Abstract
Post-partum depression (PPD) with varying clinical manifestations affecting new parents remains underdiagnosed and poorly treated. This minireview revisits the pharmacotherapy, and relevant etiological basis, capable of advancing preclinical research frameworks. Maternal tasks accompanied by numerous behavioral readouts demand modeling different paradigms that reflect the complex and heterogenous nature of PPD. Hence, effective PPD-like characterization in animals towards the discovery of pharmacological intervention demands research that deepens our understanding of the roles of hormonal and non-hormonal components and mediators of this psychiatric disorder.
Keywords: depression, pharmacological targets, preclinical assessments, behavioral models, post-partum
1. Introduction
The development of psychological disorders is associated with demanding physical and psychological changes during pregnancy and the postpartum period (1). Childbirth often increases the risk of mental disorders as well as higher rates of hospitalization and psychiatric treatment (2, 3). The global impact of post-partum depression (PPD) has been estimated around 20% of women at peripartum – during pregnancy or post-partum period (4). The plethora of clinical manifestations in patients with PPD includes emotional tension, mood swing, guilt, agitation, insomnia, irritability, anxiety, depressive disorder, and confusion characterized by withdrawal, intrusiveness, hostility, and non-response to infant’s cues (5, 6). The infant may later suffer from the impairment of the cognitive performance, executive function, intelligence, and language development (7, 8). Poor maternal–infant bonding, impaired development, infanticide, child neglect, and negative neurodevelopment and behavior, as well as suicide tendencies, may result from untreated PPD (5, 9, 10). Stressful life events, history of psychiatric illness, drug abuse, low levels of social or partner support, unexpected pregnancy or complications, and genetic susceptibility are among PPD’s risk factors (11, 12).
A population-based cohort study has revealed the first-time experience of psychiatric disorder in many women with PPD (13). High rates of manic-depressive, obsessive–compulsive, post-traumatic stress, eating, bipolar and pain disorders often increase the recurrence risk of the post-partum episode (14–16). Complex clinical manifestations or comorbidity of PPD with other disorders pose challenges to the accurate assessment of its prevalence. A set of cross-cultural variables, differences in the perception of mental health and its stigma, differences in environmental and socioeconomic contexts remain compounding factors (17, 18).
Historically, mental illnesses associated with childbirth were considered a discrete disease entity, a toxic-confusional or delirious picture, puerperal disorders, post-partum psychoses, baby blues, puerperal fever, or milk fever (19–23). The PPD was first described with the expression “if the womb is too moist, the brain is filled with water, and the moisture running over the eyes, compels them to involuntarily shed tears” in the 13th century or thereabout (24). With years of conceptual descriptions marked by little consensual breakthroughs on the criterion for PPD, the fifth edition-text revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V-TR) considers PPD as a major depressive disorder (MDD) of peripartum onset. Distinguishing between MDD and PDD is difficult, for example, about 80% of PPD cases are relapses of MDD; however, particularly in PPD there are gonadal hormonal changes that accompany delivery - dramatic elevation of hormones during pregnancy that drop dramatically after delivery (25). The symptoms of PPD are often identified within the first 4 weeks of delivery up to 12 months (26, 27). Early detection, proper diagnosis, and treatment are key to preventing symptom exacerbation (28). Low mood in the early postpartum period which is largely deemed “normal” with 50–80% of new mothers often makes early intervention against PPD elusive (29, 30).
Hence, leveraging etiological factors of PPD and emotional burden exacerbation to preclinical cues could engender early intervention and benefit at-risk mothers. In this manner, this minireview revisits available pharmacological interventions, etiological hypotheses of PPD, key mediators, parameters, and preclinical framework for effective screening of drugs.
2. Pharmacological approaches and implications
Diverse mediators of PPD that are involved in complex pathophysiological changes provide support for hormonal and non-hormonal pharmacological interventions. The current use of typical antidepressants to treat PPD suffers from limited evidence of safety and efficacy coupled with suboptimal outcomes (31, 32). Psychotherapy or antidepressants was recommended by the American Psychiatric Association as first-line treatment for mild-to-moderate PPD (33). The monoamine-based medication which sometimes comes with the risk of teratogenicity, neonatal toxicity, and/or long-term developmental impact is widely used as the first-line treatment (Table 1). Some of them are selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), and tricyclic antidepressants (TCA). The worrisome infant exposure to these conventional antidepressants throughout perinatal and breastfeeding periods (40–42) should ideally limit their administration in patients. According to Deligiannidis et al. in 2021, none of these monoaminergic antidepressants have specific indications for PPD (43).
Table 1.
Medication | Structure | General considerations and reports on adverse effects |
---|---|---|
SSRI | ||
Fluoxetine (Prozac) | Earlier studies indicated minor malformations in neonates. Colic, seizures, irritability, withdrawal symptoms, and cyanosis during lactation. Long half-life with the stereoselective disposition of fluoxetine and norfluoxetine in the mother, fetus, breast milk, and infant | |
Paroxetine (Paxil) | Temporary neonatal respiratory distress associated with late third trimester. Potential to increase risk in cardiovascular malformations. No adverse effects have been reported during lactation. With short half-life and high protein binding difficulty accounts for its small excretion in milk or negligible infant serum concentrations | |
Fluvoxamine (Luvox) | With limited data, it is not associated with an increased risk of malformations, lower birth weights, or younger gestational age and adverse effects. Shortest half-life among all SSRIs | |
Sertraline (Zoloft) | Not associated with increased risk of malformations, lower birth weights, or younger gestational age and adverse effects. Negligible effect on platelet serotonin transport in breastfed infants | |
Citalopram (Celexa) | Rate of congenital anomalies was no higher than that for other SSRI exposures. Irritability, restlessness, uneasy sleep during lactation decreased feeding. Concentrations in milk is higher than in maternal plasma | |
Escitalopram (Lexapro) | Active S-isomer of citalopram. Low potential for causing adverse effects as limited information indicates that maternal doses produce low levels of milk | |
SNRI | ||
Venlafaxine (Effexor) | Infants receive venlafaxine and its active metabolite in breastmilk; however, concurrent side effects have rarely been reported. Breastfed infants should be monitored for excessive sedation and adequate weight gain with moderate effects of neonatal withdrawal syndrome in infants exposed to the drug during pregnancy | |
Desvenlafaxine (Pristiq) | Venlafaxine’s metabolite. Neonates exposed late in the third trimester may require respiratory support. Breastfed infants should be monitored for excessive sedation and adequate weight gain | |
Milnacipran (Savella) | Unavailable data | |
Tricyclic antidepressants | ||
Nortriptyline (Aventyl) | Less anticholinergic, consequently less orthostatic hypotension and constipation | |
Imipramine (Trofanil) | There have been clinical reports of congenital malformations. Limited data suggest that imipramine is likely to be excreted in human breast milk | |
Monoamine oxidase inhibitors | ||
Isocarboxazid (Marplan) | Interacts with some medications and foods to cause a life-threatening hypertensive crisis | |
Phenelzine (Nardil) | Interacts with some medications and foods to cause a life-threatening hypertensive crisis | |
Others | ||
Trazodone (Donaren) | No differences in the rate of major malformations | |
Nefazodone (Serzone) | No differences in the rate of major malformations | |
Mirtazapine (Remeron) | No adverse effects in infants have been reported | |
Bupoprion (Wellbutrin) | Increased risk of seizure, especially in those with a history of seizure. Limited information indicates that maternal bupropion daily produces low levels in breastmilk. Hence, more information about its use is needed |
Some of these reports still have limited clinical trials, or child outcomes, and underpowered samples. SSRIs, selective serotonin reuptake inhibitors; SNRIs, serotonin norepinephrine reuptake inhibitors (34–39). All structures were designed from the name found in literature data using the ChemDraw JS program.
The etiological implication of the GABAergic system (44) through allopregnanolone [3α, 5α-tetrahydroprogesterone; a modulator of γ-aminobutyric acid (GABA) A receptor] provides additional insights into the drug development program for PPD. Negative feedback involving this neuroactive steroid rapidly suppresses neuronal excitability and HPA axis responses to postnatal stress to restore homeostasis (45, 46). Besides allopregnanolone, 3α, 5β-tetrahydro progesterone (pregnanolone), 5α, 3α-tetrahydrodeoxycorticosterone, pregnenolone, progesterone, and deoxycorticosterone are important neuroactives of pharmacological interest. The hypothesis supporting neurosteroids and GABAergic transmission in PPD favors clinical applications of synthetic allopregnanolone (brexanolone) and the development of zuranolone now in the third phase of the clinical trial (1). Brexanolone induces a positive allosteric modulation of GABA receptors. The activation of these receptors prior to chloride ion influx reduced the depression score. In addition, possible impairment of episodic memory has been reported in some women receiving intravenous brexanolone (47). Reducing GABA signaling has been suggested to precede exacerbated glutamatergic transmission that contributes to depressive phenotype. The approval of ketamine, a non-competitive NMDA receptor antagonist, for treatment-resistant depressive patients can support the idea of a promising effect on PPD (48, 49). Furthermore, the neurosteroid-induced GABA A receptor (GABAAR) modulation of the hypothalamic–pituitary-gonadal axis (50) provides a clue on the reduction in the plasma levels of luteinizing and follicle-stimulating hormone without estradiol or progesterone alteration. Hence, direct activation of GABA receptors plays important role in hormonal oscillations and regulations.
Cortisol, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), oxytocin, prolactin, testosterone, and/or estradiol provide important pharmacological clues. Transdermal estrogen and estradiol are considered the effective treatment of depressive episodes in women with PPD or perimenopause. As the outcome of estradiol treatment raised expectations (51, 52), a transdermal estrogen for severe PPD treatment elicited more rapid improvement in depressive symptoms using the Edinburg Postnatal Depression Scale (53). However, the effectiveness and acceptability of these two treatment protocols vary among patients. The administration and abrupt withdrawal of a high dose of estradiol and progesterone during ovarian suppression in euthymic non-pregnant women increased depressive symptoms in women with a history of PPD (54). The leuprolide-induced hypogonadal post-partum hormonal changes simulation was reversed among 62% of the women with a history of PPD by supraphysiological doses of estradiol and progesterone (55). Altogether, these results reiterate how relevant hormonal targets are key to the understanding of meaningful pharmacological intervention in drug screening and development programs.
3. Etiological understanding and relevant mediators
The behavioral cues and neurobiological aspects suggestive of depressive signs, sleep, and cognitive disruptions, and hormonal and non-hormonal alterations are important components of PPD (Figure 1). Some of these etiological components of PPD and infant suffering are the outcome of maternal exposure to stress. For instance, stress-induced reduction in circulating allopregnanolone at birth could in turn reduce its production in the neonate’s brain with far-reaching childhood adversity and multigenerational consequences (56). The stressful and intense demands of caring for a newborn are often accompanied by psychological, social, and biological factors (26, 57). Qualitative and quantitative analysis of hormonal and non-hormonal input to PPD mediated by stress is pertinent (Figure 2) as stress adaptation and resilience instinct affect the perception of uncontrollable/unpredictable events from the ones that are or become controllable/predictable. Hypothetically, stress-induced suppression of the inherent rewarding component of the maternal-newborn buffering bond could drive depression and behavioral deficits because of the disruptions of the maternal resilience and recovery system. The psychosocial hypothesis supports PPD being an endpoint of excessive worry and abrupt perinatal changes in the immunity and physiological state emanating from adapting to the maternal role and life with a new infant (57, 58). Psychosocial predictors impacting women’s resilience and mental health recovery seem to be associated with genetic components as supported by family and twin studies (59–61). These studies among others identified relevant genes that are associated with depressive episodes (60–62).
Genetic variants in hormones, transporters, receptors, and metabolic enzymes contributing to behavioral changes have been detected and analyzed during the post-partum period. Genetic alterations in estradiol, oxytocin, glucocorticoid, and CRH, estrogen receptors, and maternal gene expression across multiple brain regions with altered immune transcriptomic landscape and activation were associated with PPD (63–68). The variants of the serotonin transporter (SLC6A4; SERT), dopa decarboxylase, and protein kinase C beta play roles in stressful life events, depression, and PPD onset (69–72). High expression and polymorphism of SERT that are more reactive to environmental stressors (5-HTTLPR and STIN2-VNTR), 5-HT2A receptor, tryptophan hydroxylase (TPH), neurotrophic factors, Val158Met COMT or MAO-A, as well as tryptophan depletion, could contribute to a net decrease in brain 5-HT bioavailability prior to depressive phenotype (69–73).
Physiological adaptations required for gestation undoubtedly involve neuroendocrine fluctuations at different perinatal phases (74) and may converge to set the mother’s mental health state (75, 76). This may be part of a bidirectional feedback loop settled on some hormonal axes during the peripartum period that results in persistent anxiety and depression in some women (77, 78). Over the years depressive episodes have increased research hypotheses on monoaminergic neurotransmission. Monoamines seem to be affected by hormonal changes, as revealed by the substantial modification in monoamine oxidase kinetics through a short postpartum timeframe. Robust and accelerated degradation of neurotransmitters in PPD (79) supports monoamine involvement. Estrogen has a neuroprotective role, reduces inflammatory responses, also, can improve serotonin function (25). The monoamine-lowering process with a dramatic elevation of MAO-A and simultaneous estrogen decline during the first week of postpartum (79, 80), as well as tryptophan depletion or tyrosine hydroxylase inhibition (81) are all connected to low mood and stress-induced immune-inflammatory (proinflammatory cytokines) components of peripartum changes leading to PPD (Figure 2). For instance, a report showed varying peripartum tryptophan with lower plasma concentration in the second and third trimesters as compared to the first trimester, and gradual postpartum restoration after 6 weeks (82).
Additionally, sleep disruptions and cognitive decline involving complex endocrinal and psychological interplays are important etiological manifestations in PPD patients (83–89). Cognitive dysfunction may be an early symptom of a depressive episode (89, 90). The sleep initiation, maintenance, and circadian rhythm prior to depressive manifestations and/or cognitive deficits implicate alterations in melatonin levels (91, 92), estrogen, and progesterone (90, 93–101). Besides, a high level of stress-induced immune-inflammatory activity could shift tryptophan-serotonin-melatonin metabolism to a metabolites-driven kynurenine pathway (102, 103). This is followed by a significant reduction of serotonin, a substrate for the synthesis of melatonin precursor N-acetylserotonin, at mid-late pregnancy and the early postpartum period (104). The downregulation of serotonin and melatonin synthesis coupled with the upregulation of kynurenic and quinolinic acid contribute to depressive phenotype (105, 106). The alterations in the tryptophan-kynurenine pathway can lead to excessive activation of NMDARs, lipid peroxidation, autoimmune, inflammation, and oxidative stress responses underlining cellular damage, and PPD (5, 107–112).
Complex interactions of kynurenine, gut microbiota, and inflammatory and hormonal mediators (113) provide additional important targets in PPD. Although both indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) convert tryptophan into kynurenine, the IDO-induced tryptophan conversion contributes to maternal-fetal immune tolerance in placental villi (protecting the fetus from maternal T-lymphocyte and natural killer cell attack during pregnancy) (114) unlike TDO that is primarily induced by the stress hormone. The IDO is induced by gamma-interferon (INF-γ), and other pro-inflammatory cytokines (5). The involvement of gut microbiota in tryptophan and serotonin metabolism provides additional insight into the role of kynurenic acid in PPD. The release of pro-inflammatory cytokines could be exacerbated by the vicious cycle of the stress-induced release of catecholamine (norepinephrine and epinephrine) and activation of the nuclear factor-kappa-beta (NF-kB) cascade (Figure 2).
The modification of autonomic and neuroendocrine reactivity (115) in response to infant cries and odors may drive maternal hyper-reaction (116). While a study associated increases in stress hormone levels with the modification of a mother’s mental health (117), an alteration in the hypothalamic–pituitary–adrenal (HPA) axis around the third month of pregnancy could boost positive feedback involving placental CRH (118). The abrupt withdrawal of placental CRH a couple of days from delivery towards the re-establishment of the maternal HPA axis could contribute to the PPD phenotype (119). Therefore, peripartum HPA screening may pave the way for new PPD pharmacotherapy interventions.
In addition, a 3-4-fold increase in basal serum oxytocin (implicated in well-being and social interaction) during pregnancy (120) prior to pulsatile increase during labor (121) seems to support the pathophysiological role of the central oxytocinergic target. The sudden reductions in oxytocin levels following the delivery in PPD (122) constitute an important hypothetical mediator. The report showed that higher oxytocin levels induced by serotonin-targeted antidepressant drugs improved cognitive performance (123) and parenting (124). This finding supports cross-communication between oxytocinergic, and serotoninergic pathways often impact other systems. The synergistic effects of the serotonin system and brain-derived neurotrophic factor (BDNF) modulate neuronal development and plasticity (125). Of note, N-acetylserotonin mimics BDNF activating TrkB (126). Hence, a decrease in serotonin may lower TrkB activation. Stress-induced BDNF reductions might cause neuronal damage, which would in turn heighten biological vulnerability to PPD behavioral phenotypes (127).
According to the neurotrophic hypothesis, the altered activity of neurotrophins (NTs) or their receptors plays a well-defined role in depression (128–130). The nerve growth factor (NGF) and BDNF which regulates neuronal growth and survival (128, 131) play important roles during pregnancy in the process of placental angiogenesis and maturation (132, 133). After delivery, NTs continue to perform functions in both the baby and the mother. Reduction in the level of these growth factors seems to contribute to PPD. Although lower serum BDNF levels after delivery were reported in women with PPD as compared to others without PPD (134, 135), an author suggested that a marked decrease in BDNF serum levels before and after childbirth alone did not sufficiently predict PPD (104).
Throughout the perinatal period, considerable declines in BDNF occur from the first to the third trimester prior to post-partum increase (136). Decreasing levels throughout pregnancy may, in part, reflect the use of maternal BDNF by the placenta and fetus (137). An inverse relationship between BDNF and depressive symptoms as observed in the third trimester suggests that late pregnancy is the period of greatest vulnerability to BDNF-induced depression (136). Altogether, some of these reports perhaps reflect the etiological complexity of PPD.
4. Update on preclinical assessments of PPD in vivo
As pharmacological treatment of PPD is still shrouded by limited therapeutic evidence of available antidepressants, rodent models of are fundamental to drug research and effective understanding of the neurobiology of this disorder. The assessment of PPD in animals constitutes a great challenge considering the concept of the validity of pharmacological intervention producing a similar effect in both humans and animals (predictive), the similarity of the behavioral readout or phenotype of animals to the disease phenotype being assessed in human (face validity) as well as the correlation between the underlying genetic or cellular mechanisms that result in psychological dysfunction in the animal model and in the human population (construct validity) as earlier reported (138).
In laboratory animals, pregnancy, childbirth, and lactation often induce profound physiological, neuroendocrine, and behavioral changes. The neurobiological advancement and pharmacological screening of new drugs demand improved profiling of PPD-like readouts with appropriate investigational tools in animal settings (40). A manifold of temporal peripartum cellular and molecular machinery underlining tension, mood swings, irritability, anxiety, and depression make preclinical profiling of behavioral manifestations to be herculean. Comparative assessments of behavior before and after pregnancy particularly maternal interactions with the newborn are important. The highly validated forced swimming, tail suspension, open field (139), elevated plus maze, light–dark box, and sucrose preference tests are among the important set-up for behavioral profiling.
The development of depressive-like responses and its correlation with the reductions in the level of norepinephrine, dopamine, serotonin, and intermediates in the striatum (care-giving), hippocampus (cognitive function), and hypothalamus (maternal care & eating behavior) in female BALB/c during the pregnancy and post-partum periods was used to establish PPD-like behavior (139). As PPD may be associated with alterations in the level of neurotransmitters, preclinical screening of drug targeting normalization of these alterations may be a promising candidate for the treatment of PPD. In previous studies, the withdrawal of estradiol and progesterone resulted in an increase in immobility and a decrease in forced swimming (140, 141). According to Frye and Walf, intra-amygdala administration of progesterone increased the entries in the central area of the open field, increased the time spent in the open arms of the elevated plus-maze, and decreased the freezing time after foot shock (antiaversive or antianxiety-like effect) (142). All these experimental manipulations could alter neuronal ensembles and impact maternal tasks.
The hormonal oscillations (progesterone, estradiol, prolactin, oxytocin among others) that reorganize the brain make drug injections into different brain structures an interesting preclinical procedure for behavioral profiling of despair, anhedonia, anxiety, and negative affect. Chemical injections and experimental lesions of different brain regions (medial preoptic area, ventral tegmental area, nucleus accumbens, and arcuate nucleus) in rodents could abolish the onset of maternal behaviors, motivation network, nursing behaviors, lactation (143, 144). These experimental interventions that disrupt endocrine and neurotransmitters communication such as monoamines are important preclinical strategies. Monoamine dysregulation especially in mesocorticolimbic structures contributes to parenting deficits and maternal care (145). Parenting tasks as measured with lactations, dams’ latency to approach the pups, total dam-pup time spent in contact measured as indices of maternal behavior, licking/grooming, active nursing, nest building, self-grooming, pups out of the nest, climbing/digging, pup retrieval, handling, crouching over pups could provide complementary cues to depressive-like behavior. Disruption of maternal tasks could provide insight into postpartum-related emotional disturbances. Lactating animals and humans have a diminished physiologic reactivity to stressors (146), increased calmness, and nurturing behavior that maintains milk quality and quantity (147). Different behavioral repertoires directed toward pups are exhibited by lactating animals with suppressed HPA responses (148). After lactation stress responses or HPA reactivity are downregulated as cortisol, glucose, ACTH, and prolactin levels return to normal (148, 149). Grooming and rearing behaviors during lactation which are indicative of increased HPA activity could be measured indirectly through stress-induced anxiety and depressive phenotypes.
As estrogen directly stimulates CRH production prior to ACTH secretion (150), its low levels during lactation may therefore suppress the hypothalamic release of CRH (146). Hence, phasic hormonal (prolactin, oxytocin, estrogen, and progesterone) levels during pregnancy, at birth, and after lactation (150) could provide important cues to behavioral changes. A high level of oxytocin being maintained throughout lactation and emotional stress may be an important parameter for measuring the antistress nature of lactation. The oxytocin-induced amnesia, anxiolysis, sedation, antinociception, lower blood pressure, decreased corticosteroid levels, and increased vagal activity (34, 146) imply systemic effects with the involvement of a wide range of mediators. An additional intervention like immobilization (stressor) of these lactating animals that elevated plasma catecholamines (epinephrine and norepinephrine) (35, 146) could be explored in preclinical settings and that could explain the role of the autonomic nervous system in PPD as shown in the hypothetic Figure 2.
The analysis of maternal behavior, impulsive responses, and consummatory behavior could correlate with hormonal oscillations. The estrogen and oxytocin modulation have been associated with maternal licking, grooming, pup gathering, and nest building in rodents (36). As estrogen levels decrease, impulsive behavior increases (37). An increase in food intake and a decrease in locomotor activity in certain female rodents following ovariectomy and the subsequent depletion of estradiol and progesterone leading to weight gain support hormonal regulation of eating behavior (38). Cyclic elevations in estradiol could modulate dopamine levels in the prefrontal cortex prior to changes in impulsive behavior. Progesterone suppression of depression-like behaviors, motor, and cognitive deficits have been associated with neuroprotection that is independent of changes in general motor coordination, pain threshold, or plasma corticosterone levels (39, 151, 152).
Altogether, drug stimulation or blockade of different brain regions as well as knockout models, lesion, or tissue removal could provide important neurobiological clues towards the screening of drug candidates. The knockout mice model with Gabrd gene (encoding GABAAR δ subunit) silencing was explored to establish abnormal peripartum GABAAR-induced neuroplasticity and tonic inhibition (40, 153). These mice exhibited depressive-and anxiety-like phenotypes in the postpartum period complementing the increased depressive symptoms following post-partum inhibition of progesterone metabolism (44). The perinatal cognitive impairment (90), and reduced memory processing speed deficits during late pregnancy and after childbirth could be detected using step down passive avoidance test. Ovariectomized rodents instrumented with a single bipolar stimulating electrode directed into the lateral hypothalamus could be used to study anhedonia among other behavioral manifestations. Additionally, the brain-gut-microbiome axis or pre-pregnancy exposure to stress (154), whole-cell patch-clamp recording change in synaptic receptor function, pools, and plasticity could provide meaningful mechanistic data. Considering the temporal nature of peripartum changes, neuroimaging, and real-time monitoring represent promising technology for examining patterns of hormonal and neurochemical changes that discriminate PPD from physiological changes or other depressive-like episodes.
5. Final considerations
Despite the current knowledge of PPD, neurobiological understanding that can augment new drug screening and treatment is still at infancy. The etiological perspectives which reveal a wide range of PPD mediators partly explain the pharmacological approaches showing significant variation in the treatment response and remission in women with PPD. Reports provide consistent evidence of complex temporal changes in gene–environment, hormonal, non-hormonal, and stress-driven mediators. PPD is etiologically different from other depressive episodes which supports the necessity of specific treatment (155). The efficacy of the conventional antidepressant drugs may be largely enhanced with appropriate adjuvant treatments or evidence-based psychotherapies. Despite the recent support for GABAergic target therapy, the reports on brexanolone or progesterone’s effects in PPD patients are still few and somehow inconclusive (156). Although the dosing regimen of brexanolone takes into consideration the serum allopregnanolone concentrations at the end of pregnancy (157, 158), the long-term impact on endogenous hormonal release or effects remains largely unclear.
The dearth of extensive analysis of peripartum phasic hormonal and non-hormonal changes leading to depressive readouts in PPD still limits the scope of pharmacological interventions. The determination of the early mediators of PPD and validated screening tools for PPD are key to early intervention, and screening of new drugs. The panacea to the myriads of controversy that are associated with the study of psychiatric disorders in animals (159, 160) includes analyses of the underlying factors of behavioral changes using a new and well-validated animal model.
An increase in immobility time that indicate depressive-like readout in rodents in the most widely used forced swimming and tail suspension tests (161, 162) could turn out to be an adaptive coping response to stress rather than behavioral despair (163). In the case of drug treatment (amphetamine), an increase in the swimming time could be an indication of CNS stimulation rather than antidepressant effects. Hence, complementary assessments of different dimensions of the depressive state of PPD as characterized by complex, heterogeneous, and multiple factors (154) could eliminate false positive or erroneous interpretations of findings. Robust assessment of the key neurobiological pathways and mediators of PPD could help in the discovery of standard pharmacological intervention.
Author contributions
JF, EC, and GP: conceptualization, design, and methodology. LM, CM, CC, MD, DR, MF-N, and EC: writing – original draft preparation, reviewing and editing. LM and JF: software, preparation, and editing of figures. All authors contributed to the article and approved the submitted version.
Conflict of interest
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Acknowledgments
FUNADESP, CNPQ, CAPES, FAPEG, and UFG for research support while acknowledging free access to BioRender.com and draw.io for the creation of figures.
References
- 1.Žigová L, Massarová P, Vranecová K, Hrubá O, Adamičková A, Gažová A. Neuroactive steroids - new possibilities in the treatment of postpartum depression. Ceska Slov Farm. (2022) 71:142–50. doi: 10.5817/CSF2022-4-140 PMID: [DOI] [PubMed] [Google Scholar]
- 2.Munk-Olsen T, Agerbo E. Does childbirth cause psychiatric disorders? A population-based study paralleling a natural experiment. Epidemiology. (2015) 26:79–84. doi: 10.1097/EDE.0000000000000193 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Sūdžiūtė K, Murauskienė G, Jarienė K, Jaras A, Minkauskienė M, Adomaitienė V, et al. Pre-existing mental health disorders affect pregnancy and neonatal outcomes: a retrospective cohort study. BMC Pregnancy Childbirth. (2020) 20:419. doi: 10.1186/s12884-020-03094-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Hahn-Holbrook J, Cornwell-Hinrichs T, Anaya I. Economic and health predictors of national postpartum depression prevalence: a systematic review, meta-analysis, and meta-regression of 291 studies from 56 countries. Front Psych. (2017) 8:248. doi: 10.3389/fpsyt.2017.00248, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Duan KM, Ma JH, Wang SY, Huang ZD, Zhou YY, Yu HE. The role of tryptophan metabolism in postpartum depression. Metab Brain Dis. (2018) 33:647–60. doi: 10.1007/s11011-017-0178-y, PMID: [DOI] [PubMed] [Google Scholar]
- 6.Engqvist I, Ferszt G, Åhlin A, Nilsson K. Psychiatric nurses descriptions of women with postpartum psychosis and nurses' responses—an exploratory study in Sweden. Issues Ment Health Nurs. (2009) 30:23–30. doi: 10.1080/01612840802498268, PMID: [DOI] [PubMed] [Google Scholar]
- 7.Mothes L, Kristensen CH, Grassi-Oliveira R, Fonseca RP, Argimon IIL, Irigaray TQ. Childhood maltreatment and executive functions in adolescents. Child Adolesc Ment Health. (2015) 20:56–62. doi: 10.1111/camh.12068 [DOI] [PubMed] [Google Scholar]
- 8.Su Y, D'Arcy C, Yuan S, Meng X. How does childhood maltreatment influence ensuing cognitive functioning among people with the exposure of childhood maltreatment? A systematic review of prospective cohort studies. J Affect Disord. (2019) 252:278–93. doi: 10.1016/j.jad.2019.04.026, PMID: [DOI] [PubMed] [Google Scholar]
- 9.Goodman SH, Rouse MH, Connell AM, Broth MR, Hall CM, Heyward D. Maternal depression and child psychopathology: a meta-analytic review. Clin Child Fam Psychol Rev. (2011) 14:1–27. doi: 10.1007/s10567-010-0080-1, PMID: [DOI] [PubMed] [Google Scholar]
- 10.Madigan S, Oatley H, Racine N, Fearon RMP, Schumacher L, Akbari E, et al. A meta-analysis of maternal prenatal depression and anxiety on child socio-emotional development. J Am Acad Child Adolesc Psychiatry. (2018) 57:645–57.e8. doi: 10.1016/j.jaac.2018.06.012 [DOI] [PubMed] [Google Scholar]
- 11.Mallikarjun PK, Oyebode F. Prevention of postnatal depression. J R Soc Promot Heal. (2005) 125:221–6. doi: 10.1177/146642400512500514 [DOI] [PubMed] [Google Scholar]
- 12.Wald MF, Muzyk AJ, Clark D. Bipolar depression: pregnancy, postpartum, and lactation. Psychiatr Clin North Am. (2016) 39:57–74. doi: 10.1016/j.psc.2015.10.002 [DOI] [PubMed] [Google Scholar]
- 13.Rasmussen M-LH, Strøm M, Wohlfahrt J, Videbech P, Melbye M. Risk, treatment duration, and recurrence risk of postpartum affective disorder in women with no prior psychiatric history: a population-based cohort study. PLoS Med. (2017) 14:e1002392. doi: 10.1371/journal.pmed.1002392 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Lim S, Hill B, Teede HJ, Moran LJ, O'Reilly S. An evaluation of the impact of lifestyle interventions on body weight in postpartum women: a systematic review and meta-analysis. Obes Rev. (2020) 21:e12990. doi: 10.1111/obr.12990, PMID: [DOI] [PubMed] [Google Scholar]
- 15.Meltzer-Brody S, Howard L, Bergink V, Vigod S, Jones I, Munk-Olsen T. Postpartum psychiatric disorders. Nat Rev Dis Primers. (2018) 4:18022. doi: 10.1038/nrdp.2018.22 [DOI] [PubMed] [Google Scholar]
- 16.Kadrmas A, Winokur G, Crowe R. Postpartum manias. Br J Psychiatry. (1979) 135:551–4. doi: 10.1192/bjp.135.6.551 [DOI] [PubMed] [Google Scholar]
- 17.Halbreich U, Karkun S. Cross-cultural and social diversity of prevalence of postpartum depression and depressive symptoms. J Affect Disord. (2006) 91:97–111. doi: 10.1016/j.jad.2005.12.051, PMID: [DOI] [PubMed] [Google Scholar]
- 18.Corwin EJ, Kohen R, Jarrett M, Stafford B. The heritability of postpartum depression. Biol Res Nurs. (2010) 12:73–83. doi: 10.1177/1099800410362112 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Jones WHS. Hippocrates-with an English translation, vol. 1. London: Heinemann; (1923). [Google Scholar]
- 20.Esquirol E. Mental Maladies: A Treatise on Insanity (translated by EK hunt). Philadelphia, Lea amp: Blanchard; (1845). [Google Scholar]
- 21.Marcé LV. Traité de la Folie des Femmes Encientes, de Nouvelles. Paris, Baillière: Accouchées et de Nourrices; (1858). [Google Scholar]
- 22.Coble PA, Day NL. The epidemiology of mental and emotional disorders during pregnancy and the postpartum period In: Cohen RL, editor. Psychiatric Consultation in Childbirth Settings. Boston, MA: Springer; (1988). [Google Scholar]
- 23.Hamilton JA. The identity of postpartum psychosis In: Brockington IF, Kumar R, editors. Motherhood and Mental Illness. London: Academic Press; (1982). 1–17. [Google Scholar]
- 24.Brockington I. A historical perspective on the psychiatry of motherhood In: Riecher-Rossler A, editor. Perinatal Stress, Mood and Anxiety Disorders. Basel: Karger; (2005). 1–5. [Google Scholar]
- 25.Worthen RJ, Eleonore B. Inflammatory and neurodegenerative pathophysiology implicated in postpartum depression. Neurobiol Dis. (2022) 165:105646. doi: 10.1016/j.nbd.2022.105646 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Hutchens BF, Kearney J. Risk factors for postpartum depression: an umbrella review. J Midwifery Womens Health. (2020) 65:96–108. doi: 10.1111/jmwh.13067 [DOI] [PubMed] [Google Scholar]
- 27.Stewart DE, Vigod S. Postpartum Depression. NEJM. (2016) 375:2177–86. doi: 10.1056/NEJMcp1607649 [DOI] [PubMed] [Google Scholar]
- 28.Pope CJ, Sharma V, Mazmanian D. Bipolar disorder in the postpartum period: management strategies and future directions. Womens Health (Lond). (2014) 10:359–71. doi: 10.2217/whe.14.33 [DOI] [PubMed] [Google Scholar]
- 29.O'Hara MW, McCabe JE. Postpartum depression: current status and future directions. Annu Rev Clin Psychol. (2013) 9:379–407. doi: 10.1146/annurev-clinpsy-050212-185612 [DOI] [PubMed] [Google Scholar]
- 30.Galea LA, Frokjaer VG. Perinatal depression: embracing variability toward better treatment and outcomes. Neuron. (2019) 102:13–6. doi: 10.1016/j.neuron.2019.02.023 [DOI] [PubMed] [Google Scholar]
- 31.Zhang Q, Dai X, Li W. Comparative efficacy and acceptability of pharmacotherapies for postpartum depression: a systematic review and network meta-analysis. Front Pharmacol. (2022) 13:950004. doi: 10.3389/fphar.2022.950004 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Kaufman Y, Carlini SV, Deligiannidis KM. Advances in pharmacotherapy for postpartum depression: a structured review of standard-of-care antidepressants and novel neuroactive steroid antidepressants. Ther Adv Psychopharmacol. (2022) 12:20451253211065859. doi: 10.1177/20451253211065859 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Yonkers KA, Wisner KL, Stewart DE, Oberlander TF, Dell DL, Stotland N, et al. The management of depression during pregnancy: a report from the American Psychiatric Association and the American College of Obstetricians and Gynecologists. Gen Hosp Psychiatry. (2009) 31:403–13. doi: 10.1016/j.genhosppsych.2009.04.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Carter CS, Altemus M. Integrative functions of lactational hormones in social behavior and stress management. Ann N Y Acad Sci. (1997) 807:164–74. doi: 10.1111/j.1749-6632.1997.tb51918.x [DOI] [PubMed] [Google Scholar]
- 35.Higuchi T, Negoro H, Arita J. Reduced responses of prolactin and catecholamine to stress in the lactating rat. J Endocrinol. (1989) 122:495–8. doi: 10.1677/joe.0.1220495 [DOI] [PubMed] [Google Scholar]
- 36.Champagne F, Diorio J, Sharma S, Meaney MJ. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci U S A. (2001) 98:12736–41. doi: 10.1073/pnas.221224598, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Smith CT, Sierra Y, Oppler SH, Boettiger CA. Ovarian cycle effects on immediate reward selection bias in humans: a role for estradiol. J Neurosci. (2014) 34:5468–76. doi: 10.1523/JNEUROSCI.0014-14.2014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Witte MM, Resuehr D, Chandler AR, Mehle AK, Overton JM. Female mice and rats exhibit species-specifc metabolic and behavioral responses to ovariectomy. Gen Comp Endocrinol. (2010) 166:520–8. doi: 10.1016/j.ygcen.2010.01.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Casas S, Garcia S, Cabrera R, Nanfaro F, Escudero C, Yunes R. Progesterone prevents depression-like behavior in a model of Parkinson's disease induced by 6-hydroxydopamine in male rats. Pharmacol Biochem Behav. (2011) 99:614–8. doi: 10.1016/j.pbb.2011.06.012 [DOI] [PubMed] [Google Scholar]
- 40.Frieder A, Fersh M, Hainline R, Deligiannidis KM. Pharmacotherapy of postpartum depression: current approaches and novel drug development. CNS Drugs. (2019) 33:265–82. doi: 10.1007/s40263-019-00605-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Newport DJ, Wilcox MM, Stowe ZN. Antidepressants during pregnancy and lactation: defining exposure and treatment issues. Semin Perinatol. (2001) 25:177–90. doi: 10.1053/sper.2001.24901 [DOI] [PubMed] [Google Scholar]
- 42.Molyneaux E, Howard LM, McGeown H, Karia AM, Trevillion K. Antidepressant treatment for postnatal depression. Cochrane Database Syst Rev. (2014) 9:CD002018. doi: 10.1002/14651858.CD002018.pub2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Deligiannidis KM, Meltzer-Brody S, Gunduz-Bruce H, Doherty J, Jonas J, Li S, et al. Effect of Zuranolone vs placebo in postpartum depression: a randomized clinical trial. JAMA Psychiat. (2021) 78:951–9. doi: 10.1001/jamapsychiatry.2021.1559, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Verbe J, Dubertret C, El-Hage W, Bonnet-Brilhault F, Duriez P. Approche GABAergique de la dépression du post-partum: une revue critique translationnelle [GABAergic approach of postpartum depression: a translational review of literature]. Encéphale. (2020) 46:123–34. doi: 10.1016/j.encep.2019.09.007 [DOI] [PubMed] [Google Scholar]
- 45.Brunton PJ. Neuroactive steroids and stress axis regulation: pregnancy and beyond. J Steroid Biochem Mol Biol. (2016) 160:160–8. doi: 10.1016/j.jsbmb.2015.08.003 [DOI] [PubMed] [Google Scholar]
- 46.Paul SM, Purdy RH. Neuroactive steroids. FASEB J. (1992) 6:2311–22. doi: 10.1096/fasebj.6.6.1347506 [DOI] [PubMed] [Google Scholar]
- 47.Kash K, Bächström T, Nilsson L-G, Sundström-Poromaa I. Allopregnanolone impairs episodic memory in healthy women. Psychopharmacology. (2008) 199:161–8. doi: 10.1007/s00213-008-1150-7, PMID: [DOI] [PubMed] [Google Scholar]
- 48.García-Baos A, Gallego-Landin I, Ferreres-Álvarez I, Puig-Reyne X, Castro-Zavala A, Valverde O, et al. Effects of fast-acting antidepressant drugs on a postpartum depression mice model. Biomed Pharmacother. (2022) 154:113598. doi: 10.1016/j.biopha.2022.113598 [DOI] [PubMed] [Google Scholar]
- 49.Chen-Li D, Lui LMW, Rosenblat JD, Lipsitz O, Teopiz KM, Ho R, et al. Ketamine as potential treatment for postpartum depression: a narrative review. Ann Clin Psychiatry. (2022) 34:264–74. doi: 10.12788/acp.0082 [DOI] [PubMed] [Google Scholar]
- 50.Timby E, Hedstrom H, Bachstrom T, Sundstrom-Poromaa I, Nyberg S, Bixo M. Allopregnanolone, a GABAA receptor agonist, decreases gonadotropin levels in women. A preliminary study. Gynecol Endocrinol. (2011) 27:1087–93. doi: 10.3109/09513590.2010.540603 [DOI] [PubMed] [Google Scholar]
- 51.Wisner KL, Sit DK, Mc Shea MC, Rizzo DM, Zoretich RA, Hughes CL, et al. Onset timing, thoughts of self-harm, and diagnoses in postpartum women with screen-positive depression findings. JAMA Psychiat. (2013) 70:490–8. doi: 10.1001/jamapsychiatry.2013.87 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Segre LS, O’Hara MW, Arndt S, Stuart S. The prevalence of postpartum depression: the relative significance of three social status indices. Soc Psychiatry Psychiatr Epidemiol. (2007) 42:316–21. doi: 10.1007/s00127-007-0168-1 [DOI] [PubMed] [Google Scholar]
- 53.Gregoire AJ, Kumar R, Everitt B, Henderson AF, Studd JW. Transdermal oestrogen for treatment of severe postnatal depression. Lancet. (1996) 347:930–3. doi: 10.1016/s0140-6736(96)91414-2 [DOI] [PubMed] [Google Scholar]
- 54.Mershy JP, Janczewstì CE. Adverse childhood experiences and postpartum depression in home visiting programs: prevalence, association, and mediating mechanisms. Matern Child Health J. (2018) 22:1051–8. doi: 10.1007/s10995-018-2488-z [DOI] [PubMed] [Google Scholar]
- 55.Centers for Disease Control and Prevention (CDC) . Prevalence of self-reported postpartum depressive symptoms--17 states, 2004-2005. MMWR Morb Mortal Wkly Rep. (2008) 57:361–6. PMID: [PubMed] [Google Scholar]
- 56.Cory-Slechta DA. Chapter nine-enduring behavioral and brain impacts of prenatal stress and childhood adversity and their potential multigenerational consequences. Adv Neurotoxicol. (2018) 2:265–300. doi: 10.1016/bs.ant.2018.03.007 [DOI] [Google Scholar]
- 57.Yim IS, Tanner Stapleton LR, Guardino CM, Hahn-Holbrook J, Dunkel SC. Biological and psychosocial predictors of postpartum depression: systematic review and call for integration. Annu Rev Clin Psychol. (2015) 11:99–137. doi: 10.1146/annurev-clinpsy-101414-020426 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 58.Liu H, Wang LL, Zhao SJ, Kwak-Kim J, Mor G, Liao AH. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J Reprod Immunol. (2020) 139:103122. doi: 10.1016/j.jri.2020.103122, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA. Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry. (2014) 19:560–7. doi: 10.1038/mp.2013.62 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Couto TC, Brancaglion MYM, Alvim-Soares A, Moreira L, Garcia FD, Nicolato R, et al. Postpartum depression: a systematic review of the genetics involved. World J Psychiatry. (2015) 5:103–11. doi: 10.5498/wjp.v5.i1.103 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Forty L, Jones L, Macgregor S, Caesar S, Cooper C, Hough A, et al. Familiality of postpartum depression in unipolar disorder: results of a family study. Am J Psychiatry. (2006) 163:1549–53. doi: 10.1176/ajp.2006.163.9.1549, PMID: [DOI] [PubMed] [Google Scholar]
- 62.Treloar SA, Martin NG, Bucholz KK, Madden PA, Heath AC. Genetic influences on post-natal depressive symptoms: findings from an Australian twin sample. Psychol Med. (1999) 29:645–54. doi: 10.1017/S0033291799008387 [DOI] [PubMed] [Google Scholar]
- 63.Mehta D, Grewen K, Pearson B, Wani S, Wallace L, Henders AK, et al. Genome-wide gene expression changes in postpartum depression point towards an altered immune landscape. Transl Psychiatry. (2021) 11:155. doi: 10.1038/s41398-021-01270-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Gutiérrez-Zotes A, Díaz-Peña R, Costas J, Martorell L, Gelabert E, Sans T, et al. Interaction between the functional SNP rs 2070951 in NR3C2 gene and high levels of plasma corticotropin-releasing hormone associates to postpartum depression. Arch Womens Ment Health. (2020) 23:413–20. doi: 10.1007/s00737-019-00989-x [DOI] [PubMed] [Google Scholar]
- 65.Zoubovsky SP, Hoseus S, Tumukuntala S, Schulkin JO, Williams MT, Vorhees CV, et al. Chronic psychosocial stress during pregnancy affects maternal behavior and neuroendocrine function and modulates hypothalamic CRH and nuclear steroid receptor expression. Transl Psychiatry. (2020) 10:6. doi: 10.1038/s41398-020-0704-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Choi D, Tsuchiya KJ, Takei N. Interaction effect of oxytocin receptor (OXTR) rs 53576 genotype and maternal postpartum depression on child behavioural problems. Sci Rep. (2019) 9:7685. doi: 10.1038/s41598-019-44175-6, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Mehta D, Newport D, Frishman G, Kraus L, Rex-Haffner M, Ritchie JC, et al. Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling. Psychol Med. (2014) 44:2309–22. doi: 10.1017/S0033291713003231 [DOI] [PubMed] [Google Scholar]
- 68.Landsman A, Aidelman R, Smith Y, Boyko M, Greenberger C. Distinctive gene expression profile in women with history of postpartum depression. Genomics. (2017) 109:1–8. doi: 10.1016/j.ygeno.2016.10.005, PMID: [DOI] [PubMed] [Google Scholar]
- 69.Binder EB, Newport DJ, Zach EB, Smith AK, Deveau TC, Altshuler LL, et al. A serotonin transporter gene polymorphism predicts peripartum depressive symptoms in an at-risk psychiatric cohort. J Psychiatr Res. (2010) 44:640–6. doi: 10.1016/j.jpsychires.2009.12.001, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 70.Mitchell C, Notterman D, Brooks-Gunn J, Hobcraft J, Garfinkel I, Jaeger K, et al. Role of mother's genes and environment in postpartum depression. Proc Natl Acad Sci U S A. (2011) 108:8189–93. doi: 10.1073/pnas.1014129108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Mehta D, Quast C, Fasching PA, Seifert A, Voigt F, Beckmann MW, et al. The 5-HTTLPR polymorphism modulates the influence on environmental stressors on peripartum depression symptoms. J Affect Disord. (2012) 136:1192–7. doi: 10.1016/j.jad.2011.11.042 [DOI] [PubMed] [Google Scholar]
- 72.Pinheiro RT, Coelho FM, Silva RA, Pinheiro KAT, Oses JP, Quevedo LA, et al. Association of a serotonin transporter gene polymorphism (5-HTTLPR) and stressful life events with postpartum depressive symptoms: a population-based study. J Psychosom Obstet Gynaecol. (2013) 34:29–33. doi: 10.3109/0167482X.2012.759555, PMID: [DOI] [PubMed] [Google Scholar]
- 73.Sun HS, Tsai HW, Ko HC, Chang FM, Yeh TL. Association of tryptophan hydroxylase gene polymorphism with depression, anxiety and comorbid depression and anxiety in a population-based sample of postpartum Taiwanese women. Genes Brain Behav. (2004) 3:328–36. doi: 10.1111/j.1601-183X.2004.00085.x [DOI] [PubMed] [Google Scholar]
- 74.Hoffiz YC, Castillo-Ruiz A, Hall MAL, Hite TA, Gray JM, Cisternas CD, et al. Birth elicits a conserved neuroendocrine response with implications for perinatal osmoregulation and neuronal cell death. Sci Rep. (2021) 11:2335. doi: 10.1038/s41598-021-81511-1, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 75.Schiller CE, Meltzer-Brody S, Rubinow DR. The role of reproductive hormones in postpartum depression. CNS Spectr. (2015) 20:48–59. doi: 10.1017/S1092852914000480 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76.Bloch M, Daly RC, Rubinow DR. Endocrine factors in the etiology of postpartum depression. Compr Ther. (2003) 44:234–46. doi: 10.1016/S0010-440X(03)00034-8 [DOI] [PubMed] [Google Scholar]
- 77.Martini J, Wittich J, Petzoldt J, Winkel S, Einsle F, Siegert J, et al. Maternal anxiety disorders prior to conception, psychopathology during pregnancy and early infants' development: a prospective-longitudinal study. Arch Womens Ment Health. (2013) 16:549–60. doi: 10.1007/s00737-013-0376-5 [DOI] [PubMed] [Google Scholar]
- 78.Martini J, Petzoldt J, Einsle F, Beesdo-Baum K, Höfler M, Wittchen HU. Risk factors and course patterns of anxiety and depressive disorders during pregnancy and after delivery: a prospective-longitudinal study. J Affect Disord. (2015) 175:385–95. doi: 10.1016/j.jad.2015.01.012 [DOI] [PubMed] [Google Scholar]
- 79.Sacher J, Wilson AA, Houle S, Rusjan P, Hassan S, Bloomfield PM, et al. Elevated brain monoamine oxidase a binding in the early postpartum period. Arch Gen Psychiatry. (2010) 67:468–74. doi: 10.1001/archgenpsychiatry.2010.32 [DOI] [PubMed] [Google Scholar]
- 80.Sacher J, Rekkas PV, Wilson AA, Houle S, Romano L, Hamidi J, et al. Relationship of monoamine oxidase-a distribution volume to postpartum depression and postpartum crying. Neuropsychopharmacology. (2015) 40:429–35. doi: 10.1038/npp.2014.190 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Hasler G, Fromm S, Carlson PJ, Luckenbaugh DA, Waldeck T, Geraci M, et al. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry. (2008) 65:521–31. doi: 10.1001/archpsyc.65.5.521 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D. Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta. (2006) 364:82–90. doi: 10.1016/j.cca.2005.06.013, PMID: [DOI] [PubMed] [Google Scholar]
- 83.Keenan PA, Yaldoo DT, Stress ME, Fuerst DR, Ginsburg KA. Explicit memory in pregnant women. Am J Obstet Gyneco. (1998) 179:731–7. doi: 10.1016/s0002-9378(98)70073-0 [DOI] [PubMed] [Google Scholar]
- 84.Macbeth AH, Luine VN. Changes in anxiety and cognition due to reproductive experience: a review of data from rodent and human mothers. Neurosci Biobehav Rev. (2010) 34:452–67. doi: 10.1016/j.neubiorev.2009.08.011, PMID: [DOI] [PubMed] [Google Scholar]
- 85.Henry JF, Sherwin BB. Hormones and cognitive functioning during late pregnancy and postpartum: a longitudinal study. Behav Neurosci. (2012) 126:73–85. doi: 10.1037/a0025540 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Logan DM, Hill KR, Jones R, Holt-Lunstad J, Larson MJ. How do memory and attention change with pregnancy and childbirth? A controlled longitudinal examination of neuropsychological functioning in pregnant and postpartum women. J Clin Exp Neuropsychol. (2014) 36:528–39. doi: 10.1080/13803395.2014.912614, PMID: [DOI] [PubMed] [Google Scholar]
- 87.Hampson E, Phillips SD, Duff-Canning SJ, Evans KL, Merrill M, Pinsonneault JK, et al. Working memory in pregnant women: relation to estrogen and antepartum depression. Horm Behav. (2015) 74:218–27. doi: 10.1016/j.yhbeh.2015.07.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Hoekzema E, Barba-Müller E, Pozzobon C, Picado M, Lucco F, García García D, et al. Pregnancy leads to long-lasting changes in human brain structure. Nat Neurosci. (2017) 20:287–96. doi: 10.1038/nn.4458 [DOI] [PubMed] [Google Scholar]
- 89.Mazor E, Sheiner E, Wainstock T, Attias M, Walfisch A. The association between depressive state and maternal cognitive function in postpartum women. Am J Perinatol. (2019) 36:285–90. doi: 10.1055/s-0038-1667376 [DOI] [PubMed] [Google Scholar]
- 90.Zheng JX, Chen YC, Chen H, Jiang L, Bo F, Feng Y, et al. Disrupted spontaneous neural activity related to cognitive impairment in postpartum women. Front Psychol. (2018) 9:624. doi: 10.3389/fpsyg.2018.00624, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Thomas KA, Burr RL. Melatonin level and pattern in postpartum versus nonpregnant nulliparous women. Journal of obstetric, gynecologic, and neonatal nursing. JOGNN. (2006) 35:608–15. doi: 10.1111/j.1552-6909.2006.00082.x [DOI] [PubMed] [Google Scholar]
- 92.Sharkey KM, Pearlstein TB, Carskadon MA. Circadian phase shifts and mood across the perinatal period in women with a history of major depressive disorder: a preliminary communication. J Affect Disord. (2013) 150:1103–8. doi: 10.1016/j.jad.2013.04.046, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Murray G, Harvey A. Circadian rhythms and sleep in bipolar disorder. Bipolar Disord. (2010) 12:459–72. doi: 10.1111/j.1399-5618.2010.00843.x [DOI] [PubMed] [Google Scholar]
- 94.Lewis KJ, Foster RG, Jones IR. Is sleep disruption a trigger for postpartum psychosis? Br J Psychiatry. (2016) 208:409–11. doi: 10.1192/bjp.bp.115.166314 [DOI] [PubMed] [Google Scholar]
- 95.Krawczak EM, Minuzzi L, Hidalgo MP, Frey BN. Do changes in subjective sleep and biological rhythms predict worsening in postpartum depressive symptoms? A prospective study across the perinatal period. Arch Womens Ment Health. (2016) 19:591–8. doi: 10.1007/s00737-016-0612-x [DOI] [PubMed] [Google Scholar]
- 96.Lee KA, Zaffke ME, McEnany G. Parity and sleep patterns during and after pregnancy. Obstet Gynecol. (2000) 95:14–8. doi: 10.1016/s0029-7844(99)00486-x [DOI] [PubMed] [Google Scholar]
- 97.Grant MM, Thase ME, Sweeney JA. Cognitive disturbance in outpatient depressed younger adults: evidence of modest impairment. Biol Psychiatry. (2001) 50:35–43. doi: 10.1016/s0006-3223(00)01072-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Okun ML. Disturbed sleep and postpartum depression. Curr Psychiatr Ther. (2016) 18:66. doi: 10.1007/s11920-016-0705-2 [DOI] [PubMed] [Google Scholar]
- 99.Richardson L, Adams S. Cognitive deficits in patients with depression. J Nurse Pract. (2018) 14:437–443.e3. doi: 10.1016/j.nurpra.2018.03.006 [DOI] [Google Scholar]
- 100.Perini G, Ramusino MC, Sinforiani E, Bernini S, Petrachi R, Costa A. Cognitive impairment in depression: recent advances and novel treatments. Neuropsychiatr Dis Treat. (2019) 15:1249–58. doi: 10.2147/NDT.S199746, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Ji Y, Li W, Liu B, Liu J, Ju Y, Wang M, et al. Clinical characteristics of cognitive deficits in major depressive disorder: a 6-month prospective study. Arch Clin Psychiatry. (2020) 47:101–5. doi: 10.1590/0101-60830000000241 [DOI] [Google Scholar]
- 102.Anderson G, Berk M, Maes M. Biological phenotypes underpin the physio-somatic symptoms of somatization, depression, and chronic fatigue syndrome. Acta Psychiatr Scand. (2014) 129:83–97. doi: 10.1111/acps.12182, PMID: [DOI] [PubMed] [Google Scholar]
- 103.Roomruangwong C, Kanchanatawan B, Sirivichayakul S, Anderson G, Carvalho AF, Duleu S, et al. IgA/IgM responses to tryptophan and tryptophan catabolites (trycats) are differently associated with prenatal depression, physio-somatic symptoms at the end of term and premenstrual syndrome. Mol Neurobiol. (2017) 54:3038–49. doi: 10.1007/s12035-016-9877-3, PMID: [DOI] [PubMed] [Google Scholar]
- 104.Lommatzsch M, Hornych K, Zingler C, Schuff-Werner P, Höppner J, Virchow JC. Maternal serum concentrations of BDNF and depression in the perinatal period. Psychoneuroendocrinology. (2006) 31:388–94. doi: 10.1016/j.psyneuen.2005.09.003, PMID: [DOI] [PubMed] [Google Scholar]
- 105.O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. (2015) 277:32–48. doi: 10.1016/j.bbr.2014.07.027 [DOI] [PubMed] [Google Scholar]
- 106.Oxenkrug G. Serotonin-kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets. (2013) 14:514–21. doi: 10.2174/1389450111314050002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the kynurenine pathway in CNS disease: molecular mechanisms and therapeutic implications. Cells. (2021) 10:1548. doi: 10.3390/cells10061548, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Krupa A, Kowalska I. The kynurenine pathway-new linkage between innate and adaptive immunity in autoimmune endocrinopathies. Int J Mol Sci. (2021) 22:9879. doi: 10.3390/ijms22189879, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Sas K, Szabó E, Vécsei L. Mitochondria, oxidative stress and the kynurenine system, with a focus on ageing and neuroprotection. Molecules. (2018) 23:191. doi: 10.3390/molecules23010191 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Achtyes E, Keaton SA, Smart L, Burmeister AR, Heilman PL, Krzyzanowski S, et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav Immun. (2020) 83:239–47. doi: 10.1016/j.bbi.2019.10.017 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.Veen C, Myint AM, Burgerhout KM, Schwarz MJ, Schütze G, Kushner SA, et al. Tryptophan pathway alterations in the postpartum period and in acute postpartum psychosis and depression. J Affect Disord. (2016) 189:298–305. doi: 10.1016/j.jad.2015.09.064, PMID: [DOI] [PubMed] [Google Scholar]
- 112.Sha Q, Madaj Z, Keaton S, Galvis MLE, Smart L, Krzyzanowski S, et al. Cytokines and tryptophan metabolites can predict depressive symptoms in pregnancy. Transl Psychiatry. (2022) 12:35. doi: 10.1038/s41398-022-01801-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 113.Kimmel MC, Cox E, Schiller C, Gettes E, Meltzer-Brody S. Pharmacologic treatment of perinatal depression. Obstet Gynecol Clin N Am. (2018) 45:419–40. doi: 10.1016/j.ogc.2018.04.007 [DOI] [PubMed] [Google Scholar]
- 114.Sedlmayr P, Blaschitz A, Stocker R. The role of placental tryptophan catabolism. Front Immunol. (2014) 5:230. doi: 10.3389/fimmu.2014.00230, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Brunton PJ, Russell JA. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy. Prog Neuro-Psychopharmacol Biol Psychiatry. (2011) 35:1178–91. doi: 10.1016/j.pnpbp.2010.12.023 [DOI] [PubMed] [Google Scholar]
- 116.Poggi-Davis E, Sandman CA. Prenatal exposure to stress and stress hormones influences child development. Infants Young Child. (2006) 19:246–59. doi: 10.1097/00001163-200607000-00008 [DOI] [Google Scholar]
- 117.Seth S, Lewis AJ, Galbally M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: a systematic literature review. BMC Pregnancy Childbirth. (2016) 16:124. doi: 10.1186/s12884-016-0915-y, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Glynn LM, Davis EP, Sandman CA. New insights into the role of perinatal HPA-axis dysregulation in postpartum depression. Neuropeptides. (2013) 47:363–70. doi: 10.1016/j.npep.2013.10.007, PMID: [DOI] [PubMed] [Google Scholar]
- 119.Wang J, Yun Q, Ma SF, Song HR, Guo MN, Zhang WN. Inhibition of expression of glucocorticoids receptors may contribute to postpartum depression. Biochem Biophys Res Commun. (2020) 523:159–64. doi: 10.1016/j.bbrc.2019.12.040 [DOI] [PubMed] [Google Scholar]
- 120.De Geest K, Thiery M, Piron-Possuyt G, Vanden Driessche R, Driessche RV. Plasma oxytocin in human pregnancy and parturition. J Perinat Med. (1985) 13:3–13. doi: 10.1515/jpme.1985.13.1.3 [DOI] [PubMed] [Google Scholar]
- 121.Uvnäs-Moberg K, Ekström-Bergström A, Berg M, Buckley S, Pajalic Z, Hadjigeorgiou E, et al. Maternal plasma levels of oxytocin during physiological childbirth – a systematic review with implications for uterine contractions and central actions of oxytocin. BMC Pregnancy Childbirth. (2019) 19:285. doi: 10.1186/s12884-019-2365-9, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Prevost M, Zelkowitz P, Tulandi T, Hayton B, Feeley N, Carter CS, et al. Oxytocin in pregnancy and the postpartum: relations to labor and its management. Front Public Health. (2014) 2:1. doi: 10.3389/fpubh.2014.00001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Donadon MF, Martin-Santos R, Osório F. Oxytocin effects on the cognition of women with postpartum depression: a randomized, placebo-controlled clinical trial. Prog Neuro-Psychopharmacol Biol Psychiatry. (2021) 111:110098. doi: 10.1016/j.pnpbp.2020.110098, PMID: [DOI] [PubMed] [Google Scholar]
- 124.Galbally M, Watson SJ, Keelan JA, Spigset O, Lewis A. The relationship between oxytocin blood concentrations and antidepressants over pregnancy and the postpartum. Prog Neuro-Psychopharmacol Biol Psychiatry. (2021) 109:110218. doi: 10.1016/j.pnpbp.2020.110218, PMID: [DOI] [PubMed] [Google Scholar]
- 125.Martinowich K, Lu B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. (2008) 33:73–83. doi: 10.1038/sj.npp.1301571 [DOI] [PubMed] [Google Scholar]
- 126.Jang SW, Liu X, Pradoldej S, Tosini G, Chang Q, Iuvone PM, et al. N-acetylserotonin activates Trk B receptor in a circadian rhythm. Proc Natl Acad Sci U S A. (2010) 107:3876–81. doi: 10.1073/pnas.0912531107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. (2006) 59:1116–27. doi: 10.1016/j.biopsych.2006.02.013 [DOI] [PubMed] [Google Scholar]
- 128.Ivanisevic L, Saragovi H. Chapter 224 - neurotrophins In: Kastin A, editor. Handbook of Biologically Active Peptides. 2nd ed. Amsterdam: Academic Press; (2013). 1639–46. [Google Scholar]
- 129.Wiener CD, de Mello SF, Pedrotti FM, Bittencourt G, de Oliveira JF, Lopez MM, et al. Serum levels of nerve growth factor (NGF) in patients with major depression disorder and suicide risk. J Affect Disord. (2015) 15:245–8. doi: 10.1016/j.jad.2015.05.067 [DOI] [PubMed] [Google Scholar]
- 130.Pedrotti Moreira F, Borges CJ, Wiener CD, da Silva PM, Portela LV, Lara DR, et al. Serum brain-derived neurotrophic factor levels in subjects with major depressive disorder with previous suicide attempt: a population-based study. Psychiatry Res. (2018) 262:500–4. doi: 10.1016/j.psychres.2017.09.033, PMID: [DOI] [PubMed] [Google Scholar]
- 131.Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. (2001) 24:677–736. doi: 10.1146/annurev.neuro.24.1.677, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Sahay AS, Sundrani DP, Joshi SR. Neurotrophins: Role in Placental Growth and Development. Vitam Horm. (2017) 104:243–61. doi: 10.1016/bs.vh.2016.11.002 [DOI] [PubMed] [Google Scholar]
- 133.Kawamura K, Kawamura N, Sato W, Fukuda J, Kumagai J, Tanaka T. Brain-derived neurotrophic factor promotes implantation and subsequent placental development by stimulating trophoblast cell growth and survival. Endocrinology. (2009) 150:3774–82. doi: 10.1210/en.2009-0213, PMID: [DOI] [PubMed] [Google Scholar]
- 134.Gazal M, Motta LS, Wiener CD, Fernandes JC, Quevedo LA, Jansen K, et al. Brain-derived neurotrophic factor in post-partum depressive mothers. Neurochem Res. (2012) 37:583–7. doi: 10.1007/s11064-011-0647-3 [DOI] [PubMed] [Google Scholar]
- 135.Gao X, Wang J, Yao H, Cai Y, Cheng R. Serum BDNF concentration after delivery is associated with development of postpartum depression: a 3-month follow up study. J Affect Disord. (2016) 200:25–30. doi: 10.1016/j.jad.2016.04.002 [DOI] [PubMed] [Google Scholar]
- 136.Christian LM, Mitchell AM, Gillespie SL, Palettas M. Serum brain-derived neurotrophic factor (BDNF) across pregnancy and postpartum: associations with race, depressive symptoms, and low birth weight. Psychoneuroendocrinology. (2016) 74:69–76. doi: 10.1016/j.psyneuen.2016.08.025, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Kodomari I, Wada E, Nakamura S, Wada K. Maternal supply of BDNF tomouse fetal brain through the placenta. Neurochem Int. (2009) 54:95–8. doi: 10.1016/j.neuint.2008.11.005 [DOI] [PubMed] [Google Scholar]
- 138.Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biol Mood Anxiety Disord. (2011) 1:9. doi: 10.1186/2045-5380-1-9, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Avraham Y, Hants Y, Vorobeiv L, Staum M, Abu Ahmad W, Mankuta D, et al. Brain neurotransmitters in an animal model with postpartum depressive-like behavior. Behav Brain Res. (2017) 326:307–21. doi: 10.1016/j.bbr.2017.01.013 [DOI] [PubMed] [Google Scholar]
- 140.Galea LA, Wide JK, Barr AM. Estradiol alleviates depressive-like symptoms in a novel animal model of post-partum depression. Behav Brain Res. (2001) 122:1–9. doi: 10.1016/s0166-4328(01)00170-x [DOI] [PubMed] [Google Scholar]
- 141.Stoffel EC, Craft RM. Ovarian hormone withdrawal-induced "depression" in female rats. Physiol Behav. (2004) 83:505–13. doi: 10.1016/j.physbeh.2004.08.033 [DOI] [PubMed] [Google Scholar]
- 142.Frye CA, Walf AA. Estrogen and/or progesterone administered systemically or to the amygdala can have anxiety-, fear-, and pain-reducing effects in ovariectomized rats. Behav Neurosci. (2004) 118:306–13. doi: 10.1037/0735-7044.118.2.306 [DOI] [PubMed] [Google Scholar]
- 143.Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: a target for endocrine disruption. Front Neuroendocrinol. (2019) 54:100765. doi: 10.1016/j.yfrne.2019.100765, PMID: [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Crowley WR. Neuroendocrine regulation of lactation and milk production. Compr Physiol. (2015) 5:255–91. doi: 10.1002/cphy.c140029 [DOI] [PubMed] [Google Scholar]
- 145.Winokur SB, Lopes KL, Moparthi Y, Pereira M. Depression-related disturbances in rat maternal behavior are associated with altered monoamine levels within mesocorticolimbic structures. J Neuroendocrinol. (2019) 31:e12766. doi: 10.1111/jne.12766, PMID: [DOI] [PubMed] [Google Scholar]
- 146.Groer MW, Davis MW, Hemphill J. Postpartum stress: current concepts and the possible protective role of breastfeeding. JOGNN. (2002) 31:411–7. doi: 10.1111/j.1552-6909.2002.tb00063.x [DOI] [PubMed] [Google Scholar]
- 147.Altemus M, Deuster PA, Galliven E, Carter CS, Gold PW. Suppression of hypothalmic-pituitary-adrenal axis responses to stress in lactating women. J Clin Endocrinol Metab. (1995) 80:2954–9. doi: 10.1210/jcem.80.10.7559880, PMID: [DOI] [PubMed] [Google Scholar]
- 148.Windle RJ, Wood S, Shanks N, Perks P, Conde GL, da Costa APC, et al. Endocrine and behavioural responses to noise stress: comparison of virgin and lactating female rats during non-disrupted maternal activity. J Neuroendocrinol. (1997) 9:407–14. doi: 10.1046/j.1365-2826.1997.00587.x [DOI] [PubMed] [Google Scholar]
- 149.Fischer D, Patchev VK, Hellbach S, Hassan AH, Almeida OF . Lactation as a model for naturally reversible hypercortisolism plasticity in the mechanisms governing hypothalamo-pituitary-adrenocortical activity in rats. J Clin Invest. (1995) 96:1208–15. doi: 10.1172/JCI118153 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Magiakou MA, Mastorakos G, Webster E, Chrousos GP. The hypothalamic-pituitary-adrenal axis and the female reproductive system. Ann N Y Acad Sci. (1997) 816:42–56. doi: 10.1111/j.1749-6632.1997.tb52128.x [DOI] [PubMed] [Google Scholar]
- 151.Frye CA, Walf AA. Progesterone reduces depression-like behavior in a murine model of Alzheimer's disease. Age (Dordr). (2009) 31:143–53. doi: 10.1007/s11357-009-9091-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Li Y, Raaby KF, Sanchez C, Gulinello M. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats. Behav Brain Res. (2013) 256:520–8. doi: 10.1016/j.bbr.2013.09.002 [DOI] [PubMed] [Google Scholar]
- 153.Maguire J, Mody I. GABA (a) R plasticity during pregnancy: relevance to postpartum depression. Neuron. (2008) 59:207–13. doi: 10.1016/j.neuron.2008.06.019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Mir FR, Pollano A, Rivarola MA. Animal models of postpartum depression revisited. Psychoneuroendocrinology. (2022) 136:105590. doi: 10.1016/j.psyneuen.2021.105590 [DOI] [PubMed] [Google Scholar]
- 155.Batt MM, Duffy KA, Novick AM, Metcalf CA, Epperson CN. Is postpartum depression different from depression occurring outside of the perinatal period? A review of the evidence. FOCUS (Am Psychiatr Publ). (2020) 18:106–19. doi: 10.1176/appi.focus.20190045 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Barak Y, Glue P. Progesterone loading as a strategy for treating postpartum depression. Hum Psychopharmacol. (2020) 35:e2731. doi: 10.1002/hup.2731 [DOI] [PubMed] [Google Scholar]
- 157.Kanes SJ, Colquhoun H, Doherty J, Raines S, Hoffmann E, Rubinow DR, et al. Open-label, proof-ofconcept study of brexanolone in the treatment of severe postpartum depression. Hum Psychopharmacol. (2017) 32:e2576. doi: 10.1002/hup.2576 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 158.Luisi S, Petraglia F, Benedetto C, Nappi RE, Bernardi F, Fadalti M, et al. Serum allopregnanolone levels in pregnant women: changes during pregnancy, at delivery, and in hypertensive patients. J Clin Endocrinol Metab. (2000) 85:2429–33. doi: 10.1210/jcem.85.7.6675 [DOI] [PubMed] [Google Scholar]
- 159.Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. (2010) 13:1161–9. doi: 10.1038/nn.2647 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Gururajan A, Reif A, Cryan JF, Slattery DA. The future of rodent models in depression research. Nat Rev Neurosci. (2019) 20:686–701. doi: 10.1038/s41583-019-0221-6 [DOI] [PubMed] [Google Scholar]
- 161.Fajemiroye J, Polepally P, Chaurasiya N, Tekwani BL, Zjawiony JK, Costa EA. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor. Sci Rep. (2015) 5:11582. doi: 10.1038/srep11582 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Fajemiroye JO, Galdino PM, Florentino IF, da Rocha FF, Ghedini PC, Polepally PR, et al. Plurality of anxiety and depression alteration mechanism by oleanolic acid. J Psychopharmacol. (2014) 28:923–34. doi: 10.1177/0269881114536789, PMID: [DOI] [PubMed] [Google Scholar]
- 163.Molendijk ML, de Kloet ER. Coping with the forced swim stressor: current state-of-the-art. Behav Brain Res. (2019) 364:1–10. doi: 10.1016/j.bbr.2019.02.005 [DOI] [PubMed] [Google Scholar]