Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1992 Oct;29(10):699–703. doi: 10.1136/jmg.29.10.699

A non-isotopic in situ hybridisation study of the chromosomal origin of 15 supernumerary marker chromosomes in man.

J A Crolla 1, N R Dennis 1, P A Jacobs 1
PMCID: PMC1016126  PMID: 1433228

Abstract

Fifteen patients presenting with mosaic or non-mosaic karyotypes containing a distamycin-DAPI negative de novo or familial supernumerary marker chromosome were studied with non-isotopic in situ hybridisation using a library of alphoid centromere specific and satellite II/III probes. The in situ hybridisation studies showed that seven markers were derived from satellited autosomes (three chromosome 13/21, two chromosome 14, two chromosome 22), six from non-satellited autosomes (two chromosome 4, one chromosome 12, one chromosome 16, two chromosome 19), and one from the Y chromosome. One non-mosaic marker was negative for all the alphoid and satellite II/III probes used.

Full text

PDF
699

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Buckton K. E., Spowart G., Newton M. S., Evans H. J. Forty four probands with an additional "marker" chromosome. Hum Genet. 1985;69(4):353–370. doi: 10.1007/BF00291656. [DOI] [PubMed] [Google Scholar]
  2. Callen D. F., Eyre H. J., Ringenbergs M. L., Freemantle C. J., Woodroffe P., Haan E. A. Chromosomal origin of small ring marker chromosomes in man: characterization by molecular genetics. Am J Hum Genet. 1991 Apr;48(4):769–782. [PMC free article] [PubMed] [Google Scholar]
  3. Callen D. F., Ringenbergs M. L., Fowler J. C., Freemantle C. J., Haan E. A. Small marker chromosomes in man: origin from pericentric heterochromatin of chromosomes 1, 9, and 16. J Med Genet. 1990 Mar;27(3):155–159. doi: 10.1136/jmg.27.3.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Choo K. H., Earle E., Vissel B., Filby R. G. Identification of two distinct subfamilies of alpha satellite DNA that are highly specific for human chromosome 15. Genomics. 1990 Jun;7(2):143–151. doi: 10.1016/0888-7543(90)90534-2. [DOI] [PubMed] [Google Scholar]
  5. Cooper C., Crolla J. A., Laister C., Johnston D. I., Cooke P. An investigation of ring and dicentric chromosomes found in three Turner's syndrome patients using DNA analysis and in situ hybridisation with X and Y chromosome specific probes. J Med Genet. 1991 Jan;28(1):6–9. doi: 10.1136/jmg.28.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crolla J. A., Gilgenkrantz S., de Grouchy J., Kajii T., Bobrow M. Incontinentia pigmenti and X-autosome translocations. Non-isotopic in situ hybridization with an X-centromere-specific probe (pSV2X5) reveals a possible X-centromeric breakpoint in one of five published cases. Hum Genet. 1989 Feb;81(3):269–272. doi: 10.1007/BF00279002. [DOI] [PubMed] [Google Scholar]
  7. Crolla J. A., Llerena J. C., Jr A mosaic 45,X/46,X,r(?) karyotype investigated with X and Y centromere-specific probes using a non-autoradiographic in situ hybridization technique. Hum Genet. 1988 Dec;81(1):81–84. doi: 10.1007/BF00283735. [DOI] [PubMed] [Google Scholar]
  8. Dahoun-Hadorn S., Delozier-Blanchet C. Reflections on small supernumerary (marker) chromosomes: could imprinting and isodisomy play a role in the phenotypic expression of hyperdiploidy? Ann Genet. 1990;33(4):241–242. [PubMed] [Google Scholar]
  9. Hook E. B., Schreinemachers D. M., Willey A. M., Cross P. K. Rates of mutant structural chromosome rearrangements in human fetuses: data from prenatal cytogenetic studies and associations with maternal age and parental mutagen exposure. Am J Hum Genet. 1983 Jan;35(1):96–109. [PMC free article] [PubMed] [Google Scholar]
  10. Jacobs P. A., Betts P. R., Cockwell A. E., Crolla J. A., Mackenzie M. J., Robinson D. O., Youings S. A. A cytogenetic and molecular reappraisal of a series of patients with Turner's syndrome. Ann Hum Genet. 1990 Jul;54(Pt 3):209–223. doi: 10.1111/j.1469-1809.1990.tb00379.x. [DOI] [PubMed] [Google Scholar]
  11. Jacobs P. A. The role of chromosome abnormalities in reproductive failure. Reprod Nutr Dev. 1990;Suppl 1:63s–74s. doi: 10.1051/rnd:19900706. [DOI] [PubMed] [Google Scholar]
  12. Kievits T., Dauwerse J. G., Wiegant J., Devilee P., Breuning M. H., Cornelisse C. J., van Ommen G. J., Pearson P. L. Rapid subchromosomal localization of cosmids by nonradioactive in situ hybridization. Cytogenet Cell Genet. 1990;53(2-3):134–136. doi: 10.1159/000132913. [DOI] [PubMed] [Google Scholar]
  13. Kirkels V. G., Hustinx T. W., Scheres J. M. Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter. Clin Genet. 1980 Dec;18(6):456–461. doi: 10.1111/j.1399-0004.1980.tb01794.x. [DOI] [PubMed] [Google Scholar]
  14. Mohandas T., Canning N., Chu W., Passage M. B., Anderson C. E., Kaback M. M. Marker chromosomes: cytogenetic characterization and implications for prenatal diagnosis. Am J Med Genet. 1985 Feb;20(2):361–368. doi: 10.1002/ajmg.1320200220. [DOI] [PubMed] [Google Scholar]
  15. Palmer C. G., Schwartz S., Hodes M. E. Transmission of a balanced homologous t(22q;22q) translocation from mother to normal daughter. Clin Genet. 1980 Jun;17(6):418–422. doi: 10.1111/j.1399-0004.1980.tb00173.x. [DOI] [PubMed] [Google Scholar]
  16. Schinzel A., Schmid W., Fraccaro M., Tiepolo L., Zuffardi O., Opitz J. M., Lindsten J., Zetterqvist P., Enell H., Baccichetti C. The "cat eye syndrome": dicentric small marker chromosome probably derived from a no.22 (tetrasomy 22pter to q11) associated with a characteristic phenotype. Report of 11 patients and delineation of the clinical picture. Hum Genet. 1981;57(2):148–158. doi: 10.1007/BF00282012. [DOI] [PubMed] [Google Scholar]
  17. Schinzel A. Tetrasomy 12p (Pallister-Killian syndrome). J Med Genet. 1991 Feb;28(2):122–125. doi: 10.1136/jmg.28.2.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Singer T. S., Kohn G., Yatziv S. Tetrasomy 18p in a child with trisomy 18 phenotype. Am J Med Genet. 1990 Jun;36(2):144–147. doi: 10.1002/ajmg.1320360204. [DOI] [PubMed] [Google Scholar]
  19. Smeets D. F., Merkx G. F., Hopman A. H. Frequent occurrence of translocations of the short arm of chromosome 15 to other D-group chromosomes. Hum Genet. 1991 May;87(1):45–48. doi: 10.1007/BF01213090. [DOI] [PubMed] [Google Scholar]
  20. Stergianou K., Gould C. P., Waters J. J., Hultén M. High population incidence of the 15p marker D15Z1 mapping to the short arm of one homologue 14. Hum Genet. 1992 Jan;88(3):364–364. doi: 10.1007/BF00197281. [DOI] [PubMed] [Google Scholar]
  21. Temple I. K., Cockwell A., Hassold T., Pettay D., Jacobs P. Maternal uniparental disomy for chromosome 14. J Med Genet. 1991 Aug;28(8):511–514. doi: 10.1136/jmg.28.8.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vogt P. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code". Hum Genet. 1990 Mar;84(4):301–336. doi: 10.1007/BF00196228. [DOI] [PubMed] [Google Scholar]
  23. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet. 1991 Nov;49(5):995–1013. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES