Abstract
Traditional rigid robots face significant challenges in congested and tight environments, including bulky size, maneuverability, and safety limitations. Thus, soft continuum robots, inspired by the incredible capabilities of biological appendages such as octopus arms, starfish, and worms, have shown promising performance in complex environments due to their compliance, adaptability, and safety. Different actuation techniques are implemented in soft continuum robots to achieve a smoothly bending backbone, including cable-driven actuators, pneumatic actuators, and hydraulic actuation systems. However, designing and developing efficient actuation mechanisms, motion planning approaches, and control algorithms are challenging due to the high degree of redundancy and non-linearity of soft continuum robots. This article profoundly reviews the merits and drawbacks of soft robots’ actuation systems concerning their applications to provide the readers with a brief review reference to explore the recent development of soft robots’ actuation mechanisms technology. Moreover, the authors have surveyed the recent review studies in controller design of continuum robots as a guidance for future applications.
Keywords: Actuation mechanisms, flexible robot, soft structure, twisted cable polymer
Footnotes
Ibrahim A. Seleem would like to acknowledge the Japan Society for the Promotion of Science (JSPS) for granting him scholarship to carry out his post graduate studies in Waseda University, Japan and fully support this research work. This work was supported by JSPS KAKENHI Grant Numbers JP22F21076, JP21H05055, JP19H01130.
Conflict of Interest
The authors declare that there is no competing financial interest or personal relationship that could have appeared to influence the work reported in this paper.
Ibrahim A. Seleem received his M.Sc. and Ph.D. degrees in mechatronics and robotics engineering from the Egypt-Japan University of Science and Technology (E-JUST) in 2017 and 2020, respectively. Since 2020, he has been working as an assistant professor at Industrial Electronics and Control Engineering, Menoufia University, Egypt. He is currently a Visiting JSPS Scholar at the Modern Mechanical Engineering Department, Faculty of Science and Engineering, Waseda University, Tokyo, Japan. His research interests include dynamics, motion planning and control of nonlinear systems, soft robotics, teleoperation, and humanoid robots.
Haitham El-Hussieny received his M.Sc. and Ph.D. degrees in mechatronics and robotics engineering from the Egypt-Japan University of Science and Technology (E-JUST) in 2013 and 2016, respectively. In August 2019, he took up the Senior Research Fellow in Soft Robotics at the Centre for Autonomous Systems and Advanced Robotics at the University of Salford in Manchester, UK. Recently, he has been working as an Associate Professor in mechatronics and robotics engineering at E-JUST. His research expertise includes soft robotics, soft haptics, teleoperation, human-robot interaction, and applied intelligence.
Hiroyuki Ishii received his B.Sc. and M.Sc. degrees in mechanical engineering from Waseda University Japan, in 2002 and 2004, respectively. He then received his Ph.D. degree in biomedical engineering from Waseda University, Japan, in 2007. He is currently a professor at the Department of Modern Mechanical Engineering, Waseda University. He obtained the Young Scientists’ Prize, The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology, Japan, in 2018. His research interests are focused on interactive robots which induce behavior modifications on humans and animals.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Ibrahim A. Seleem, Email: ibrahim.selim@el-eng.menofia.edu.eg
Haitham El-Hussieny, Email: haitham.elhussieny@ejust.edu.eg.
Hiroyuki Ishii, Email: hiro.ishii@waseda.jp.
References
- [1].G.-Z. Yang, B. J. Nelson, R. R. Murphy, H. Choset, H. Christensen, S. H. Collins, P. Dario, K. Goldberg, K. Ikuta, N. Jacobstein, D. Kragic, R. H. Taylor, and M. McNutt, “Combating covid-19-the role of robotics in managing public health and infectious diseases,” Siceince Robotics, vol. 5, no. 40, 2020. DOI: 10.1126/scirobotics.abb5589 [DOI] [PubMed]
- [2].Gates B. Responding to covid-19-a once-in-a-century pandemic? New England Journal of Medicine. 2020;382(18):1677–1679. doi: 10.1056/NEJMp2003762. [DOI] [PubMed] [Google Scholar]
- [3].Cruickshank M, Shaban R Z. Covid-19: Lessons to be learnt from a once-in-a-century global pandemic. Journal of Clinical Nursing. 2020;29(21–22):3901–3904. doi: 10.1111/jocn.15365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [4].T. Barfoot, J. Burgner-Kahrs, E. Diller, A. Garg, A. Goldenberg, J. Kelly, X. Liu, H. E. Naguib, G. Nejat, A. P. Schoellig, et al., “Making sense of the robotized pandemic response: a comparison of global and canadian robot deployments and success factors,” arXiv preprint arXiv:2009.08577, 2020.
- [5].I. D. Walker, “Continuous backbone “continuum” robot manipulators,” International Scholarly Research Notices, vol. 2013, Article ID 726506, 2013.
- [6].Lee C, Kim M, Kim Y J, Hong N, Ryu S, Kim H J, Kim S. Soft robot review. International Journal of Control, Automation, and Systems. 2017;15(1):3–15. doi: 10.1007/s12555-016-0462-3. [DOI] [Google Scholar]
- [7].Li S-Q, Guo W-L, Liu H, Wang T, Zhou Y-Y, Yu T, Wang C-Y, Yang Y-M, Zhong N-S, Zhang N-F, et al. Clinical application of an intelligent oropharyngeal swab robot: implication for the covid-19 pandemic. European Respiratory Journal. 2020;56(2):2001912. doi: 10.1183/13993003.01912-2020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [8].Wang S, Wang K, Tang R, Qiao J, Liu H, Hou Z-G. Design of a low-cost miniature robot to assist the covid-19 nasopharyngeal swab sampling. IEEE Transactions on Medical Robotics and Bionics. 2020;3(1):289–293. doi: 10.1109/TMRB.2020.3036461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [9].Samalavicius N E, Siaulys R, Janusonis V, Klimasauskiene V, Dulskas A. Use of 4 robotic arms performing senhance® robotic surgery may reduce the risk of coronavirus infection to medical professionals during covid-19. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2020;251:274–275. doi: 10.1016/j.ejogrb.2020.06.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [10].S. Ekvall and D. Kragic, “Robot learning from demonstration: A task-level planning approach,” International Journal of Advanced Robotic Systems, vol. 5, no. 3, 2008. DOI: 10.5772/5611
- [11].Colomé A, Torras C. Dimensionality reduction for dynamic movement primitives and application to bimanual manipulation of clothes. IEEE Transactions on Robotics. 2018;34(3):602–615. doi: 10.1109/TRO.2018.2808924. [DOI] [Google Scholar]
- [12].I. A. Seleem, H. El-Hussieny, and S. F. M. Assal, “Motion planning for continuum robots: A learning from demonstration approach,” Proc. of 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 868–873, IEEE, 2018.
- [13].Seleem I A, Assal S F, Ishii H, El-Hussieny H. Guided pose planning and tracking for multi-section continuum robots considering robot dynamics. IEEE Access. 2019;7:166690–166703. doi: 10.1109/ACCESS.2019.2953122. [DOI] [Google Scholar]
- [14].Su H, Qi W, Chen J, Zhang D. Fuzzy approximation-based task-space control of robot manipulators with remote center of motion constraint. IEEE Transactions on Fuzzy Systems. 2022;30(6):1564–1573. doi: 10.1109/TFUZZ.2022.3157075. [DOI] [Google Scholar]
- [15].Su H, Mariani A, Ovur S E, Menciassi A, Ferrigno G, De Momi E. Toward teaching by demonstration for robot-assisted minimally invasive surgery. IEEE Transactions on Automation Science and Engineering. 2021;18(2):484–494. doi: 10.1109/TASE.2020.3045655. [DOI] [Google Scholar]
- [16].Su H, Hu Y, Karimi H R, Knoll A, Ferrigno G, De Momi E. Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results. Neural Networks. 2020;131:291–299. doi: 10.1016/j.neunet.2020.07.033. [DOI] [PubMed] [Google Scholar]
- [17].Rus D, Tolley M T. Design, fabrication and control of soft robots. Nature. 2015;521(7553):467–475. doi: 10.1038/nature14543. [DOI] [PubMed] [Google Scholar]
- [18].Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping. The International Journal of Robotics Research. 2016;35(1–3):161–185. doi: 10.1177/0278364915592961. [DOI] [Google Scholar]
- [19].M. B. Khan and P. Smithmaitrie, “Design and improvement of a manta inspired soft robot using finite element analysis,” Proc. of 32nd Conference of Mechanical Engineering Network of Thailand (MeNett), Thailand, 2018.
- [20].Runciman M, Darzi A, Mylonas G P. Soft robotics in minimally invasive surgery. Soft Robotics. 2019;6(4):423–443. doi: 10.1089/soro.2018.0136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [21].Xie Z, Chen B, Liu J, Yuan F, Shao Z, Yang H, Domel A G, Zhang J, Wen L. A tapered soft robotic oropharyngeal swab for throat testing: A new way to collect sputa samples. IEEE Robotics & Automation Magazine. 2021;28(1):90–100. doi: 10.1109/MRA.2020.3044914. [DOI] [Google Scholar]
- [22].Y. Hu, J. Li, Y. Chen, Q. Wang, C. Chi, H. Zhang, Q. Gao, Y. Lan, Z. Li, Z. Mu, et al., “Design and control of a highly redundant rigid-flexible coupling robot to assist the covid-19 oropharyngeal-swab sampling,” IEEE Robotics and Automation Letters, 2021. [DOI] [PMC free article] [PubMed]
- [23].Singh P K, Krishna C M. Continuum arm robotic manipulator: A review. Universal Journal of Mechanical Engineering. 2014;2(6):193–198. doi: 10.13189/ujme.2014.020603. [DOI] [Google Scholar]
- [24].Jing Z, Qiao L, Pan H, Yang Y, Chen W. An overview of the configuration and manipulation of soft robotics for on-orbit servicing. Science China Information Sciences. 2017;60(5):050201. doi: 10.1007/s11432-016-9033-0. [DOI] [Google Scholar]
- [25].Polygerinos P, Correll N, Morin S A, Mosadegh B, Onal C D, Petersen K, Cianchetti M, Tolley M T, Shepherd R F. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Advanced Engineering Materials. 2017;19(12):1700016. doi: 10.1002/adem.201700016. [DOI] [Google Scholar]
- [26].Zaidi S, Maselli M, Laschi C, Cianchetti M. Actuation technologies for soft robot grippers and manipulators: A review. Current Robotics Reports. 2021;2:355–369. doi: 10.1007/s43154-021-00054-5. [DOI] [Google Scholar]
- [27].Sun Y, Abudula A, Yang H, Chiang S-S, Wan Z, Ozel S, Hall R, Skorina E, Luo M, Onal C D. Soft mobile robots: A review of soft robotic locomotion modes. Current Robotics Reports. 2021;2:371–397. doi: 10.1007/s43154-021-00070-5. [DOI] [Google Scholar]
- [28].George Thuruthel T, Ansari Y, Falotico E, Laschi C. Control strategies for soft robotic manipulators: A survey. Soft Robotics. 2018;5(2):149–163. doi: 10.1089/soro.2017.0007. [DOI] [PubMed] [Google Scholar]
- [29].H. El-Hussieny, S.-G. Jeong, and J.-H. Ryu, “Dynamic modeling of a class of soft growing robots using euler-lagrange formalism,” Proc. of IEEE SICE Annual Conference, IEEE, 2019.
- [30].Tur J M M, Garthwaite W. Robotic devices for water main in-pipe inspection: A survey. Journal of Field Robotics. 2010;4(27):491–508. [Google Scholar]
- [31].Burgner-Kahrs J, Rucker D C, Choset H. Continuum robots for medical applications: A survey. IEEE Transactions on Robotics. 2015;31(6):1261–1280. doi: 10.1109/TRO.2015.2489500. [DOI] [Google Scholar]
- [32].Hopkins J K, Spranklin B W, Gupta S K. A survey of snake-inspired robot designs. Bioinspiration & Biomimetics. 2009;4(2):021001. doi: 10.1088/1748-3182/4/2/021001. [DOI] [PubMed] [Google Scholar]
- [33].P. Sabetian, A. Feizollahi, F. Cheraghpour, and S. A. A. Moosavian, “A compound robotic hand with two under-actuated fingers and a continuous finger,” Proc. of IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 238–244, IEEE, 2011.
- [34].F. Renda and C. Laschi, “A general mechanical model for tendon-driven continuum manipulators,” Proc. of IEEE International Conference on Robotics and Automation, pp. 3813–3818, IEEE, 2012.
- [35].M. Tavakoli, L. Marques, and A. T. de Almeida, “Flexirigid, a novel two phase flexible gripper,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5046–5051, IEEE, 2013.
- [36].Giannaccini M E, Georgilas I, Horsfield I, Peiris B, Lenz A, Pipe A G, Dogramadzi S. A variable compliance, soft gripper. Autonomous Robots. 2014;36(1):93–107. doi: 10.1007/s10514-013-9374-8. [DOI] [Google Scholar]
- [37].T.-D. Nguyen and J. Burgner-Kahrs, “A tendon-driven continuum robot with extensible sections,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2130–2135, IEEE, 2015.
- [38].Qi P, Qiu C, Liu H, Dai J S, Seneviratne L D, Althoefer K. A novel continuum manipulator design using serially connected double-layer planar springs. IEEE/ASME Transactions on Mechatronics. 2015;21(3):1281–1292. doi: 10.1109/TMECH.2015.2498738. [DOI] [Google Scholar]
- [39].J. Starke, E. Amanov, M. T. Chikhaoui, and J. Burgner-Kahrs, “On the merits of helical tendon routing in continuumrobots,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6470–6476, IEEE, 2017.
- [40].E. Amanov, J. Granna, and J. Burgner-Kahrs, “Toward improving path following motion: hybrid continuum robot design,” in 2017 IEEE international conference on robotics and automation (ICRA), pp. 4666–4672, IEEE, 2017.
- [41].H. El-Hussieny, U. Mehmood, Z. Mehdi, S.-G. Jeong, M. Usman, E. W. Hawkes, A. M. Okarnura, and J.-H. Ryu, “Development and evaluation of an intuitive flexible interface for teleoperating soft growing robots,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4995–5002, IEEE, 2018.
- [42].I. Seleem, H. El-Hussieny, and S. Assal, “Development of a demonstration-guided motion planning for multi-section continuum robots,” Proc. of IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 333–338, IEEE, 2018.
- [43].Seleem I A, El-Hussieny H, Assal S F, Ishii H. Development and stability analysis of an imitation learning-based pose planning approach for multi-section continuum robot. IEEE Access. 2020;8:99366–99379. doi: 10.1109/ACCESS.2020.2997636. [DOI] [Google Scholar]
- [44].Deutschmann B, Chalon M, Reinecke J, Maier M, Ott C. Six-dof pose estimation for a tendon-driven continuum mechanism without a deformation model. IEEE Robotics and Automation Letters. 2019;4(4):3425–3432. doi: 10.1109/LRA.2019.2927943. [DOI] [Google Scholar]
- [45].A. Gao, R. J. Murphy, H. Liu, I. Iordachita, and M. Armand, “Evaluating the deflection of dexterous continuum manipulators with unevenly distributed compliant joints,” Proc. of 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5099–5102, IEEE, 2016. [DOI] [PubMed]
- [46].F. Khan, R. J. Roesthuis, and S. Misra, “Force sensing in continuum manipulators using fiber bragg grating sensors,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2531–2536, IEEE, 2017.
- [47].Chu X, Yip H W, Cai Y, Chung T Y, Moran S, Au K S. A compliant robotic instrument with coupled tendon driven articulated wrist control for organ retraction. IEEE Robotics and Automation Letters. 2018;3(4):4225–4232. doi: 10.1109/LRA.2018.2863373. [DOI] [Google Scholar]
- [48].Y. Zhang, H. Sun, Y. Jia, D. Huang, R. Li, Z. Mao, Y. Hu, J. Chen, S. Kuang, J. Tang, et al., “A continuum robot with contractible and extensible length for neurosurgery,” Proc. of IEEE 14th International Conference on Control and Automation (ICCA), pp. 1150–1155, IEEE, 2018.
- [49].B. Su, M. Jin, H. Wu, L. Liu, H. Liu, J. Wang, H. Sun, L. Lam, Y. Li, J. Tang, et al., “Extensible and compressible continuum robot: A preliminary result,” Proc. of WRC Symposium on Advanced Robotics and Automation (WRC SARA), pp. 44–49, IEEE, 2019.
- [50].Chitalia Y, Jeong S, Yamamoto K K, Chern J J, Desai J P. Modeling and control of a 2-dof meso-scale continuum robotic tool for pediatric neurosurgery. IEEE Transactions on Robotics. 2020;37(2):520–531. doi: 10.1109/TRO.2020.3031270. [DOI] [Google Scholar]
- [51].S. Ahmed and H. B. Gilbert, “Multi-scale motion of soft continuum robots using tendons, eccentric rods, and a cam,” in 2021 IEEE 4th International Conference on Soft Robotics (RoboSoft), pp. 184–190, IEEE, 2021.
- [52].Norouzi-Ghazbi S, Janabi-Sharifi F. A switching image-based visual servoing method for cooperative continuum robots. Journal of Intelligent & Robotic Systems. 2021;103(3):1–20. doi: 10.1007/s10846-021-01435-w. [DOI] [Google Scholar]
- [53].Wang F, Wang H, Luo J, Kang X, Yu H, Lu H, Dong Y, Jia X. Fiora: A flexible tendon-driven continuum manipulator for laparoscopic surgery. IEEE Robotics and Automation Letters. 2022;7(2):1166–1173. doi: 10.1109/LRA.2021.3134276. [DOI] [Google Scholar]
- [54].S. Bamoriya and C. S. Kumar, “Kinematics of three segment continuum robot for surgical application,” Machines, Mechanism and Robotics, pp. 1011–1021, Springer, 2022.
- [55].Shepherd R F, Ilievski F, Choi W, Morin S A, Stokes A A, Mazzeo A D, Chen X, Wang M, Whitesides G M. Multigait soft robot. Proc. of the National Academy of Sciences. 2011;108(51):20400–20403. doi: 10.1073/pnas.1116564108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [56].TolleyMichael T, ShepherdRobert F, GallowayKevin C, WoodRobert J, WhitesidesGeorge M, et al. A resilient, untethered soft robot. Soft Robotics. 2014;1(3):213–224. doi: 10.1089/soro.2014.0008. [DOI] [Google Scholar]
- [57].J. D. Greer, T. K. Morimoto, A. M. Okamura, and E. W. Hawkes, “Series pneumatic artificial muscles (spams) and application to a soft continuum robot,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 5503–5510, IEEE, 2017. [DOI] [PMC free article] [PubMed]
- [58].Wu P, Jiangbei W, Yanqiong F. The structure, design, and closed-loop motion control of a differential drive soft robot. Soft Robotics. 2018;5(1):71–80. doi: 10.1089/soro.2017.0042. [DOI] [PubMed] [Google Scholar]
- [59].B. Liu, Y. Ozkan-Aydin, D. I. Goldman, and F. L. Hammond, “Kirigami skin improves soft earthworm robot anchoring and locomotion under cohesive soil,” Proc. of 2nd IEEE International Conference on Soft Robotics (RoboSoft), pp. 828–833, IEEE, 2019.
- [60].R. Das, S. P. M. Babu, S. Palagi, and B. Mazzolai, “Soft robotic locomotion by peristaltic waves in granular media,” Proc. of 3rd IEEE International Conference on Soft Robotics (RoboSoft), pp. 223–228, IEEE, 2020.
- [61].Tondu B. Modelling of the mckibben artificial muscle: A review. Journal of Intelligent Material Systems and Structures. 2012;23(3):225–253. doi: 10.1177/1045389X11435435. [DOI] [Google Scholar]
- [62].A. Sadeghi, L. Beccai, and B. Mazzolai, “Innovative soft robots based on electro-rheological fluids,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4237–4242, IEEE, 2012.
- [63].H. Wang, H. Xu, F. Yu, X. Li, C. Yang, S. Chen, J. Chen, Y. Zhang, and X. Zhou, “Modeling and experiments on the swallowing and disgorging characteristics of an underwater continuum manipulator,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2946–2952, IEEE, 2020.
- [64].Bailly Y, Amirat Y, Fried G. Modeling and control of a continuum style microrobot for endovascular surgery. IEEE Transactions on Robotics. 2011;27(5):1024–1030. doi: 10.1109/TRO.2011.2151350. [DOI] [Google Scholar]
- [65].Ikuta K, Matsuda Y, Yajima D, Ota Y. Pressure pulse drive: A control method for the precise bending of hydraulic active catheters. IEEE/ASME Transactions on Mechatronics. 2011;17(5):876–883. doi: 10.1109/TMECH.2011.2138711. [DOI] [Google Scholar]
- [66].Nemitz M P, Mihaylov P, Barraclough T W, Ross D, Stokes A A. Using voice coils to actuate modular soft robots: Wormbot, an example. Soft Robotics. 2016;3(4):198–204. doi: 10.1089/soro.2016.0009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [67].Joyee E B, Pan Y. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation. Soft Robotics. 2019;6(3):333–345. doi: 10.1089/soro.2018.0082. [DOI] [PubMed] [Google Scholar]
- [68].Lin D, Jiao N, Wang Z, Liu L. A magnetic continuum robot with multi-mode control using opposite-magnetized magnets. IEEE Robotics and Automation Letters. 2021;6(2):2485–2492. doi: 10.1109/LRA.2021.3061376. [DOI] [Google Scholar]
- [69].T. W. Duerig, K. Melton, and D. Stöckel, Engineering Aspects of Shape Memory Alloys, Butterworth-heinemann, 2013.
- [70].Hartl D J, Lagoudas D C. Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2007;221(4):535–552. doi: 10.1243/09544100JAERO211. [DOI] [Google Scholar]
- [71].Machado L, Savi M. Medical applications of shape memory alloys. Brazilian journal of medical and biological research. 2003;36(6):683–691. doi: 10.1590/S0100-879X2003000600001. [DOI] [PubMed] [Google Scholar]
- [72].S. Mao, E. Dong, S. Zhang, M. Xu, and J. Yang, “A new soft bionic starfish robot with multi-gaits,” Proc. of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1312–1317, IEEE, 2013.
- [73].Huang X, Kumar K, Jawed M K, Nasab A M, Ye Z, Shan W, Majidi C. Chasing biomimetic locomotion speeds: Creating untethered soft robots with shape memory alloy actuators. Science Robot. 2018;3(25):7557. doi: 10.1126/scirobotics.aau7557. [DOI] [PubMed] [Google Scholar]
- [74].Goldberg N N, Huang X, Majidi C, Novelia A, O’Reilly O M, Paley D A, Scott W L. On planar discrete elastic rod models for the locomotion of soft robots. Soft Robotics. 2019;6(5):595–610. doi: 10.1089/soro.2018.0104. [DOI] [PubMed] [Google Scholar]
- [75].H. Liu, Z. Ji, J. Li, Y. Zhou, C. Wang, and P. Ba, “As shape continuum robot with a single actuation structured by niti slices,” in 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 401–405, IEEE, 2017.
- [76].Malakooti M H, Sodano H A. Piezoelectric energy harvesting through shear mode operation. Smart Materials and Structures. 2015;24(5):055005. doi: 10.1088/0964-1726/24/5/055005. [DOI] [Google Scholar]
- [77].E. G. A. Perez, “Boundary control of continuum robot for dynamic scanning task,” COMUE Université Bourgogne Franche-Comté, 2021.
- [78].Kosidlo U, Omastová M, Micusík M, Ćirić-Marjanović G, Randriamahazaka H, Wallmersperger T, Aabloo A, Kolaric I, Bauernhansl T. Nanocarbon based ionic actuators-A review. Smart Materials and Structures. 2013;22(10):104022. doi: 10.1088/0964-1726/22/10/104022. [DOI] [Google Scholar]
- [79].Hong W. Modeling viscoelastic dielectrics. Journal of the Mechanics and Physics of Solids. 2011;59(3):637–650. doi: 10.1016/j.jmps.2010.12.003. [DOI] [Google Scholar]
- [80].Henke E-F M, Schlatter S, Anderson I A. Soft dielectric elastomer oscillators driving bioinspired robots. Soft Robotics. 2017;4(4):353–366. doi: 10.1089/soro.2017.0022. [DOI] [PubMed] [Google Scholar]
- [81].G. Gu, J. Zou, R. Zhao, X. Zhao, and X. Zhu, “Soft wall-climbing robots,” Science Robotics, vol. 3, no. 25, 2018. DOI: 10.1126/scirobotics.aat287 [DOI] [PubMed]
- [82].Guo J, Xiang C, Conn A, Rossiter J. All-soft skinlike structures for robotic locomotion and transportation. Soft Robotics. 2020;7(3):309–320. doi: 10.1089/soro.2019.0059. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [83].Madden J D, Vandesteeg N A, Anquetil P A, Madden P G, Takshi A, Pytel R Z, Lafontaine S R, Wieringa P A, Hunter I W. Artificial muscle technology: physical principles and naval prospects. IEEE Journal of Oceanic Engineering. 2004;29(3):706–728. doi: 10.1109/JOE.2004.833135. [DOI] [Google Scholar]
- [84].Acome E, Mitchell S K, Morrissey T, Emmett M, Benjamin C, King M, Radakovitz M, Keplinger C. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science. 2018;359(6371):61–65. doi: 10.1126/science.aao6139. [DOI] [PubMed] [Google Scholar]
- [85].Chen Z, Um T I, Bart-Smith H. Bio-inspired robotic manta ray powered by ionic polymer-metal composite artificial muscles. International Journal of Smart and Nano Materials. 2012;3(4):296–308. doi: 10.1080/19475411.2012.686458. [DOI] [Google Scholar]
- [86].Stalbaum T, Hwang T, Trabia S, Shen Q, Hunt R, Olsen Z, Kim K J. Bioinspired travelling wave generation in soft-robotics using ionic polymer-metal composites. International Journal of Intelligent Robotics and Applications. 2017;1(2):167–179. doi: 10.1007/s41315-017-0015-9. [DOI] [Google Scholar]
- [87].Yeom S-W, Oh I-K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Materials and Structures. 2009;18(8):085002. doi: 10.1088/0964-1726/18/8/085002. [DOI] [Google Scholar]
- [88].Hines L, Petersen K, Lum G Z, Sitti M. Soft actuators for small-scale robotics. Advanced materials. 2017;29(13):1603483. doi: 10.1002/adma.201603483. [DOI] [PubMed] [Google Scholar]
- [89].J. Zhao and A. Abbas, “A low-cost soft coiled sensor for soft robots,” in Dynamic Systems and Control Conference, vol. 50701, p. V002T26A006, American Society of Mechanical Engineers, 2016.
- [90].Van Der Weijde J, Smit B, Fritschi M, Van De Kamp C, Vallery H. Self-sensing of deflection, force, and temperature for joule-heated twisted and coiled polymer muscles via electrical impedance. IEEE/ASME Transactions on Mechatronics. 2016;22(3):1268–1275. doi: 10.1109/TMECH.2016.2642588. [DOI] [Google Scholar]
- [91].Haines C S, Lima M D, Li N, Spinks G M, Foroughi J, Madden J D, Kim S H, Fang S, De Andrade M J, Göktepe F, et al. Artificial muscles from fishing line and sewing thread. Science. 2014;343(6173):868–872. doi: 10.1126/science.1246906. [DOI] [PubMed] [Google Scholar]
- [92].M. C. Yip and G. Niemeyer, “High-performance robotic muscles from conductive nylon sewing thread,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 2313–2318, IEEE, 2015.
- [93].Almubarak Y, Tadesse Y. Twisted and coiled polymer (tcp) muscles embedded in silicone elastomer for use in soft robot. International Journal of Intelligent Robotics and Applications. 2017;1(3):352–368. doi: 10.1007/s41315-017-0022-x. [DOI] [Google Scholar]
- [94].A. Abbas and J. Zhao, “A physics based model for twisted and coiled actuator,” in 2017 ieee international conference on robotics and automation (icra), pp. 6121–6126, IEEE, 2017.
- [95].Pawlowski B, Sun J, Xu J, Liu Y, Zhao J. Modeling of soft robots actuated by twisted-and-coiled actuators. IEEE/ASME Transactions on Mechatronics. 2018;24(1):5–15. doi: 10.1109/TMECH.2018.2873014. [DOI] [Google Scholar]
- [96].Karami F, Tadesse Y. Modeling of twisted and coiled polymer (TCP) muscle based on phenomenological approach. Smart Materials and Structures. 2017;26(12):125010. doi: 10.1088/1361-665X/aa8d7d. [DOI] [Google Scholar]
- [97].Magdanz V, Stoychev G, Ionov L, Sanchez S, Schmidt O G. Stimuli-responsive microjets with reconfigurable shape. Angewandte Chemie. 2014;126(10):2711–2715. doi: 10.1002/ange.201308610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [98].B. Shin, J. Ha, M. Lee, K. Park, G. H. Park, T. H. Choi, K.-J. Cho, and H.-Y. Kim, “Hygrobot: A self-locomotive ratcheted actuator powered by environmental humidity,” Science Robotics, vol. 3, no. 14, 2018. DOI: 10.1126/scirobotics.aar2629 [DOI] [PubMed]
- [99].Sung G T, Gill I S. Robotic laparoscopic surgery: a comparison of the da vinci and zeus systems. Urology. 2001;58(6):893–898. doi: 10.1016/S0090-4295(01)01423-6. [DOI] [PubMed] [Google Scholar]
- [100].D. Haraguchi, K. Tadano, and K. Kawashima, “A prototype of pneumatically-driven forceps manipulator with force sensing capability using a simple flexible joint,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 931–936, IEEE, 2011.
- [101].Camarillo D B, Carlson C R, Salisbury J K. Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Transactions on Robotics. 2009;25(4):798–808. doi: 10.1109/TRO.2009.2022426. [DOI] [Google Scholar]
- [102].T. Kato, I. Okumura, H. Kose, K. Takagi, and N. Hata, “Extended kinematic mapping of tendon-driven continuum robot for neuroendoscopy,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1997–2002, IEEE, 2014.
- [103].Qi F, Ju F, Bai D M, Chen B. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2018;232(2):135–148. doi: 10.1177/0954411917747008. [DOI] [PubMed] [Google Scholar]
- [104].Q. Ding, Y. Lu, A. Kyme, and S. S. Cheng, “Towards a multi-imager compatible continuum robot with improved dynamics driven by modular SMA,” Proc. of`IEEE International Conference on Robotics and Automation (ICRA), pp. 11930–11937, IEEE, 2021.
- [105].P. Qi, C. Qiu, H. Liu, J. S. Dai, L. Seneviratne, and K. Althoefer, “A novel continuum-style robot with multilayer compliant modules,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3175–3180, IEEE, 2014.
- [106].A. Gao, J. P. Carey, R. J. Murphy, I. Iordachita, R. H. Taylor, and M. Armand, “Progress toward robotic surgery of the lateral skull base: Integration of a dexterous continuum manipulator and flexible ring curette,” Proc. of IEEE International Conference on Robotics and Automation (ICRA), pp. 4429–4435, IEEE, 2016.
- [107].Rucker D C, Webster III R J. Statics and dynamics of continuum robots with general tendon routing and external loading. IEEE Transactions on Robotics. 2011;27(6):1033–1044. doi: 10.1109/TRO.2011.2160469. [DOI] [Google Scholar]
- [108].N. C. Chairopoulos, P. Vartholomeos, and E. Papadopoulos, “Modeling, simulation and experimental validation of a tendon-driven soft-arm robot configuration-a continuum mechanics method,” Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5695–5700, IEEE, 2019.
- [109].B. L. Conrad, J. Jung, R. S. Penning, and M. R. Zinn, “Interleaved continuum-rigid manipulation: An augmented approach for robotic minimally-invasive flexible catheter-based procedures,” Proc. of IEEE International Conference on Robotics and Automation, pp. 718–724, IEEE, 2013.
- [110].Kato T, Okumura I, Song S-E, Golby A J, Hata N. Tendon-driven continuum robot for endoscopic surgery: Preclinical development and validation of a tension propagation model. IEEE/ASME Transactions on Mechatronics. 2014;20(5):2252–2263. doi: 10.1109/TMECH.2014.2372635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [111].Lotfavar A, Hasanzadeh S, Janabi-Sharifi F. Cooperative continuum robots: Concept, modeling, and workspace analysis. IEEE Robotics and Automation Letters. 2017;3(1):426–433. doi: 10.1109/LRA.2017.2759789. [DOI] [Google Scholar]
- [112].T. Umedachi, V. Vikas, and B. A. Trimmer, “Highly deformable 3-d printed soft robot generating inching and crawling locomotions with variable friction legs,” Proc. of IEEE/RSJ international conference on Intelligent Robots and Systems, pp. 4590–4595, IEEE, 2013.
- [113].Baughman R. Conducting polymer artificial muscles. Synthetic metals. 1996;78(3):339–353. doi: 10.1016/0379-6779(96)80158-5. [DOI] [Google Scholar]
- [114].G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An embedded artificial skin for humanoid robots,” Proc. of IEEE International conference on multisensor fusion and integration for intelligent systems, pp. 434–438, IEEE, 2008.
- [115].Azizkhani M, Godage I S, Chen Y. Dynamic control of soft robotic arm: A simulation study. IEEE Robotics and Automation Letters. 2022;7(2):3584–3591. doi: 10.1109/LRA.2022.3148437. [DOI] [Google Scholar]
- [116].Kim D, Kim S-H, Kim T, Kang B B, Lee M, Park W, Ku S, Kim D, Kwon J, Lee H, et al. Review of machine learning methods in soft robotics. PLoS One. 2021;16(2):e0246102. doi: 10.1371/journal.pone.0246102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- [117].T. Kato, I. Okumura, S.-E. Song, and N. Hata, “Multi-section continuum robot for endoscopic surgical clipping of intracranial aneurysms,” Proc. of International Conference on Medical Image Computing and ComputerAssisted Intervention, pp. 364–371, Springer, 2013. [DOI] [PMC free article] [PubMed]
- [118].Qi F, Ju F, Bai D, Wang Y, Chen B. Kinematic analysis and navigation method of a cable-driven continuum robot used for minimally invasive surgery. The International Journal of Medical Robotics and Computer Assisted Surgery. 2019;15(4):e2007. doi: 10.1002/rcs.2007. [DOI] [PubMed] [Google Scholar]
- [119].D. C. Cardona, A MRI Compatible Concentric Tube Continuum Robot with Pneumatic Actuation, Ph.D. Thesis, Vanderbilt University, 2012.
- [120].M. T. Chikhaoui, K. Rabenorosoa, and N. Andreff, “Kinematic modeling of an eap actuated continuum robot for active micro-endoscopy,” Advances in Robot Kinematics, pp. 457–465, Springer, 2014.
- [121].A. Di Lallo, M. G. Catalano, M. Garabini, G. Grioli, M. Gabiccini, and A. Bicchi, “Dynamic morphological computation through damping design of soft continuum robots,” Frontiers in Robotics and AI, vol. 6, 2019. DOI: 10.3389/frobt.2019.00023 [DOI] [PMC free article] [PubMed]
- [122].Xu F, Wang H. Soft robotics: Morphology and morphology-inspired motion strategy. IEEE/CAA Journal of Automatica Sinica. 2021;8(9):1500–1522. doi: 10.1109/JAS.2021.1004105. [DOI] [Google Scholar]
- [123].Qin G, Ji A, Cheng Y, Zhao W, Pan H, Shi S, Song Y. A snake-inspired layer-driven continuum robot. Soft Robotics. 2022;9(4):788–8797. doi: 10.1089/soro.2020.0165. [DOI] [PubMed] [Google Scholar]