmed.aaf8621 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Gooley T, Li D, Cherian S, Chen X, Pender BS, Hawkins RM, Vakil A, Steinmetz RN, Acharya UH, Cassaday RD, Chapuis AG, Dhawale TM, Hendrie PC, Kiem HP, Lynch RC, Ramos J, Shadman M, Till BG, Riddell SR, Maloney DG and Turtle CJ: The response to lymphodepletion impacts pfs in patients with aggressive non-hodgkin lymphoma treated with cd19 car t cells. Blood 133(17): 1876–1887, 2019. DOI: 10.1182/blood-2018-11-887067 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC, Hosing CM, Ghobadi A, Budde LE, Bot A, Rossi JM, Jiang Y, Xue AX, Elias M, Aycock J, Wiezorek J and Go WY: Phase 1 results of zuma-1: A multicenter study of kte-c19 anti-cd19 car t cell therapy in refractory aggressive lymphoma. Mol Ther 25(1): 285–295, 2017. DOI: 10.1016/j.ymthe.2016.10.020 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Enblad G, Karlsson H, Gammelgard G, Wenthe J, Lovgren T, Amini RM, Wikstrom KI, Essand M, Savoldo B, Hallbook H, Hoglund M, Dotti G, Brenner MK, Hagberg H and Loskog A: A phase i/iia trial using cd19-targeted third-generation car t cells for lymphoma and leukemia. Clin Cancer Res 24(24): 6185–6194, 2018. DOI: 10.1158/1078-0432.CCR-18-0426 [DOI] [PubMed] [Google Scholar]
- 50.Wang X, Popplewell LL, Wagner JR, Naranjo A, Blanchard MS, Mott MR, Norris AP, Wong CW, Urak RZ, Chang WC, Khaled SK, Siddiqi T, Budde LE, Xu J, Chang B, Gidwaney N, Thomas SH, Cooper LJ, Riddell SR, Brown CE, Jensen MC and Forman SJ: Phase 1 studies of central memory-derived cd19 car t-cell therapy following autologous hsct in patients with b-cell nhl. Blood 127(24): 2980–2990, 2016. DOI: 10.1182/blood-2015-12-686725 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Sauter CS, Senechal B, Riviere I, Ni A, Bernal Y, Wang X, Purdon T, Hall M, Singh AN, Szenes VZ, Yoo S, Dogan A, Wang Y, Moskowitz CH, Giralt S, Matasar MJ, Perales MA, Curran KJ, Park J, Sadelain M and Brentjens RJ: Cd19 car t cells following autologous transplantation in poor-risk relapsed and refractory b-cell non-hodgkin lymphoma. Blood 134(7): 626–635, 2019. DOI: 10.1182/blood.2018883421 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Bouchkouj N, Kasamon YL, de Claro RA, George B, Lin X, Lee S, Blumenthal GM, Bryan W, McKee AE and Pazdur R: Fda approval summary: Axicabtagene ciloleucel for relapsed or refractory large b-cell lymphoma. Clin Cancer Res 25(6): 1702–1708, 2019. DOI: 10.1158/1078-0432.CCR-18-2743 [DOI] [PubMed] [Google Scholar]
- 53.Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ, Oluwole OO, Lin Y, Braunschweig I, Hill BT, Timmerman JM, Deol A, Reagan PM, Stiff P, Flinn IW, Farooq U, Goy A, McSweeney PA, Munoz J, Siddiqi T, Chavez JC, Herrera AF, Bartlett NL, Wiezorek JS, Navale L, Xue A, Jiang Y, Bot A, Rossi JM, Kim JJ, Go WY and Neelapu SS: Long-term safety and activity of axicabtagene ciloleucel in refractory large b-cell lymphoma (zuma-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol 20(1): 31–42, 2019. DOI: 10.1016/S1470-2045(18)30864-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Ying Z, Huang XF, Xiang X, Liu Y, Kang X, Song Y, Guo X, Liu H, Ding N, Zhang T, Duan P, Lin Y, Zheng W, Wang X, Lin N, Tu M, Xie Y, Zhang C, Liu W, Deng L, Gao S, Ping L, Wang X, Zhou N, Zhang J, Wang Y, Lin S, Mamuti M, Yu X, Fang L, Wang S, Song H, Wang G, Jones L, Zhu J and Chen SY: A safe and potent anti-cd19 car t cell therapy. Nat Med 25(6): 947–953, 2019. DOI: 10.1038/s41591-019-0421-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Bao F, Wan W, He T, Qi F, Liu G, Hu K, Lu XA, Yang P, Dong F, Wang J and Jing H: Autologous cd19-directed chimeric antigen receptor-t cell is an effective and safe treatment to refractory or relapsed diffuse large b-cell lymphoma. Cancer Gene Ther 26(7–8): 248–255, 2019. DOI: 10.1038/s41417-018-0073-7 [DOI] [PubMed] [Google Scholar]
- 56.Brudno JN, Lam N, Vanasse D, Shen YW, Rose JJ, Rossi J, Xue A, Bot A, Scholler N, Mikkilineni L, Roschewski M, Dean R, Cachau R, Youkharibache P, Patel R, Hansen B, Stroncek DF, Rosenberg SA, Gress RE and Kochenderfer JN: Safety and feasibility of anti-cd19 car t cells with fully human binding domains in patients with b-cell lymphoma. Nat Med 26(2): 270–280, 2020. DOI: 10.1038/s41591-019-0737-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Tong C, Zhang Y, Liu Y, Ji X, Zhang W, Guo Y, Han X, Ti D, Dai H, Wang C, Yang Q, Liu W, Wang Y, Wu Z and Han W: Optimized tandem cd19/cd20 car-engineered t cells in refractory/relapsed b-cell lymphoma. Blood 136(14): 1632–1644, 2020. DOI: 10.1182/blood.2020005278 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Zhou X, Tu S, Wang C, Huang R, Deng L, Song C, Yue C, He Y, Yang J, Liang Z, Wu A, Li M, Zhou W, Du J, Guo Z, Li Y, Jiao C, Liu Y, Chang LJ and Li Y: Phase i trial of fourth-generation anti-cd19 chimeric antigen receptor t cells against relapsed or refractory b cell non-hodgkin lymphomas. Front Immunol 11: 564099, 2020. DOI: 10.3389/fimmu.2020.564099 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Pender BS, Hawkins RM, Vakil A, Steinmetz RN, Riddell SR, Maloney DG and Turtle CJ: High rate of durable complete remission in follicular lymphoma after cd19 car-t cell immunotherapy. Blood 134(7): 636–640, 2019. DOI: 10.1182/blood.2019000905 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Gardner RA, Finney O, Annesley C, Brakke H, Summers C, Leger K, Bleakley M, Brown C, Mgebroff S, Kelly-Spratt KS, Hoglund V, Lindgren C, Oron AP, Li D, Riddell SR, Park JR and Jensen MC: Intent-to-treat leukemia remission by cd19 car t cells of defined formulation and dose in children and young adults. Blood 129(25): 3322–3331, 2017. DOI: 10.1182/blood-2017-02-769208 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Li S, Zhang J, Wang M, Fu G, Li Y, Pei L, Xiong Z, Qin D, Zhang R, Tian X, Wei Z, Chen R, Chen X, Wan J, Chen J, Wei X, Xu Y, Zhang P, Wang P, Peng X, Yang S, Shen J, Yang Z, Chen J and Qian C: Treatment of acute lymphoblastic leukaemia with the second generation of cd19 car-t containing either cd28 or 4–1bb. Br J Haematol 181(3): 360–371, 2018. DOI: 10.1111/bjh.15195 [DOI] [PubMed] [Google Scholar]
- 62.Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, Wolters P, Martin S, Delbrook C, Yates B, Shalabi H, Fountaine TJ, Shern JF, Majzner RG, Stroncek DF, Sabatino M, Feng Y, Dimitrov DS, Zhang L, Nguyen S, Qin H, Dropulic B, Lee DW and Mackall CL: Cd22-targeted car t cells induce remission in b-all that is naive or resistant to cd19-targeted car immunotherapy. Nat Med 24(1): 20–28, 2018. DOI: 10.1038/nm.4441 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Rossig C, Pule M, Altvater B, Saiagh S, Wright G, Ghorashian S, Clifton-Hadley L, Champion K, Sattar Z, Popova B, Hackshaw A, Smith P, Roberts T, Biagi E, Dreno B, Rousseau R, Kailayangiri S, Ahlmann M, Hough R, Kremens B, Sauer MG, Veys P, Goulden N, Cummins M and Amrolia PJ: Vaccination to improve the persistence of cd19car gene-modified t cells in relapsed pediatric acute lymphoblastic leukemia. Leukemia 31(5): 1087–1095, 2017. DOI: 10.1038/leu.2017.39 [DOI] [PubMed] [Google Scholar]
- 64.Hay KA, Gauthier J, Hirayama AV, Voutsinas JM, Wu Q, Li D, Gooley TA, Cherian S, Chen X, Pender BS, Hawkins RM, Vakil A, Steinmetz RN, Schoch G, Chapuis AG, Till BG, Kiem HP, Ramos JD, Shadman M, Cassaday RD, Acharya UH, Riddell SR, Maloney DG and Turtle CJ: Factors associated with durable efs in adult b-cell all patients achieving mrd-negative cr after cd19 car t-cell therapy. Blood 133(15): 1652–1663, 2019. DOI: 10.1182/blood-2018-11-883710 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Ghorashian S, Kramer AM, Onuoha S, Wright G, Bartram J, Richardson R, Albon SJ, Casanovas-Company J, Castro F, Popova B, Villanueva K, Yeung J, Vetharoy W, Guvenel A, Wawrzyniecka PA, Mekkaoui L, Cheung GW, Pinner D, Chu J, Lucchini G, Silva J, Ciocarlie O, Lazareva A, Inglott S, Gilmour KC, Ahsan G, Ferrari M, Manzoor S, Champion K, Brooks T, Lopes A, Hackshaw A, Farzaneh F, Chiesa R, Rao K, Bonney D, Samarasinghe S, Goulden N, Vora A, Veys P, Hough R, Wynn R, Pule MA and Amrolia PJ: Enhanced car t cell expansion and prolonged persistence in pediatric patients with all treated with a low-affinity cd19 car. Nat Med 25(9): 1408–1414, 2019. DOI: 10.1038/s41591-019-0549-5 [DOI] [PubMed] [Google Scholar]
- 66.Ma F, Ho JY, Du H, Xuan F, Wu X, Wang Q, Wang L, Liu Y, Ba M, Wang Y, Luo J and Li J: Evidence of long-lasting anti-cd19 activity of engrafted cd19 chimeric antigen receptor-modified t cells in a phase i study targeting pediatrics with acute lymphoblastic leukemia. Hematol Oncol 37(5): 601–608, 2019. DOI: 10.1002/hon.2672 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Tang XY, Sun Y, Zhang A, Hu GL, Cao W, Wang DH, Zhang B and Chen H: Third-generation cd28/4–1bb chimeric antigen receptor t cells for chemotherapy relapsed or refractory acute lymphoblastic leukaemia: A non-randomised, open-label phase i trial protocol. BMJ Open 6(12): e013904, 2016. DOI: 10.1136/bmjopen-2016-013904 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Cai B, Guo M, Wang Y, Zhang Y, Yang J, Guo Y, Dai H, Yu C, Sun Q, Qiao J, Hu K, Zuo H, Dong Z, Zhang Z, Feng M, Li B, Sun Y, Liu T, Liu Z, Wang Y, Huang Y, Yao B, Han W and Ai H: Co-infusion of haplo-identical cd19-chimeric antigen receptor t cells and stem cells achieved full donor engraftment in refractory acute lymphoblastic leukemia. J Hematol Oncol 9(1): 131, 2016. DOI: 10.1186/s13045-016-0357-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, Robinson E, Steevens NN, Chaney C, Soma L, Chen X, Yeung C, Wood B, Li D, Cao J, Heimfeld S, Jensen MC, Riddell SR and Maloney DG: Cd19 car-t cells of defined cd4+:Cd8+ composition in adult b cell all patients. J Clin Invest 126(6): 2123–2138, 2016. DOI: 10.1172/JCI85309 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Weng J, Lai P, Qin L, Lai Y, Jiang Z, Luo C, Huang X, Wu S, Shao D, Deng C, Huang L, Lu Z, Zhou M, Zeng L, Chen D, Wang Y, Chen X, Geng S, Robert W, Tang Z, He C, Li P and Du X: A novel generation 1928zt2 car t cells induce remission in extramedullary relapse of acute lymphoblastic leukemia. J Hematol Oncol 11(1): 25, 2018. DOI: 10.1186/s13045-018-0572-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, Halton E, Wang X, Senechal B, Purdon T, Cross JR, Liu H, Vachha B, Chen X, DeAngelis LM, Li D, Bernal Y, Gonen M, Wendel HG, Sadelain M and Brentjens RJ: Clinical and biological correlates of neurotoxicity associated with car t-cell therapy in patients with b-cell acute lymphoblastic leukemia. Cancer Discov 8(8): 958–971, 2018. DOI: 10.1158/2159-8290.CD-17-1319 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Park JH, Romero FA, Taur Y, Sadelain M, Brentjens RJ, Hohl TM and Seo SK: Cytokine release syndrome grade as a predictive marker for infections in patients with relapsed or refractory b-cell acute lymphoblastic leukemia treated with chimeric antigen receptor t cells. Clin Infect Dis 67(4): 533–540, 2018. DOI: 10.1093/cid/ciy152 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Jacoby E, Bielorai B, Avigdor A, Itzhaki O, Hutt D, Nussboim V, Meir A, Kubi A, Levy M, Zikich D, Zeltzer LA, Brezinger K, Schachter J, Nagler A, Besser MJ and Toren A: Locally produced cd19 car t cells leading to clinical remissions in medullary and extramedullary relapsed acute lymphoblastic leukemia. Am J Hematol 93(12): 1485–1492, 2018. DOI: 10.1002/ajh.25274 [DOI] [PubMed] [Google Scholar]
- 74.Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, Sauter C, Wang Y, Santomasso B, Mead E, Roshal M, Maslak P, Davila M, Brentjens RJ and Sadelain M: Long-term follow-up of cd19 car therapy in acute lymphoblastic leukemia. N Engl J Med 378(5): 449–459, 2018. DOI: 10.1056/NEJMoa1709919 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Jiang H, Liu L, Guo T, Wu Y, Ai L, Deng J, Dong J, Mei H and Hu Y: Improving the safety of car-t cell therapy by controlling crs-related coagulopathy. Ann Hematol 98(7): 1721–1732, 2019. DOI: 10.1007/s00277-019-03685-z [DOI] [PubMed] [Google Scholar]
- 76.Curran KJ, Margossian SP, Kernan NA, Silverman LB, Williams DA, Shukla N, Kobos R, Forlenza CJ, Steinherz P, Prockop S, Boulad F, Spitzer B, Cancio MI, Boelens JJ, Kung AL, Khakoo Y, Szenes V, Park JH, Sauter CS, Heller G, Wang X, Senechal B, O’Reilly RJ, Riviere I, Sadelain M and Brentjens RJ: Toxicity and response after cd19-specific car t-cell therapy in pediatric/young adult relapsed/refractory b-all. Blood 134(26): 2361–2368, 2019. DOI: 10.1182/blood.2019001641 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Liu Y, Fang Y, Chen X, Wang Z, Liang X, Zhang T, Liu M, Zhou N, Lv J, Tang K, Xie J, Gao Y, Cheng F, Zhou Y, Zhang Z, Hu Y, Zhang X, Gao Q, Zhang Y and Huang B: Gasdermin e-mediated target cell pyroptosis by car t cells triggers cytokine release syndrome. Sci Immunol 5(43): eaax7969, 2020. DOI: 10.1126/sciimmunol.aax7969 [DOI] [PubMed] [Google Scholar]
- 78.Magnani CF, Gaipa G, Lussana F, Belotti D, Gritti G, Napolitano S, Matera G, Cabiati B, Buracchi C, Borleri G, Fazio G, Zaninelli S, Tettamanti S, Cesana S, Colombo V, Quaroni M, Cazzaniga G, Rovelli A, Biagi E, Galimberti S, Calabria A, Benedicenti F, Montini E, Ferrari S, Introna M, Balduzzi A, Valsecchi MG, Dastoli G, Rambaldi A and Biondi A: Sleeping beauty-engineered car t cells achieve antileukemic activity without severe toxicities. J Clin Invest 130(11): 6021–6033, 2020. DOI: 10.1172/JCI138473 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 79.Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R, Olivares S, Jena B, Dawson MJ, Kumaresan PR, Su S, Maiti S, Dai J, Moriarity B, Forget MA, Senyukov V, Orozco A, Liu T, McCarty J, Jackson RN, Moyes JS, Rondon G, Qazilbash M, Ciurea S, Alousi A, Nieto Y, Rezvani K, Marin D, Popat U, Hosing C, Shpall EJ, Kantarjian H, Keating M, Wierda W, Do KA, Largaespada DA, Lee DA, Hackett PB, Champlin RE and Cooper LJ: Phase i trials using sleeping beauty to generate cd19-specific car t cells. J Clin Invest 126(9): 3363–3376, 2016. DOI: 10.1172/JCI86721 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS and Mackall CL: T cells expressing cd19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet 385(9967): 517–528, 2015. DOI: 10.1016/S0140-6736(14)61403-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Itzhaki O, Jacoby E, Nissani A, Levi M, Nagler A, Kubi A, Brezinger K, Brayer H, Zeltzer LA, Rozenbaum M, Vernitsky H, Markel G, Toren A, Avigdor A, Schachter J and Besser MJ: Head-to-head comparison of in-house produced cd19 car-t cell in all and nhl patients. J Immunother Cancer 8(1), 2020. DOI: 10.1136/jitc-2019-000148 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Stroncek DF, Ren J, Lee DW, Tran M, Frodigh SE, Sabatino M, Khuu H, Merchant MS and Mackall CL: Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor t cells. Cytotherapy 18(7): 893–901, 2016. DOI: 10.1016/j.jcyt.2016.04.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Stroncek DF, Lee DW, Ren J, Sabatino M, Highfill S, Khuu H, Shah NN, Kaplan RN, Fry TJ and Mackall CL: Elutriated lymphocytes for manufacturing chimeric antigen receptor t cells. J Transl Med 15(1): 59, 2017. DOI: 10.1186/s12967-017-1160-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84.Geyer MB, Riviere I, Senechal B, Wang X, Wang Y, Purdon TJ, Hsu M, Devlin SM, Palomba ML, Halton E, Bernal Y, van Leeuwen DG, Sadelain M, Park JH and Brentjens RJ: Safety and tolerability of conditioning chemotherapy followed by cd19-targeted car t cells for relapsed/refractory cll. JCI Insight 5: e122627, 2019. DOI: 10.1172/jci.insight.122627 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Geyer MB, Riviere I, Senechal B, Wang X, Wang Y, Purdon TJ, Hsu M, Devlin SM, Halton E, Lamanna N, Rademaker J, Sadelain M, Brentjens RJ and Park JH: Autologous cd19-targeted car t cells in patients with residual cll following initial purine analog-based therapy. Mol Ther 26(8): 1896–1905, 2018. DOI: 10.1016/j.ymthe.2018.05.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Cheng Z, Wei R, Ma Q, Shi L, He F, Shi Z, Jin T, Xie R, Wei B, Chen J, Fang H, Han X, Rohrs JA, Bryson P, Liu Y, Li QJ, Zhu B and Wang P: In vivo expansion and antitumor activity of coinfused cd28- and 4–1bb-engineered car-t cells in patients with b cell leukemia. Mol Ther 26(4): 976–985, 2018. DOI: 10.1016/j.ymthe.2018.01.022 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Turtle CJ, Hay KA, Hanafi LA, Li D, Cherian S, Chen X, Wood B, Lozanski A, Byrd JC, Heimfeld S, Riddell SR and Maloney DG: Durable molecular remissions in chronic lymphocytic leukemia treated with cd19-specific chimeric antigen receptor-modified t cells after failure of ibrutinib. J Clin Oncol 35(26): 3010–3020, 2017. DOI: 10.1200/JCO.2017.72.8519 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, Nandivada V, Kaur I, Nunez Cortes A, Cao K, Daher M, Hosing C, Cohen EN, Kebriaei P, Mehta R, Neelapu S, Nieto Y, Wang M, Wierda W, Keating M, Champlin R, Shpall EJ and Rezvani K: Use of car-transduced natural killer cells in cd19-positive lymphoid tumors. N Engl J Med 382(6): 545–553, 2020. DOI: 10.1056/NEJMoa1910607 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 89.Schubert ML, Schmitt A, Sellner L, Neuber B, Kunz J, Wuchter P, Kunz A, Gern U, Michels B, Hofmann S, Huckelhoven-Krauss A, Kulozik A, Ho AD, Muller-Tidow C, Dreger P and Schmitt M: Treatment of patients with relapsed or refractory cd19+ lymphoid disease with t lymphocytes transduced by rv-sfg.Cd19.Cd28.4–1bbzeta retroviral vector: A unicentre phase i/ii clinical trial protocol. BMJ Open 9(5): e026644, 2019. DOI: 10.1136/bmjopen-2018-026644 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Sheih A, Voillet V, Hanafi LA, DeBerg HA, Yajima M, Hawkins R, Gersuk V, Riddell SR, Maloney DG, Wohlfahrt ME, Pande D, Enstrom MR, Kiem HP, Adair JE, Gottardo R, Linsley PS and Turtle CJ: Clonal kinetics and single-cell transcriptional profiling of car-t cells in patients undergoing cd19 car-t immunotherapy. Nat Commun 11(1): 219, 2020. DOI: 10.1038/s41467-019-13880-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Baumeister SH, Murad J, Werner L, Daley H, Trebeden-Negre H, Gicobi JK, Schmucker A, Reder J, Sentman CL, Gilham DE, Lehmann FF, Galinsky I, DiPietro H, Cummings K, Munshi NC, Stone RM, Neuberg DS, Soiffer R, Dranoff G, Ritz J and Nikiforow S: Phase i trial of autologous car t cells targeting nkg2d ligands in patients with aml/mds and multiple myeloma. Cancer Immunol Res 7(1): 100–112, 2019. DOI: 10.1158/2326-6066.CIR-18-0307 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Finney OC, Brakke HM, Rawlings-Rhea S, Hicks R, Doolittle D, Lopez M, Futrell RB, Orentas RJ, Li D, Gardner RA and Jensen MC: Cd19 car t cell product and disease attributes predict leukemia remission durability. J Clin Invest 129(5): 2123–2132, 2019. DOI: 10.1172/JCI125423 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, Lopez JA, Chen J, Chung D, Harju-Baker S, Cherian S, Chen X, Riddell SR, Maloney DG and Turtle CJ: Kinetics and biomarkers of severe cytokine release syndrome after cd19 chimeric antigen receptor-modified t-cell therapy. Blood 130(21): 2295–2306, 2017. DOI: 10.1182/blood-2017-06-793141 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 94.Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M, Feldman S, Lu L, Li YF, Ngo LT, Goy A, Feldman T, Spaner DE, Wang ML, Chen CC, Kranick SM, Nath A, Nathan DA, Morton KE, Toomey MA and Rosenberg SA: Chemotherapy-refractory diffuse large b-cell lymphoma and indolent b-cell malignancies can be effectively treated with autologous t cells expressing an anti-cd19 chimeric antigen receptor. J Clin Oncol 33(6): 540–549, 2015. DOI: 10.1200/JCO.2014.56.2025 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Shalabi H, Wolters PL, Martin S, Toledo-Tamula MA, Roderick MC, Struemph K, Kane E, Yates B, Delbrook C, Mackall CL, Lee DW, Fry TJ and Shah NN: Systematic evaluation of neurotoxicity in children and young adults undergoing cd22 chimeric antigen receptor t-cell therapy. J Immunother 41(7): 350–358, 2018. DOI: 10.1097/CJI.0000000000000241 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Katz SC, Hardaway J, Prince E, Guha P, Cunetta M, Moody A, Wang LJ, Armenio V, Espat NJ and Junghans RP: Hitm-sir: Phase ib trial of intraarterial chimeric antigen receptor t-cell therapy and selective internal radiation therapy for cea(+) liver metastases. Cancer Gene Ther 27(5): 341–355, 2020. DOI: 10.1038/s41417-019-0104-z [DOI] [PubMed] [Google Scholar]
- 97.Cordeiro A, Bezerra ED, Hirayama AV, Hill JA, Wu QV, Voutsinas J, Sorror ML, Turtle CJ, Maloney DG and Bar M: Late events after treatment with cd19-targeted chimeric antigen receptor modified t cells. Biol Blood Marrow Transplant 26(1): 26–33, 2020. DOI: 10.1016/j.bbmt.2019.08.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Heng G, Jia J, Li S, Fu G, Wang M, Qin D, Li Y, Pei L, Tian X, Zhang J, Wu Y, Xiang S, Wan J, Zhu W, Zhang P, Zhang Q, Peng X, Wang L, Wang P, Wei Z, Zhang Y, Wang G, Chen X, Zhang C, Sun Y, Zhao W, Fan Y, Yang Z, Chen J and Qian C: Sustained therapeutic efficacy of humanized anti-cd19 chimeric antigen receptor t cells in relapsed/refractory acute lymphoblastic leukemia. Clin Cancer Res 26(7): 1606–1615, 2020. DOI: 10.1158/1078-0432.CCR-19-1339 [DOI] [PubMed] [Google Scholar]
- 99.Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D, Han X, Liu Y, Zhang W, Wang C, Zhang Y, Chen M, Yang Q, Wang Y and Han W: Bispecific car-t cells targeting both cd19 and cd22 for therapy of adults with relapsed or refractory b cell acute lymphoblastic leukemia. J Hematol Oncol 13(1): 30, 2020. DOI: 10.1186/s13045-020-00856-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Shah NN, Highfill SL, Shalabi H, Yates B, Jin J, Wolters PL, Ombrello A, Steinberg SM, Martin S, Delbrook C, Hoffman L, Little L, Ponduri A, Qin H, Qureshi H, Dulau-Florea A, Salem D, Wang HW, Yuan C, Stetler-Stevenson M, Panch S, Tran M, Mackall CL, Stroncek DF and Fry TJ: Cd4/cd8 t-cell selection affects chimeric antigen receptor (car) t-cell potency and toxicity: Updated results from a phase i anti-cd22 car t-cell trial. J Clin Oncol 38(17): 1938–1950, 2020. DOI: 10.1200/JCO.19.03279 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Zhang X, Lu XA, Yang J, Zhang G, Li J, Song L, Su Y, Shi Y, Zhang M, He J, Song D, Lv F, Li W, Wu Y, Wang H, Liu H, Zhou X, He T and Lu P: Efficacy and safety of anti-cd19 car t-cell therapy in 110 patients with b-cell acute lymphoblastic leukemia with high-risk features. Blood Adv 4(10): 2325–2338, 2020. DOI: 10.1182/bloodadvances.2020001466 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Chen X, Li X, Liu Y, Zhang Z, Zhang X, Huang J, Li H, Li F, Zhang L, Li L, Wu X, Ma W, Sun Z, Yu H, Zhou Z, Feng X, Cui K, Li Z, Zhang H, Zeng Y, Wan X, Chen YH, Zhang M and Zhang Y: A phase i clinical trial of chimeric antigen receptor-modified t cells in patients with relapsed and refractory lymphoma. Immunotherapy 12(10): 681–696, 2020. DOI: 10.2217/imt-2020-0022 [DOI] [PubMed] [Google Scholar]
- 103.Ramos CA, Grover NS, Beaven AW, Lulla PD, Wu MF, Ivanova A, Wang T, Shea TC, Rooney CM, Dittus C, Park SI, Gee AP, Eldridge PW, McKay KL, Mehta B, Cheng CJ, Buchanan FB, Grilley BJ, Morrison K, Brenner MK, Serody JS, Dotti G, Heslop HE and Savoldo B: Anti-cd30 car-t cell therapy in relapsed and refractory hodgkin lymphoma. J Clin Oncol 38(32): 3794–3804, 2020. DOI: 10.1200/JCO.20.01342 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Katz SC, Moody AE, Guha P, Hardaway JC, Prince E, LaPorte J, Stancu M, Slansky JE, Jordan KR, Schulick RD, Knight R, Saied A, Armenio V and Junghans RP: Hitm-sure: Hepatic immunotherapy for metastases phase ib anti-cea car-t study utilizing pressure enabled drug delivery. J Immunother Cancer 8(2): e001097, 2020. DOI: 10.1136/jitc-2020-001097 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Shah NN, Johnson BD, Schneider D, Zhu F, Szabo A, Keever-Taylor CA, Krueger W, Worden AA, Kadan MJ, Yim S, Cunningham A, Hamadani M, Fenske TS, Dropulic B, Orentas R and Hari P: Bispecific anti-cd20, anti-cd19 car t cells for relapsed b cell malignancies: A phase 1 dose escalation and expansion trial. Nat Med 26(10): 1569–1575, 2020. DOI: 10.1038/s41591-020-1081-3 [DOI] [PubMed] [Google Scholar]
- 106.Benjamin R, Graham C, Yallop D, Jozwik A, Mirci-Danicar OC, Lucchini G, Pinner D, Jain N, Kantarjian H, Boissel N, Maus MV, Frigault MJ, Baruchel A, Mohty M, Gianella-Borradori A, Binlich F, Balandraud S, Vitry F, Thomas E, Philippe A, Fouliard S, Dupouy S, Marchiq I, Almena-Carrasco M, Ferry N, Arnould S, Konto C, Veys P, Qasim W and Group U: Genome-edited, donor-derived allogeneic anti-cd19 chimeric antigen receptor t cells in paediatric and adult b-cell acute lymphoblastic leukaemia: Results of two phase 1 studies. Lancet 396(10266): 1885–1894, 2020. DOI: 10.1016/S0140-6736(20)32334-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Hiltbrunner S, Britschgi C, Schuberth P, Bankel L, Nguyen-Kim TDL, Gulati P, Weder W, Opitz I, Lauk O, Caviezel C, Bachmann H, Tabor A, Schroder P, Knuth A, Munz C, Stahel R, Boyman O, Renner C, Petrausch U and Curioni-Fontecedro A: Local delivery of car t cells targeting fibroblast activation protein is safe in patients with pleural mesothelioma: First report of fapme, a phase i clinical trial. Ann Oncol 32(1): 120–121, 2021. DOI: 10.1016/j.annonc.2020.10.474 [DOI] [PubMed] [Google Scholar]
- 108.Zhang Y, Zhang Z, Ding Y, Fang Y, Wang P, Chu W, Jin Z, Yang X, Wang J, Lou J and Qian Q: Phase i clinical trial of egfr-specific car-t cells generated by the piggybac transposon system in advanced relapsed/refractory non-small cell lung cancer patients. J Cancer Res Clin Oncol 147(12): 3725–3734, 2021. DOI: 10.1007/s00432-021-03613-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Kunkele A, Chang CA, Rawlings-Rhea S, Huang W, Seidel K, Albert CM, Pinto N, Gust J, Finn LS, Ojemann JG, Wright J, Orentas RJ, Baldwin M, Gardner RA, Jensen MC and Park JR: Locoregional infusion of her2-specific car t cells in children and young adults with recurrent or refractory cns tumors: An interim analysis. Nat Med 27(9): 1544–1552, 2021. DOI: 10.1038/s41591-021-01404-8 [DOI] [PubMed] [Google Scholar]
- 110.Pang N, Shi J, Qin L, Chen A, Tang Y, Yang H, Huang Y, Wu Q, Li X, He B, Li T, Liang B, Zhang J, Cao B, Liu M, Feng Y, Ye X, Chen X, Wang L, Tian Y, Li H, Li J, Hu H, He J, Hu Y, Zhi C, Tang Z, Gong Y, Xu F, Xu L, Fan W, Zhao M, Chen D, Lian H, Yang L, Li P and Zhang Z: Il-7 and ccl19-secreting car-t cell therapy for tumors with positive glypican-3 or mesothelin. J Hematol Oncol 14(1): 118, 2021. DOI: 10.1186/s13045-021-01128-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Liu B, Zhang W, Xia B, Jing S, Du Y, Zou F, Li R, Lu L, Chen S, Li Y, Hu Q, Lin Y, Zhang Y, He Z, Zhang X, Chen X, Peng T, Tang X, Cai W, Pan T, Li L and Zhang H: Broadly neutralizing antibody-derived car t cells reduce viral reservoir in individuals infected with hiv-1. J Clin Invest 131(19): e150211, 2021. DOI: 10.1172/JCI150211 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Topp MS, van Meerten T, Houot R, Minnema MC, Bouabdallah K, Lugtenburg PJ, Thieblemont C, Wermke M, Song KW, Avivi I, Kuruvilla J, Duhrsen U, Zheng Y, Vardhanabhuti S, Dong J, Bot A, Rossi JM, Plaks V, Sherman M, Kim JJ, Kerber A and Kersten MJ: Earlier corticosteroid use for adverse event management in patients receiving axicabtagene ciloleucel for large b-cell lymphoma. Br J Haematol 195(3): 388–398, 2021. DOI: 10.1111/bjh.17673 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Wang D, Wang J, Hu G, Wang W, Xiao Y, Cai H, Jiang L, Meng L, Yang Y, Zhou X, Hong Z, Yao Z, Xiao M, Chen L, Mao X, Zhu L, Wang J, Qiu L, Li C and Zhou J: A phase 1 study of a novel fully human bcma-targeting car (ct103a) in patients with relapsed/refractory multiple myeloma. Blood 137(21): 2890–2901, 2021. DOI: 10.1182/blood.2020008936 [DOI] [PubMed] [Google Scholar]
- 114.Li C, Cao W, Que Y, Wang Q, Xiao Y, Gu C, Wang D, Wang J, Jiang L, Xu H, Xu J, Zhou X, Hong Z, Wang N, Huang L, Zhang S, Chen L, Mao X, Xiao M, Zhang W, Meng L, Cao Y, Zhang T, Li J and Zhou J: A phase i study of anti-bcma car t cell therapy in relapsed/refractory multiple myeloma and plasma cell leukemia. Clin Transl Med 11(3): e346, 2021. DOI: 10.1002/ctm2.346 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, Stewart AK, Hari P, Htut M, Lesokhin A, Deol A, Munshi NC, O’Donnell E, Avigan D, Singh I, Zudaire E, Yeh TM, Allred AJ, Olyslager Y, Banerjee A, Jackson CC, Goldberg JD, Schecter JM, Deraedt W, Zhuang SH, Infante J, Geng D, Wu X, Carrasco-Alfonso MJ, Akram M, Hossain F, Rizvi S, Fan F, Lin Y, Martin T and Jagannath S: Ciltacabtagene autoleucel, a b-cell maturation antigen-directed chimeric antigen receptor t-cell therapy in patients with relapsed or refractory multiple myeloma (cartitude-1): A phase 1b/2 open-label study. Lancet 398(10297): 314–324, 2021. DOI: 10.1016/S0140-6736(21)00933-8 [DOI] [PubMed] [Google Scholar]
- 116.Mei H, Li C, Jiang H, Zhao X, Huang Z, Jin D, Guo T, Kou H, Liu L, Tang L, Yin P, Wang Z, Ai L, Ke S, Xia Y, Deng J, Chen L, Cai L, Sun C, Xia L, Hua G and Hu Y: A bispecific car-t cell therapy targeting bcma and cd38 in relapsed or refractory multiple myeloma. J Hematol Oncol 14(1): 161, 2021. DOI: 10.1186/s13045-021-01170-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117.Liu H, Lei W, Zhang C, Yang C, Wei J, Guo Q, Guo X, Chen Z, Lu Y, Young KH, Lu Z and Qian W: Cd19-specific car t cells that express a pd-1/cd28 chimeric switch-receptor are effective in patients with pd-l1-positive b-cell lymphoma. Clin Cancer Res 27(2): 473–484, 2021. DOI: 10.1158/1078-0432.CCR-20-1457 [DOI] [PubMed] [Google Scholar]
- 118.Bishop DC, Clancy LE, Simms R, Burgess J, Mathew G, Moezzi L, Street JA, Sutrave G, Atkins E, McGuire HM, Gloss BS, Lee K, Jiang W, Maddock K, McCaughan G, Avdic S, Antonenas V, O’Brien TA, Shaw PJ, Irving DO, Gottlieb DJ, Blyth E and Micklethwaite KP: Development of car t-cell lymphoma in 2 of 10 patients effectively treated with piggybac-modified cd19 car t cells. Blood 138(16): 1504–1509, 2021. DOI: 10.1182/blood.2021010813 [DOI] [PubMed] [Google Scholar]
- 119.Liu S, Deng B, Yin Z, Lin Y, An L, Liu D, Pan J, Yu X, Chen B, Wu T, Chang AH and Tong C: Combination of cd19 and cd22 car-t cell therapy in relapsed b-cell acute lymphoblastic leukemia after allogeneic transplantation. Am J Hematol 96(6): 671–679, 2021. DOI: 10.1002/ajh.26160 [DOI] [PubMed] [Google Scholar]
- 120.Shah NN, Lee DW, Yates B, Yuan CM, Shalabi H, Martin S, Wolters PL, Steinberg SM, Baker EH, Delbrook CP, Stetler-Stevenson M, Fry TJ, Stroncek DF and Mackall CL: Long-term follow-up of cd19-car t-cell therapy in children and young adults with b-all. J Clin Oncol 39(15): 1650–1659, 2021. DOI: 10.1200/JCO.20.02262 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Pan J, Tan Y, Wang G, Deng B, Ling Z, Song W, Seery S, Zhang Y, Peng S, Xu J, Duan J, Wang Z, Yu X, Zheng Q, Xu X, Yuan Y, Yan F, Tian Z, Tang K, Zhang J, Chang AH and Feng X: Donor-derived cd7 chimeric antigen receptor t cells for t-cell acute lymphoblastic leukemia: First-in-human, phase i trial. J Clin Oncol 39(30): 3340–3351, 2021. DOI: 10.1200/JCO.21.00389 [DOI] [PubMed] [Google Scholar]
- 122.Roddie C, Dias J, O’Reilly MA, Abbasian M, Cadinanos-Garai A, Vispute K, Bosshard-Carter L, Mitsikakou M, Mehra V, Roddy H, Hartley JA, Spanswick V, Lowe H, Popova B, Clifton-Hadley L, Wheeler G, Olejnik J, Bloor A, Irvine D, Wood L, Marzolini MAV, Domning S, Farzaneh F, Lowdell MW, Linch DC, Pule MA and Peggs KS: Durable responses and low toxicity after fast off-rate cd19 chimeric antigen receptor-t therapy in adults with relapsed or refractory b-cell acute lymphoblastic leukemia. J Clin Oncol 39(30): 3352–3363, 2021. DOI: 10.1200/JCO.21.00917 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Cordoba S, Onuoha S, Thomas S, Pignataro DS, Hough R, Ghorashian S, Vora A, Bonney D, Veys P, Rao K, Lucchini G, Chiesa R, Chu J, Clark L, Fung MM, Smith K, Peticone C, Al-Hajj M, Baldan V, Ferrari M, Srivastava S, Jha R, Arce Vargas F, Duffy K, Day W, Virgo P, Wheeler L, Hancock J, Farzaneh F, Domning S, Zhang Y, Khokhar NZ, Peddareddigari VGR, Wynn R, Pule M and Amrolia PJ: Car t cells with dual targeting of cd19 and cd22 in pediatric and young adult patients with relapsed or refractory b cell acute lymphoblastic leukemia: A phase 1 trial. Nat Med 27(10): 1797–1805, 2021. DOI: 10.1038/s41591-021-01497-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Shah BD, Bishop MR, Oluwole OO, Logan AC, Baer MR, Donnellan WB, O’Dwyer KM, Holmes H, Arellano ML, Ghobadi A, Pagel JM, Lin Y, Cassaday RD, Park JH, Abedi M, Castro JE, DeAngelo DJ, Malone AK, Mawad R, Schiller GJ, Rossi JM, Bot A, Shen T, Goyal L, Jain RK, Vezan R and Wierda WG: Kte-x19 anti-cd19 car t-cell therapy in adult relapsed/refractory acute lymphoblastic leukemia: Zuma-3 phase 1 results. Blood 138(1): 11–22, 2021. DOI: 10.1182/blood.2020009098 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Lichtenstein DA, Schischlik F, Shao L, Steinberg SM, Yates B, Wang HW, Wang Y, Inglefield J, Dulau-Florea A, Ceppi F, Hermida LC, Stringaris K, Dunham K, Homan P, Jailwala P, Mirazee J, Robinson W, Chisholm KM, Yuan C, Stetler-Stevenson M, Ombrello AK, Jin J, Fry TJ, Taylor N, Highfill SL, Jin P, Gardner RA, Shalabi H, Ruppin E, Stroncek DF and Shah NN: Characterization of hlh-like manifestations as a crs variant in patients receiving cd22 car t cells. Blood 138(24): 2469–2484, 2021. DOI: 10.1182/blood.2021011898 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Spiegel JY, Patel S, Muffly L, Hossain NM, Oak J, Baird JH, Frank MJ, Shiraz P, Sahaf B, Craig J, Iglesias M, Younes S, Natkunam Y, Ozawa MG, Yang E, Tamaresis J, Chinnasamy H, Ehlinger Z, Reynolds W, Lynn R, Rotiroti MC, Gkitsas N, Arai S, Johnston L, Lowsky R, Majzner RG, Meyer E, Negrin RS, Rezvani AR, Sidana S, Shizuru J, Weng WK, Mullins C, Jacob A, Kirsch I, Bazzano M, Zhou J, Mackay S, Bornheimer SJ, Schultz L, Ramakrishna S, Davis KL, Kong KA, Shah NN, Qin H, Fry T, Feldman S, Mackall CL and Miklos DB: Car t cells with dual targeting of cd19 and cd22 in adult patients with recurrent or refractory b cell malignancies: A phase 1 trial. Nat Med 27(8): 1419–1431, 2021. DOI: 10.1038/s41591-021-01436-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Li P, Zhou L, Ye S, Zhang W, Wang J, Tang X, Liu J, Xu Y, Qian W and Liang A: Risk of hbv reactivation in patients with resolved hbv infection receiving anti-cd19 chimeric antigen receptor t cell therapy without antiviral prophylaxis. Front Immunol 12: 638678, 2021. DOI: 10.3389/fimmu.2021.638678 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Summers C, Wu QV, Annesley C, Bleakley M, Dahlberg A, Narayanaswamy P, Huang W, Voutsinas J, Brand A, Leisenring W, Jensen MC, Park JR and Gardner RA: Hematopoietic cell transplantation after cd19 chimeric antigen receptor t cell-induced acute lymphoblastic lymphoma remission confers a leukemia-free survival advantage. Transplant Cell Ther 28(1): 21–29, 2022. DOI: 10.1016/j.jtct.2021.10.003 [DOI] [PubMed] [Google Scholar]
- 129.Iasonos A, Wilton AS, Riedel ER, Seshan VE and Spriggs DR: A comprehensive comparison of the continual reassessment method to the standard 3 + 3 dose escalation scheme in phase i dose-finding studies. Clin Trials 5(5): 465–477, 2008. DOI: 10.1177/1740774508096474 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Ananthakrishnan R, Green S, Chang M, Doros G, Massaro J and LaValley M: Systematic comparison of the statistical operating characteristics of various phase i oncology designs. Contemp Clin Trials Commun 5: 34–48, 2017. DOI: 10.1016/j.conctc.2016.11.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Kurzrock R, Lin CC, Wu TC, Hobbs BP, Pestana RM and Hong DS: Moving beyond 3+3: The future of clinical trial design. Am Soc Clin Oncol Educ Book 41: e133–e144, 2021. DOI: 10.1200/EDBK_319783 [DOI] [PubMed] [Google Scholar]
- 132.Onar-Thomas A and Xiong Z: A simulation-based comparison of the traditional method, rolling-6 design and a frequentist version of the continual reassessment method with special attention to trial duration in pediatric phase i oncology trials. Contemp Clin Trials 31(3): 259–270, 2010. DOI: 10.1016/j.cct.2010.03.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Frangou E, Holmes J, Love S, McGregor N and Hawkins M: Challenges in implementing model-based phase i designs in a grant-funded clinical trials unit. Trials 18(1): 620, 2017. DOI: 10.1186/s13063-017-2389-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 134.Li P, Liu R, Lin J and Ji Y: Tepi-2 and ubi: Designs for optimal immuno-oncology and cell therapy dose finding with toxicity and efficacy. J Biopharm Stat 30(6): 979–992, 2020. DOI: 10.1080/10543406.2020.1814802 [DOI] [PubMed] [Google Scholar]
- 135.Lin R, Yin G and Shi H: Bayesian adaptive model selection design for optimal biological dose finding in phase i/ii clinical trials. Biostatistics, 2021. DOI: 10.1093/biostatistics/kxab028 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136.Zhou Y, Lee JJ and Yuan Y: A utility-based bayesian optimal interval (u-boin) phase i/ii design to identify the optimal biological dose for targeted and immune therapies. Stat Med 38(28): 5299–5316, 2019. DOI: 10.1002/sim.8361 [DOI] [PMC free article] [PubMed] [Google Scholar]
