Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1993 May;56(5):477–480. doi: 10.1136/jnnp.56.5.477

No evidence for altered muscle mitochondrial function in Parkinson's disease.

J J Anderson 1, D Bravi 1, R Ferrari 1, T L Davis 1, F Baronti 1, T N Chase 1, F Dagani 1
PMCID: PMC1015004  PMID: 8505638

Abstract

Recent reports indicate that reductions in mitochondrial respiratory chain function occur in substantia nigra, platelets, and muscle from patients with Parkinson's disease. To confirm and further characterise the presence of a generally distributed mitochondrial defect, mitochondrial metabolism was evaluated in muscle obtained from subjects with Parkinson's disease and from normal controls. Oxygen consumption rates in muscle mitochondria represented by complex I, complexes II-III, or complex IV did not differ between the two groups. Likewise, activities of rotenone sensitive NADH cytochrome c reductase, succinate cytochrome c reductase, or cytochrome oxidase in muscle mitochondria were not significantly different between Parkinsonian and control subjects. These findings fail to provide support for a generalised defect in mitochondrial function in Parkinson's disease but do not exclude an abnormality in respiratory function confined to the substantia nigra.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bindoff L. A., Birch-Machin M., Cartlidge N. E., Parker W. D., Jr, Turnbull D. M. Mitochondrial function in Parkinson's disease. Lancet. 1989 Jul 1;2(8653):49–49. doi: 10.1016/s0140-6736(89)90291-2. [DOI] [PubMed] [Google Scholar]
  2. Bravi D., Anderson J. J., Dagani F., Davis T. L., Ferrari R., Gillespie M., Chase T. N. Effect of aging and dopaminomimetic therapy on mitochondrial respiratory function in Parkinson's disease. Mov Disord. 1992;7(3):228–231. doi: 10.1002/mds.870070307. [DOI] [PubMed] [Google Scholar]
  3. Dagani F., Ferrari R., Anderson J. J., Chase T. N. L-dopa does not affect electron transfer chain enzymes and respiration of rat muscle mitochondria. Mov Disord. 1991;6(4):315–319. doi: 10.1002/mds.870060408. [DOI] [PubMed] [Google Scholar]
  4. Hatefi Y., Stiggall D. L. Preparation and properties of NADH: cytochrome c oxidoreductase (complex I--III). Methods Enzymol. 1978;53:5–10. doi: 10.1016/s0076-6879(78)53005-x. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Makinen M. W., Lee C. P. Biochemical studies of skeletal muscle mitochondria. I. Microanalysis of cytochrome content, oxidative and phosphorylative activities of mammalian skeletal muscle mitochondria. Arch Biochem Biophys. 1968 Jul;126(1):75–82. doi: 10.1016/0003-9861(68)90561-4. [DOI] [PubMed] [Google Scholar]
  7. Parker W. D., Jr, Boyson S. J., Parks J. K. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol. 1989 Dec;26(6):719–723. doi: 10.1002/ana.410260606. [DOI] [PubMed] [Google Scholar]
  8. Schapira A. H., Cooper J. M., Dexter D., Clark J. B., Jenner P., Marsden C. D. Mitochondrial complex I deficiency in Parkinson's disease. J Neurochem. 1990 Mar;54(3):823–827. doi: 10.1111/j.1471-4159.1990.tb02325.x. [DOI] [PubMed] [Google Scholar]
  9. Schapira A. H., Mann V. M., Cooper J. M., Dexter D., Daniel S. E., Jenner P., Clark J. B., Marsden C. D. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson's disease. J Neurochem. 1990 Dec;55(6):2142–2145. doi: 10.1111/j.1471-4159.1990.tb05809.x. [DOI] [PubMed] [Google Scholar]
  10. Shoffner J. M., Watts R. L., Juncos J. L., Torroni A., Wallace D. C. Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann Neurol. 1991 Sep;30(3):332–339. doi: 10.1002/ana.410300304. [DOI] [PubMed] [Google Scholar]
  11. Sugden P. H., Newsholme E. A. Activities of citrate synthase, NAD+-linked and NADP+-linked isocitrate dehydrogenases, glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in nervous tissues from vertebrates and invertebrates. Biochem J. 1975 Jul;150(1):105–111. doi: 10.1042/bj1500105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Verhoeven A. J., van Oostrum I. E., van Haarlem H., Akkerman J. W. Impaired energy metabolism in platelets from patients with Wiskott-Aldrich syndrome. Thromb Haemost. 1989 Feb 28;61(1):10–14. [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES