Skip to main content
IUCrData logoLink to IUCrData
. 2023 Apr 25;8(Pt 4):x230355. doi: 10.1107/S2414314623003553

(N-Benzoyl-N-phenyl­hydroxy­laminato)carbon­yl(tri­phenyl­arsine)rhodium(I)

Mokete A Motente a,*, Johan Venter a, Alice Brink a
Editor: M Weilb
PMCID: PMC10162025  PMID: 37151208

The mol­ecular structure of the title compound, [Rh(BPHA)(CO)(AsPh3)] (where BPHA = N-benzoyl-N-phenyl­hydroxy­laminate), has a distorted square-planar coordination environment around the central RhI atom, defined by a CO2As coordination set.

Keywords: crystal structure, rhodium, N-benzoyl-N-phenyl­hydroxamic acid, tri­phenyl­arsine

Abstract

The mol­ecule of the title compound, [Rh(C13H10NO2){As(C6H5)3}(CO)] or [Rh(BPHA)(AsPh3)(CO)] (BPHA is the N-benzoyl-N-phenyl­hydroxy­laminate anion), comprises a bidentate N-benzoyl-N-phenyl­hydroxy­laminate anion coordinating through the O atoms to the soft Lewis acid, rhodium(I), and two monodentate ligands, viz. tri­phenyl­arsine and carbonyl. The resulting CO2As coordination environment around the central RhI atom is distorted square planar.= graphic file with name x-08-x230355-scheme1-3D1.jpg

Structure description

The title complex, [Rh(BPHA)(AsPh3)(CO)], is composed of an O,O-bidentate N-benzoyl-N-phenyl­hydroxy­laminate anion, a carbonyl ligand and a monodentate tri­phenyl­arsine ligand, all coordinating to the soft rhodium(I) metal atom (Fig. 1 and Table 1). The crystal structure is isotypic with that of [Rh(BPHA)(PPh3)(CO)] and shows similar Rh—O and Rh—C bond lengths (2.037/2.089 and 1.809 Å, respectively; Leipoldt & Grobler, 1982). The coordination environment in the mol­ecule of [Rh(BPHA)(AsPh3)(CO)] is distorted square planar, as shown by the small O1—Rh—O2 bite angle of 79.53 (7)°, which is similar to the bite angles of related structures with O,O-binding five-membered chelate rings reported in the literature (Elmakki et al., 2017). The C02—Rh—O2 and C02—Rh—O1 angles involving the C02≡O02 carbonyl ligand were also found to deviate from ideal values, at 99.31 (9) and 178.39 (10)°, respectively, similar to those of related structures (Elmakki et al., 2016).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing atoms with displacement ellipsoids at the 50% probability level.

Table 1. Selected bond lengths (Å).

Rh1—As 2.3337 (4) Rh1—O1 2.0338 (18)
Rh1—O2 2.0682 (17) Rh1—C02 1.813 (3)

The crystal packing is dominated by van der Waals inter­actions (Fig. 2).

Figure 2.

Figure 2

An illustration of the mol­ecular packing in the unit cell of [Rh(BPHA)(CO)(AsPh3)], viewed approximately along the a axis; atom labels have been omitted for clarity.

Synthesis and crystallization

A stepwise process was pursued in the complexation of the rhodium metal atom by the bidentate N-phenyl-N-benzoyl­hydroxylaminate anion. First, [RhCl(CO)2]2 was prepared in situ by heating RhCl3·3H2O in 5 ml of di­methyl­formamide under reflux for 30 min, followed by addition of the bidentate ligand to the reaction mixture, which then resulted in the formation of a dicarbonylrhodium species, [Rh(BPHA)(CO)2] (Leipoldt & Grobler, 1982). Rh(BPHA)(CO)2] (65 mg) was then dissolved in 5 ml of acetone. Tri­phenyl­arsine (AsPh3; 70 mg) was added to the reaction mixture under stirring, resulting in the immediate evolution of CO gas. The reaction mixture was then left to crystallize, resulting in the formation of yellow crystals suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula [Rh(C13H10NO2)(C18H15As)(CO)]
M r 649.36
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.5178 (17), 10.1995 (19), 14.589 (2)
α, β, γ (°) 81.516 (6), 83.142 (6), 72.351 (7)
V3) 1330.7 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.91
Crystal size (mm) 0.21 × 0.13 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.634, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 38485, 6425, 5747
R int 0.065
(sin θ/λ)max−1) 0.660
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.030, 0.074, 1.07
No. of reflections 6425
No. of parameters 343
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −0.61

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg & Putz, 2005).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623003553/wm4184sup1.cif

x-08-x230355-sup1.cif (877.8KB, cif)

CCDC reference: 2257230

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of the Free State and the South African National Research Fund are acknowledged for funding.

full crystallographic data

Crystal data

[Rh(C13H10NO2)(C18H15As)(CO)] Z = 2
Mr = 649.36 F(000) = 652
Triclinic, P1 Dx = 1.621 Mg m3
a = 9.5178 (17) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.1995 (19) Å Cell parameters from 9339 reflections
c = 14.589 (2) Å θ = 2.3–28.3°
α = 81.516 (6)° µ = 1.91 mm1
β = 83.142 (6)° T = 100 K
γ = 72.351 (7)° Plate, yellow
V = 1330.7 (4) Å3 0.21 × 0.13 × 0.03 mm

Data collection

Bruker APEXII CCD diffractometer 5747 reflections with I > 2σ(I)
φ and ω scans Rint = 0.065
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 28.0°, θmin = 2.1°
Tmin = 0.634, Tmax = 0.746 h = −12→12
38485 measured reflections k = −13→13
6425 independent reflections l = −19→19

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0141P)2 + 1.8613P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
6425 reflections Δρmax = 1.14 e Å3
343 parameters Δρmin = −0.61 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rh1 0.25715 (2) 0.53736 (2) 0.27266 (2) 0.01779 (6)
As 0.12957 (3) 0.72691 (2) 0.35181 (2) 0.01699 (6)
O2 0.39711 (19) 0.38301 (18) 0.19949 (12) 0.0210 (4)
O1 0.42339 (19) 0.62308 (18) 0.22612 (13) 0.0217 (4)
O02 0.0140 (2) 0.4121 (2) 0.33366 (15) 0.0313 (4)
N1 0.5303 (2) 0.5365 (2) 0.17371 (15) 0.0207 (4)
C1 0.5119 (3) 0.4183 (2) 0.15914 (16) 0.0169 (4)
C26 −0.0798 (3) 0.7588 (2) 0.38511 (18) 0.0197 (5)
C8 0.6478 (3) 0.5925 (3) 0.13234 (17) 0.0198 (5)
C14 0.2129 (3) 0.7244 (3) 0.46672 (17) 0.0189 (5)
C20 0.1411 (3) 0.9043 (3) 0.28753 (17) 0.0207 (5)
C15 0.2025 (3) 0.8463 (3) 0.50321 (19) 0.0241 (5)
H15 0.1470 0.9331 0.4741 0.029*
C7 0.6819 (3) 0.3597 (3) 0.01447 (18) 0.0212 (5)
H7 0.6631 0.4551 −0.0082 0.025*
C27 −0.1418 (3) 0.7798 (3) 0.47479 (19) 0.0237 (5)
H27 −0.0816 0.7815 0.5218 0.028*
C13 0.6118 (3) 0.7151 (3) 0.07297 (19) 0.0241 (5)
H13 0.5113 0.7637 0.0637 0.029*
C2 0.6182 (3) 0.3193 (3) 0.10122 (17) 0.0190 (5)
C19 0.2907 (3) 0.5971 (3) 0.51116 (18) 0.0237 (5)
H19 0.2958 0.5138 0.4873 0.028*
C02 0.1092 (3) 0.4594 (3) 0.31095 (18) 0.0224 (5)
C6 0.7729 (3) 0.2591 (3) −0.03845 (19) 0.0250 (5)
H6 0.8153 0.2862 −0.0978 0.030*
C28 −0.2931 (3) 0.7983 (3) 0.4956 (2) 0.0304 (6)
H28 −0.3356 0.8119 0.5570 0.036*
C9 0.7931 (3) 0.5246 (3) 0.15114 (19) 0.0232 (5)
H9 0.8160 0.4439 0.1950 0.028*
C3 0.6475 (3) 0.1796 (3) 0.13401 (19) 0.0247 (5)
H3 0.6039 0.1518 0.1928 0.030*
C18 0.3607 (3) 0.5920 (3) 0.59044 (19) 0.0280 (6)
H18 0.4137 0.5054 0.6211 0.034*
C11 0.8703 (3) 0.6955 (3) 0.0429 (2) 0.0296 (6)
H11 0.9472 0.7295 0.0106 0.036*
C31 −0.1692 (3) 0.7556 (3) 0.3171 (2) 0.0268 (6)
H31 −0.1268 0.7393 0.2559 0.032*
C12 0.7241 (3) 0.7658 (3) 0.0274 (2) 0.0290 (6)
H12 0.7011 0.8487 −0.0144 0.035*
C16 0.2733 (3) 0.8406 (3) 0.58217 (19) 0.0284 (6)
H16 0.2669 0.9234 0.6069 0.034*
C4 0.7403 (3) 0.0805 (3) 0.0812 (2) 0.0298 (6)
H4 0.7616 −0.0149 0.1044 0.036*
C10 0.9049 (3) 0.5768 (3) 0.1046 (2) 0.0275 (6)
H10 1.0053 0.5304 0.1155 0.033*
C17 0.3531 (3) 0.7141 (3) 0.6246 (2) 0.0301 (6)
H17 0.4033 0.7106 0.6779 0.036*
C5 0.8022 (3) 0.1204 (3) −0.0057 (2) 0.0300 (6)
H5 0.8644 0.0523 −0.0423 0.036*
C29 −0.3810 (3) 0.7971 (3) 0.4275 (2) 0.0332 (6)
H29 −0.4841 0.8107 0.4420 0.040*
C25 0.2759 (3) 0.9299 (3) 0.2743 (2) 0.0390 (7)
H25 0.3614 0.8592 0.2938 0.047*
C24 0.2892 (4) 1.0577 (4) 0.2327 (2) 0.0417 (8)
H24 0.3829 1.0747 0.2256 0.050*
C21 0.0196 (3) 1.0048 (3) 0.2526 (2) 0.0324 (6)
H21 −0.0736 0.9871 0.2583 0.039*
C23 0.1672 (4) 1.1593 (3) 0.2019 (2) 0.0368 (7)
H23 0.1750 1.2480 0.1759 0.044*
C30 −0.3194 (3) 0.7760 (3) 0.3380 (2) 0.0340 (7)
H30 −0.3802 0.7755 0.2911 0.041*
C22 0.0335 (4) 1.1316 (3) 0.2091 (3) 0.0442 (8)
H22 −0.0499 1.1994 0.1841 0.053*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.01456 (9) 0.02186 (10) 0.01630 (10) −0.00485 (7) 0.00038 (7) −0.00246 (7)
As 0.01309 (12) 0.02045 (12) 0.01611 (13) −0.00335 (9) −0.00019 (9) −0.00199 (9)
O2 0.0163 (8) 0.0257 (9) 0.0210 (9) −0.0066 (7) 0.0018 (7) −0.0040 (7)
O1 0.0176 (8) 0.0245 (9) 0.0235 (10) −0.0066 (7) 0.0048 (7) −0.0087 (7)
O02 0.0258 (10) 0.0340 (10) 0.0364 (12) −0.0152 (8) 0.0031 (8) −0.0022 (9)
N1 0.0172 (10) 0.0252 (10) 0.0200 (11) −0.0067 (8) 0.0012 (8) −0.0046 (8)
C1 0.0154 (11) 0.0209 (11) 0.0138 (11) −0.0045 (9) −0.0014 (8) −0.0012 (8)
C26 0.0126 (10) 0.0187 (11) 0.0253 (13) −0.0023 (8) 0.0003 (9) −0.0014 (9)
C8 0.0196 (11) 0.0245 (12) 0.0178 (12) −0.0091 (9) 0.0011 (9) −0.0066 (9)
C14 0.0139 (11) 0.0261 (12) 0.0159 (12) −0.0045 (9) −0.0007 (9) −0.0031 (9)
C20 0.0212 (12) 0.0222 (11) 0.0182 (12) −0.0065 (9) 0.0007 (9) −0.0019 (9)
C15 0.0234 (13) 0.0254 (12) 0.0220 (13) −0.0053 (10) −0.0005 (10) −0.0033 (10)
C7 0.0176 (11) 0.0281 (12) 0.0190 (12) −0.0074 (10) −0.0039 (9) −0.0023 (9)
C27 0.0212 (12) 0.0280 (13) 0.0215 (13) −0.0086 (10) 0.0014 (10) −0.0014 (10)
C13 0.0223 (12) 0.0258 (12) 0.0260 (14) −0.0085 (10) −0.0019 (10) −0.0056 (10)
C2 0.0144 (11) 0.0244 (12) 0.0191 (12) −0.0053 (9) −0.0025 (9) −0.0056 (9)
C19 0.0224 (12) 0.0245 (12) 0.0218 (13) −0.0039 (10) −0.0005 (10) −0.0024 (10)
C02 0.0218 (12) 0.0228 (12) 0.0191 (13) −0.0018 (10) −0.0015 (10) −0.0019 (9)
C6 0.0183 (12) 0.0381 (14) 0.0191 (13) −0.0076 (11) −0.0006 (10) −0.0074 (10)
C28 0.0236 (13) 0.0376 (15) 0.0277 (15) −0.0089 (11) 0.0093 (11) −0.0058 (12)
C9 0.0202 (12) 0.0259 (12) 0.0235 (13) −0.0059 (10) −0.0029 (10) −0.0042 (10)
C3 0.0257 (13) 0.0275 (13) 0.0218 (13) −0.0086 (10) −0.0020 (10) −0.0038 (10)
C18 0.0286 (14) 0.0314 (13) 0.0204 (14) −0.0045 (11) −0.0044 (11) 0.0010 (10)
C11 0.0248 (13) 0.0402 (15) 0.0294 (15) −0.0187 (12) 0.0039 (11) −0.0069 (12)
C31 0.0197 (12) 0.0335 (14) 0.0267 (14) −0.0051 (10) −0.0008 (10) −0.0087 (11)
C12 0.0314 (14) 0.0333 (14) 0.0258 (15) −0.0154 (12) −0.0009 (11) −0.0023 (11)
C16 0.0336 (15) 0.0320 (14) 0.0210 (14) −0.0097 (12) −0.0012 (11) −0.0083 (11)
C4 0.0307 (14) 0.0233 (12) 0.0339 (16) −0.0036 (11) −0.0030 (12) −0.0074 (11)
C10 0.0185 (12) 0.0381 (15) 0.0286 (15) −0.0095 (11) 0.0004 (10) −0.0115 (11)
C17 0.0311 (15) 0.0407 (16) 0.0190 (14) −0.0101 (12) −0.0046 (11) −0.0040 (11)
C5 0.0222 (13) 0.0328 (14) 0.0337 (16) −0.0007 (11) −0.0025 (11) −0.0153 (12)
C29 0.0153 (12) 0.0405 (16) 0.0431 (18) −0.0075 (11) 0.0029 (12) −0.0081 (13)
C25 0.0228 (14) 0.0416 (17) 0.048 (2) −0.0094 (12) −0.0029 (13) 0.0112 (14)
C24 0.0386 (17) 0.0452 (18) 0.046 (2) −0.0252 (15) 0.0003 (15) 0.0052 (15)
C21 0.0230 (13) 0.0269 (13) 0.0418 (18) −0.0032 (11) 0.0029 (12) 0.0005 (12)
C23 0.0518 (19) 0.0258 (13) 0.0319 (17) −0.0152 (13) 0.0118 (14) −0.0041 (12)
C30 0.0199 (13) 0.0419 (16) 0.0415 (18) −0.0075 (12) −0.0050 (12) −0.0101 (13)
C22 0.0405 (18) 0.0228 (14) 0.058 (2) 0.0006 (13) 0.0035 (16) 0.0053 (14)

Geometric parameters (Å, º)

Rh1—As 2.3337 (4) C6—C5 1.379 (4)
Rh1—O2 2.0682 (17) C28—H28 0.9500
Rh1—O1 2.0338 (18) C28—C29 1.376 (4)
Rh1—C02 1.813 (3) C9—H9 0.9500
As—C26 1.933 (2) C9—C10 1.395 (4)
As—C14 1.932 (2) C3—H3 0.9500
As—C20 1.939 (2) C3—C4 1.386 (4)
O2—C1 1.301 (3) C18—H18 0.9500
O1—N1 1.367 (3) C18—C17 1.387 (4)
O02—C02 1.144 (3) C11—H11 0.9500
N1—C1 1.319 (3) C11—C12 1.387 (4)
N1—C8 1.437 (3) C11—C10 1.375 (4)
C1—C2 1.479 (3) C31—H31 0.9500
C26—C27 1.388 (4) C31—C30 1.384 (4)
C26—C31 1.392 (4) C12—H12 0.9500
C8—C13 1.387 (4) C16—H16 0.9500
C8—C9 1.385 (4) C16—C17 1.381 (4)
C14—C15 1.395 (3) C4—H4 0.9500
C14—C19 1.393 (3) C4—C5 1.391 (4)
C20—C25 1.371 (4) C10—H10 0.9500
C20—C21 1.384 (4) C17—H17 0.9500
C15—H15 0.9500 C5—H5 0.9500
C15—C16 1.388 (4) C29—H29 0.9500
C7—H7 0.9500 C29—C30 1.385 (4)
C7—C2 1.397 (4) C25—H25 0.9500
C7—C6 1.391 (4) C25—C24 1.390 (4)
C27—H27 0.9500 C24—H24 0.9500
C27—C28 1.395 (4) C24—C23 1.371 (5)
C13—H13 0.9500 C21—H21 0.9500
C13—C12 1.385 (4) C21—C22 1.391 (4)
C2—C3 1.389 (4) C23—H23 0.9500
C19—H19 0.9500 C23—C22 1.374 (5)
C19—C18 1.390 (4) C30—H30 0.9500
C6—H6 0.9500 C22—H22 0.9500
O2—Rh1—As 171.06 (5) C29—C28—H28 119.8
O1—Rh1—As 91.66 (5) C8—C9—H9 120.6
O1—Rh1—O2 79.53 (7) C8—C9—C10 118.8 (2)
C02—Rh1—As 89.53 (8) C10—C9—H9 120.6
C02—Rh1—O2 99.31 (9) C2—C3—H3 119.9
C02—Rh1—O1 178.39 (10) C4—C3—C2 120.2 (3)
C26—As—Rh1 118.78 (7) C4—C3—H3 119.9
C26—As—C20 103.15 (10) C19—C18—H18 120.1
C14—As—Rh1 112.68 (7) C17—C18—C19 119.7 (3)
C14—As—C26 104.81 (11) C17—C18—H18 120.1
C14—As—C20 100.97 (11) C12—C11—H11 119.7
C20—As—Rh1 114.44 (8) C10—C11—H11 119.7
C1—O2—Rh1 111.54 (15) C10—C11—C12 120.6 (3)
N1—O1—Rh1 110.33 (13) C26—C31—H31 119.9
O1—N1—C8 114.38 (19) C30—C31—C26 120.3 (3)
C1—N1—O1 119.1 (2) C30—C31—H31 119.9
C1—N1—C8 126.2 (2) C13—C12—C11 119.9 (3)
O2—C1—N1 119.3 (2) C13—C12—H12 120.0
O2—C1—C2 117.1 (2) C11—C12—H12 120.0
N1—C1—C2 123.5 (2) C15—C16—H16 120.1
C27—C26—As 122.12 (19) C17—C16—C15 119.8 (3)
C27—C26—C31 119.6 (2) C17—C16—H16 120.1
C31—C26—As 118.27 (19) C3—C4—H4 119.9
C13—C8—N1 118.2 (2) C3—C4—C5 120.2 (3)
C9—C8—N1 120.5 (2) C5—C4—H4 119.9
C9—C8—C13 121.3 (2) C9—C10—H10 119.9
C15—C14—As 121.74 (19) C11—C10—C9 120.1 (3)
C19—C14—As 118.28 (19) C11—C10—H10 119.9
C19—C14—C15 119.9 (2) C18—C17—H17 119.6
C25—C20—As 118.6 (2) C16—C17—C18 120.7 (3)
C25—C20—C21 118.7 (3) C16—C17—H17 119.6
C21—C20—As 122.7 (2) C6—C5—C4 119.7 (2)
C14—C15—H15 120.1 C6—C5—H5 120.1
C16—C15—C14 119.9 (2) C4—C5—H5 120.1
C16—C15—H15 120.1 C28—C29—H29 120.0
C2—C7—H7 120.2 C28—C29—C30 120.1 (3)
C6—C7—H7 120.2 C30—C29—H29 120.0
C6—C7—C2 119.5 (2) C20—C25—H25 119.5
C26—C27—H27 120.2 C20—C25—C24 121.0 (3)
C26—C27—C28 119.7 (3) C24—C25—H25 119.5
C28—C27—H27 120.2 C25—C24—H24 120.0
C8—C13—H13 120.4 C23—C24—C25 120.0 (3)
C12—C13—C8 119.1 (3) C23—C24—H24 120.0
C12—C13—H13 120.4 C20—C21—H21 119.9
C7—C2—C1 123.2 (2) C20—C21—C22 120.3 (3)
C3—C2—C1 117.0 (2) C22—C21—H21 119.9
C3—C2—C7 119.7 (2) C24—C23—H23 120.3
C14—C19—H19 120.1 C24—C23—C22 119.5 (3)
C18—C19—C14 119.8 (2) C22—C23—H23 120.3
C18—C19—H19 120.1 C31—C30—C29 120.0 (3)
O02—C02—Rh1 178.5 (2) C31—C30—H30 120.0
C7—C6—H6 119.7 C29—C30—H30 120.0
C5—C6—C7 120.7 (3) C21—C22—H22 119.8
C5—C6—H6 119.7 C23—C22—C21 120.3 (3)
C27—C28—H28 119.8 C23—C22—H22 119.8
C29—C28—C27 120.4 (3)
Rh1—O2—C1—N1 4.4 (3) C8—C9—C10—C11 1.5 (4)
Rh1—O2—C1—C2 −177.62 (16) C14—C15—C16—C17 −0.4 (4)
Rh1—O1—N1—C1 1.5 (3) C14—C19—C18—C17 −0.2 (4)
Rh1—O1—N1—C8 175.94 (16) C20—C25—C24—C23 −1.8 (6)
As—C26—C27—C28 −178.1 (2) C20—C21—C22—C23 −1.2 (5)
As—C26—C31—C30 179.1 (2) C15—C14—C19—C18 −1.6 (4)
As—C14—C15—C16 −175.2 (2) C15—C16—C17—C18 −1.4 (4)
As—C14—C19—C18 175.6 (2) C7—C2—C3—C4 0.4 (4)
As—C20—C25—C24 −176.8 (3) C7—C6—C5—C4 −0.1 (4)
As—C20—C21—C22 178.4 (3) C27—C26—C31—C30 1.4 (4)
O2—C1—C2—C7 137.2 (2) C27—C28—C29—C30 0.6 (5)
O2—C1—C2—C3 −39.0 (3) C13—C8—C9—C10 −4.1 (4)
O1—N1—C1—O2 −4.1 (3) C2—C7—C6—C5 −0.8 (4)
O1—N1—C1—C2 178.1 (2) C2—C3—C4—C5 −1.3 (4)
O1—N1—C8—C13 −58.9 (3) C19—C14—C15—C16 1.9 (4)
O1—N1—C8—C9 121.5 (2) C19—C18—C17—C16 1.7 (4)
N1—C1—C2—C7 −45.0 (4) C6—C7—C2—C1 −175.5 (2)
N1—C1—C2—C3 138.8 (3) C6—C7—C2—C3 0.6 (4)
N1—C8—C13—C12 −175.6 (2) C28—C29—C30—C31 0.3 (5)
N1—C8—C9—C10 175.5 (2) C9—C8—C13—C12 4.0 (4)
C1—N1—C8—C13 115.1 (3) C3—C4—C5—C6 1.1 (4)
C1—N1—C8—C9 −64.5 (3) C31—C26—C27—C28 −0.5 (4)
C1—C2—C3—C4 176.7 (2) C12—C11—C10—C9 1.2 (4)
C26—C27—C28—C29 −0.5 (4) C10—C11—C12—C13 −1.3 (4)
C26—C31—C30—C29 −1.3 (5) C25—C20—C21—C22 −3.2 (5)
C8—N1—C1—O2 −177.9 (2) C25—C24—C23—C22 −2.7 (5)
C8—N1—C1—C2 4.3 (4) C24—C23—C22—C21 4.2 (5)
C8—C13—C12—C11 −1.3 (4) C21—C20—C25—C24 4.7 (5)

References

  1. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Elmakki, M. A., Alexander, O. T., Venter, G. J. S. & Venter, J. A. Z. (2017). Z. Kristallogr. New Cryst. Struct. 232, 831–833.
  5. Elmakki, M. A., Koen, R., Drost, R. M., Alexander, O. T., Venter, J. A. & Venter, J. A. (2016). Z. Kristallogr. New Cryst. Struct. 231, 781–783.
  6. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  7. Leipoldt, J. C. & Grobler, E. C. (1982). Inorg. Chim. Acta, 60, 141–144.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2414314623003553/wm4184sup1.cif

x-08-x230355-sup1.cif (877.8KB, cif)

CCDC reference: 2257230

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES