Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Apr 14;79(Pt 5):441–445. doi: 10.1107/S2056989023002979

Crystal structure of N-[3-(benzo[d]thia­zol-2-yl)-6-bromo-2H-chromen-2-yl­idene]-4-methyl­benzenamine

Amira E M Abdallah a, Galal H Elgemeie a, Peter G Jones b,*
Editor: C Schulzkec
PMCID: PMC10162085  PMID: 37151827

In the crystal structure of the title compound, the C=N—C angle is wide [125.28 (8)°]. The benzo­thia­zole and chromene ring systems are almost coplanar and lie parallel to (1 Inline graphic 0); the toluene ring system is rotated by ca 40° out of the chromene plane.

Keywords: crystal structure, benzo[d]thia­zole, chromene, imine, π–π-stacking

Abstract

The title compound, C23H15BrN2OS, was the unexpected product in an attempted synthesis of the isomeric 3-(benzo[d]thia­zol-2-yl)-6-bromo-1-p-tolyl­quinolin-2(1H)-one. The Cchromene=N—C angle is wide [125.28 (8)°]. The benzo­thia­zole and chromene ring systems are almost coplanar, with their planes parallel to (1 Inline graphic 0); the toluene ring system is rotated by ca 40° out of the chromene plane. The mol­ecular packing involves layers with π-stacking, borderline ‘weak’ hydrogen bonds and possible C—H⋯π contacts.

1. Chemical context

Benzo­thia­zoles exhibit strong fluorescence and luminescence properties (Wang et al., 2010). Incorporated benzo­thia­zole moieties are present in many commercially important organofluorescent materials that have attracted significant research inter­est in the field of organic light-emitting diodes (Lu et al., 2017; Metwally et al., 2022a ,b ). Coumarin (IUPAC name 2H-chromen-2-one) is a natural product and flavouring agent. Recently, a series of novel benzo­thia­zolyl-coumarin hybrids have been synthesized as potential biological agents and efficient emitting materials (Azzam et al., 2021, 2022a ,b ,c ,d ; Wu et al., 2011). We have previously prepared 3-(benzo[d]oxazol, -imidazole, -thia­zol-2-yl)-2H-chromen-2-imine and their corresponding coumarin analogues 3-(benzo[d]oxazol-, -imidazol, -thia­zol-2-yl)-2H-chromen-2-one, through the reaction of salicyl­aldehyde with 2-cyano­methyl-benzoxazole, -benzimidazole, and -benzo­thia­zole, respectively (Elgemeie, 1989). Some derivatives of these ring systems, known commercially as coumarin-6, coumarin-7 and coumarin-30, have been used as laser dyes in medical applications (Das et al., 2021; Satpati et al., 2009). Recently, we have synthesized some coumarin derivatives that exhibit fluorescence properties (Elgemeie & Elghandour, 1990; Elgemeie et al., 2000a ,b ; Elgemeie et al., 2015) as part of our research inter­est in exploiting new coumarin and benzo­thia­zole deriv­atives for biological and photochemical materials (Azzam et al., 2017a ,b , 2020a ,b ,c ,d ; Metwally et al., 2021a ,b ). Here, we describe a one-pot reaction of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide (1) with 5-bromo-salicylaldehde (2) and 4-p-toluidine (5) (Fig. 1). The mass spectrum of the product was, however, inconsistent with the proposed structure, 3-(benzo[d]thia­zol-2-yl)-6-bromo-1-p-tolyl­quinolin-2(1H)-one (6). Therefore, the X-ray crystal structure was determined, showing the exclusive presence of N-[3-(benzo[d]thiazol-2-yl)-6-bromo-2H-chromen-2-yl­idene]-4-methyl­benz­en­a­mine (7), an isomer of 6, as the sole product in the solid state; this was unexpected because the C=O moiety of the coumarin framework is usually chemically robust. The formation of 7 presumably involves the initial formation of the adduct 3 followed by elimination of benzohydrazide; the inter­mediate 4 then reacts with p-toluidine to give the final product 7 by elimination of water. 1.

Figure 1.

Figure 1

The synthesis of compound 7.

2. Structural commentary

The mol­ecule of 7 is shown in Fig. 2. The structure determ­ination makes clear that the unexpected product is a chromene derivative with an exocyclic imino function rather than a quinoline with an exocyclic oxo function. Bond lengths and angles may be regarded as normal, except that the C9=N9—C17 angle is very wide at 125.28 (8)°; selected values are given in Table 1. The benzo­thia­zole and chromene ring systems are almost coplanar, with an inter­planar angle of 7.59 (2)°; associated with this is a short intra­molecular contact S1⋯N9 2.7570 (8) Å. The toluene ring system is appreciably rotated out of the chromene plane, with an inter­planar angle of 40.38 (2)°.

Figure 2.

Figure 2

The mol­ecule of compound 7 in the crystal. Ellipsoids represent 50% probability levels.

Table 1. Selected geometric parameters (Å, °).

S1—C7A 1.7340 (9) C9—O1 1.3819 (11)
S1—C2 1.7512 (9) O1—C10 1.3751 (12)
C2—N3 1.3094 (12) N9—C17 1.4127 (12)
C2—C8 1.4705 (12) C13—Br1 1.8969 (10)
C9—N9 1.2708 (12)    
       
C7A—S1—C2 88.85 (4) C3A—C7A—S1 109.69 (7)
N3—C2—S1 115.73 (7) C10—O1—C9 121.82 (7)
C2—N3—C3A 110.78 (8) C9—N9—C17 125.28 (8)
N3—C3A—C7A 114.92 (8)    

3. Supra­molecular features

There are few short contacts between mol­ecules; two borderline ‘weak’ hydrogen bonds are listed in Table 2. A tenable packing analysis attributes a central role to the ring systems; individual rings are denoted here as A (thia­zole), B (benzo ring of benzo­thia­zole), C (pyran ring of chromene), D (benzo ring of chromene) and E (tol­yl). The mol­ecules lie with rings AD almost parallel to (1 Inline graphic 0) (Fig. 3), and there are weak stacking effects AD [inter­centroid distance 3.5910 (5) Å, offset 1.12 Å; operator 1 − x, 1 − y, 1 − z], CC [3.6184 (5) Å, 1.35 Å; 2 − x, 1 − y, 1 − z] and CD [3.6308 (5) Å, 1.27 Å; 2 − x, 1 − y, 1 − z] (Fig. 4). Two possible C—H⋯π inter­actions are represented by the contacts H21⋯Cg(B) [Cg = centroid; H⋯Cg 2.89 Å, C—H⋯Cg 122°; −1 + x, −1 + y, z] and H6⋯Cg(E) [H⋯Cg 2.87 Å, C—H⋯Cg 124°; x, 1 + y, z]; the angles are narrow, but the inter­actions do not necessarily involve the ring centroids. The contacts H7⋯Br1 and H6⋯Cg(E) lie within the parent layer; H22⋯N3 is formed to a neighbouring layer and H21⋯Cg(B) to the next layer but one.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Br1i 0.95 3.11 3.7721 (10) 128
C22—H22⋯N3ii 0.95 2.63 3.5716 (13) 169

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic .

Figure 3.

Figure 3

Layer structure of compound 7 (without hydrogen atoms) showing the asymmetric unit (indicated by the label O1) and further translation-related mol­ecules viewed perpendicular to the plane (1 Inline graphic 0). A second layer is related to the first by inversion.

Figure 4.

Figure 4

Stacking of ring systems in the structure of 7 (without hydrogen atoms). The view direction is parallel to the c axis. The label O1 indicates the mol­ecule of the chosen asymmetric unit.

4. Database survey

The searches employed the routine ConQuest (Bruno et al., 2002), part of Version 2022.3.0 of the CSD (Groom et al., 2016).

We recently reported the structure of the mixed coumarin/benzo[d]thia­zole derivative 3-(benzo[d]thia­zol-2-yl)-2H-chromen-2-one [3-(1,3-benzo­thia­zol-2-yl)-2H-1-benzo­pyran-2-one] (Abdallah et al., 2022). The structure of the 4-oxo isomer had already been published by Lohar et al. (2018). Two more related structures were published by others at the same time (Singh et al., 2022). The current structure, however, bears an imine (=NAr) rather than an oxo substituent at atom C2 of the chromene (and thus is strictly not a coumarin). Only one other such structure was found in the database; its substituent at the imine nitro­gen atom is pyridin-2-ethyl (refcode ITEVAF; Ahamed & Ghosh, 2011) and its C=N—C angle is much narrower than in 7 at 118.5 (7)°. A further search was therefore performed for structures with an =NAr group at the 2-position of a chromene ring system. This gave 18 hits with a considerable spread of C=N—C angles, namely 120.5–127.9°, mean value 123.4 (24)°. Nine of these structures appeared in the same publication (Shishkina et al., 2019), and, like 7, none of them had an inter­planar angle close to the calculated gas-phase optimum of 0°.

5. Synthesis and crystallization

5-Bromo-salicyl­aldehyde 2 (2.01 g, 0.01 mol), p-toluidine 5 (1.07 g, 0.01 mol) and solid ammonium acetate (0.77 g, 0.01 mol) were added to a solution of N-[2-(benzo[d]thia­zol-2-yl)acet­yl]benzohydrazide 1 (3.11 g, 0.01 mol) in ethanol (25 mL). The reaction mixture was refluxed for 3 h, and the solid thus formed was collected by filtration and recrystallized from ethanol.

Yellow crystals (seen under the microscope to be orange/yellow dichroic); yield: 94% (4.21 g); m.p. 501–503 K; IR (KBr, cm−1): ν 3052, (CH-aromatic), 2918, 2852 (CH3), 1554 (C=N), 1591, 1476 (C=C). 1H NMR (400 MHz, DMSO-d 6) δ: 2.51 (s, 3H, CH3), 7.16–8.28 (m, 11H, 2 C6H4, C6H3), 8.73 (s, 1H, CH-pyran). 13C NMR (100 MHz, DMSO-d6 ) δ: 21.2 (CH3), 116.5, 118.0, 121.7, 122.5 (2), 123.1, 123.9, 125.8, 127.0, 129.9 (2), 132.0, 134.1, 134.5, 135.1, 137.6, 141.7, 145.6, 152.0, 152.1 (aromatic carbons, pyran ring), 160.5 (C=N). Analysis: calculated for C23H15BrN2OS (447.35): C 61.75, H 3.38, N 6.26, S 7.17%. Found: C 61.86, H 3.50, N 6.06, S 6.99%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. The methyl group was included as an idealized rigid group allowed to rotate but not tip (C—H 0.98 Å, H—C—H 109.5°). Other hydrogen atoms were included using a riding model starting from calculated positions, with C—H 0.95 Å. The U(H) values were fixed at 1.5 × U eq of the parent carbon atoms for methyl H atoms and 1.2 × U eq for other hydrogen atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C23H15BrN2OS
M r 447.34
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 7.34138 (10), 10.6720 (2), 12.9247 (2)
α, β, γ (°) 104.5034 (16), 90.2462 (12), 103.9961 (14)
V3) 948.97 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.29
Crystal size (mm) 0.20 × 0.15 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022)
T min, T max 0.902, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 126966, 12477, 11717
R int 0.030
(sin θ/λ)max−1) 0.928
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.086, 1.27
No. of reflections 12477
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.00, −0.64

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT (Sheldrick, 2015b ), SHELXL2018/3 (Sheldrick, 2015a ) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023002979/yz2032sup1.cif

e-79-00441-sup1.cif (4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023002979/yz2032Isup2.hkl

e-79-00441-Isup2.hkl (989.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023002979/yz2032Isup3.cml

CCDC reference: 2252955

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

supplementary crystallographic information

Crystal data

C23H15BrN2OS Z = 2
Mr = 447.34 F(000) = 452
Triclinic, P1 Dx = 1.566 Mg m3
a = 7.34138 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6720 (2) Å Cell parameters from 55045 reflections
c = 12.9247 (2) Å θ = 2.3–41.0°
α = 104.5034 (16)° µ = 2.29 mm1
β = 90.2462 (12)° T = 100 K
γ = 103.9961 (14)° Block, yellow-orange dichroic
V = 948.97 (3) Å3 0.20 × 0.15 × 0.12 mm

Data collection

XtaLAB Synergy diffractometer 12477 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source 11717 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 10.0000 pixels mm-1 θmax = 41.3°, θmin = 2.0°
ω scans h = −13→13
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) k = −19→19
Tmin = 0.902, Tmax = 1.000 l = −23→23
126966 measured reflections

Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0329P)2 + 0.3775P] where P = (Fo2 + 2Fc2)/3
S = 1.27 (Δ/σ)max = 0.003
12477 reflections Δρmax = 1.00 e Å3
254 parameters Δρmin = −0.64 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Short intramolecular contact: 2.7570 (0.0008) S1 - N9 Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 6.9114 (0.0010) x + 0.6551 (0.0043) y + 0.9221 (0.0052) z = 5.0880 (0.0023) * 0.0005 (0.0007) C17 * -0.0080 (0.0007) C18 * 0.0078 (0.0007) C19 * -0.0001 (0.0007) C20 * -0.0074 (0.0007) C21 * 0.0071 (0.0007) C22 -0.1433 (0.0014) N9 0.0078 (0.0018) C23 Rms deviation of fitted atoms = 0.0062 6.7905 (0.0005) x - 4.3737 (0.0026) y - 3.5046 (0.0028) z = 1.1567 (0.0016) Angle to previous plane (with approximate esd) = 40.378 ( 0.018 ) * -0.0112 (0.0007) C8 * -0.0356 (0.0007) C9 * 0.0189 (0.0007) O1 * 0.0164 (0.0008) C10 * 0.0078 (0.0008) C11 * -0.0097 (0.0008) C12 * -0.0229 (0.0008) C13 * -0.0003 (0.0008) C14 * 0.0198 (0.0008) C15 * 0.0168 (0.0007) C16 -0.1250 (0.0009) Br1 -0.0945 (0.0011) N9 Rms deviation of fitted atoms = 0.0184 6.6853 (0.0007) x - 5.5698 (0.0018) y - 2.4072 (0.0037) z = 1.1618 (0.0013) Angle to previous plane (with approximate esd) = 7.587 ( 0.024 ) * -0.0246 (0.0005) S1 * -0.0299 (0.0006) C2 * 0.0114 (0.0007) N3 * 0.0329 (0.0008) C3A * 0.0037 (0.0008) C4 * -0.0325 (0.0008) C5 * -0.0172 (0.0009) C6 * 0.0192 (0.0008) C7 * 0.0370 (0.0008) C7A Rms deviation of fitted atoms = 0.0254

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.45005 (3) 0.22816 (2) 0.24952 (2) 0.01102 (4)
C2 0.53265 (12) 0.27006 (9) 0.38418 (7) 0.00988 (12)
N3 0.47875 (11) 0.17627 (8) 0.43436 (6) 0.01092 (11)
C3A 0.36335 (12) 0.06293 (9) 0.36717 (7) 0.01059 (12)
C4 0.27384 (14) −0.05271 (10) 0.39829 (8) 0.01396 (14)
H4 0.294443 −0.059470 0.469083 0.017*
C5 0.15488 (14) −0.15658 (10) 0.32326 (9) 0.01606 (16)
H5 0.091595 −0.234805 0.343368 0.019*
C6 0.12611 (14) −0.14821 (10) 0.21763 (9) 0.01639 (16)
H6 0.044937 −0.221294 0.167457 0.020*
C7 0.21439 (14) −0.03497 (10) 0.18570 (8) 0.01469 (15)
H7 0.195092 −0.029543 0.114386 0.018*
C7A 0.33289 (12) 0.07121 (9) 0.26171 (7) 0.01109 (13)
C8 0.65444 (12) 0.40075 (9) 0.44104 (7) 0.01000 (12)
C9 0.69589 (12) 0.51144 (9) 0.39019 (7) 0.01044 (12)
O1 0.81113 (10) 0.63197 (7) 0.44747 (6) 0.01236 (11)
N9 0.62892 (12) 0.49654 (8) 0.29581 (7) 0.01224 (12)
C10 0.87706 (12) 0.65155 (9) 0.55151 (7) 0.01079 (12)
C11 0.98434 (13) 0.77861 (9) 0.60325 (8) 0.01284 (14)
H11 1.010923 0.847551 0.567020 0.015*
C12 1.05226 (13) 0.80324 (10) 0.70912 (8) 0.01385 (14)
H12 1.126245 0.889327 0.745864 0.017*
C13 1.01084 (13) 0.70054 (10) 0.76081 (8) 0.01306 (14)
Br1 1.09469 (2) 0.73707 (2) 0.90683 (2) 0.01723 (3)
C14 0.90564 (13) 0.57339 (9) 0.70921 (8) 0.01269 (13)
H14 0.880313 0.504533 0.745531 0.015*
C15 0.83692 (12) 0.54769 (9) 0.60237 (7) 0.01077 (12)
C16 0.72340 (12) 0.41962 (9) 0.54312 (7) 0.01106 (13)
H16 0.696241 0.347267 0.575708 0.013*
C17 0.64703 (13) 0.59939 (9) 0.24293 (7) 0.01134 (13)
C18 0.66395 (14) 0.56395 (10) 0.13211 (8) 0.01423 (14)
H18 0.674436 0.476506 0.097566 0.017*
C19 0.66550 (15) 0.65591 (10) 0.07226 (8) 0.01490 (15)
H19 0.680212 0.631073 −0.002518 0.018*
C20 0.64577 (13) 0.78423 (10) 0.12042 (8) 0.01351 (14)
C21 0.62680 (14) 0.81793 (10) 0.23071 (8) 0.01380 (14)
H21 0.611872 0.904390 0.264656 0.017*
C22 0.62919 (13) 0.72820 (9) 0.29233 (8) 0.01265 (13)
H22 0.618755 0.754253 0.367493 0.015*
C23 0.64635 (18) 0.88259 (12) 0.05472 (10) 0.02078 (19)
H23A 0.613539 0.961990 0.098977 0.031*
H23B 0.554014 0.841125 −0.006738 0.031*
H23C 0.771864 0.908668 0.029148 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01261 (8) 0.01125 (8) 0.00922 (8) 0.00140 (6) 0.00060 (6) 0.00424 (6)
C2 0.0102 (3) 0.0100 (3) 0.0097 (3) 0.0025 (2) 0.0010 (2) 0.0031 (2)
N3 0.0119 (3) 0.0103 (3) 0.0107 (3) 0.0012 (2) 0.0001 (2) 0.0044 (2)
C3A 0.0103 (3) 0.0104 (3) 0.0113 (3) 0.0019 (2) 0.0004 (2) 0.0040 (2)
C4 0.0142 (3) 0.0127 (3) 0.0152 (4) 0.0007 (3) −0.0004 (3) 0.0067 (3)
C5 0.0144 (3) 0.0132 (3) 0.0200 (4) −0.0004 (3) −0.0013 (3) 0.0070 (3)
C6 0.0151 (4) 0.0131 (3) 0.0185 (4) −0.0005 (3) −0.0031 (3) 0.0036 (3)
C7 0.0155 (3) 0.0136 (3) 0.0131 (4) 0.0007 (3) −0.0021 (3) 0.0029 (3)
C7A 0.0113 (3) 0.0111 (3) 0.0107 (3) 0.0021 (2) 0.0004 (2) 0.0034 (2)
C8 0.0101 (3) 0.0096 (3) 0.0107 (3) 0.0023 (2) 0.0011 (2) 0.0036 (2)
C9 0.0104 (3) 0.0096 (3) 0.0116 (3) 0.0018 (2) 0.0014 (2) 0.0038 (2)
O1 0.0136 (3) 0.0105 (2) 0.0122 (3) 0.0001 (2) −0.0009 (2) 0.0043 (2)
N9 0.0145 (3) 0.0111 (3) 0.0116 (3) 0.0022 (2) 0.0009 (2) 0.0049 (2)
C10 0.0100 (3) 0.0104 (3) 0.0120 (3) 0.0023 (2) 0.0009 (2) 0.0032 (2)
C11 0.0122 (3) 0.0100 (3) 0.0154 (4) 0.0011 (2) 0.0009 (3) 0.0033 (3)
C12 0.0127 (3) 0.0117 (3) 0.0155 (4) 0.0020 (3) 0.0002 (3) 0.0015 (3)
C13 0.0126 (3) 0.0138 (3) 0.0116 (3) 0.0029 (3) −0.0006 (3) 0.0016 (3)
Br1 0.01926 (5) 0.01788 (5) 0.01143 (4) 0.00218 (3) −0.00160 (3) 0.00057 (3)
C14 0.0132 (3) 0.0125 (3) 0.0119 (3) 0.0027 (3) −0.0004 (3) 0.0028 (3)
C15 0.0101 (3) 0.0103 (3) 0.0118 (3) 0.0023 (2) 0.0004 (2) 0.0029 (2)
C16 0.0113 (3) 0.0104 (3) 0.0116 (3) 0.0022 (2) 0.0004 (2) 0.0036 (2)
C17 0.0124 (3) 0.0111 (3) 0.0106 (3) 0.0015 (2) 0.0002 (2) 0.0043 (2)
C18 0.0184 (4) 0.0125 (3) 0.0108 (3) 0.0021 (3) 0.0001 (3) 0.0029 (3)
C19 0.0184 (4) 0.0156 (4) 0.0099 (3) 0.0017 (3) 0.0000 (3) 0.0043 (3)
C20 0.0142 (3) 0.0147 (3) 0.0127 (4) 0.0020 (3) 0.0002 (3) 0.0068 (3)
C21 0.0161 (3) 0.0131 (3) 0.0140 (4) 0.0046 (3) 0.0025 (3) 0.0060 (3)
C22 0.0153 (3) 0.0127 (3) 0.0112 (3) 0.0040 (3) 0.0025 (3) 0.0048 (3)
C23 0.0267 (5) 0.0210 (4) 0.0186 (5) 0.0057 (4) 0.0018 (4) 0.0125 (4)

Geometric parameters (Å, º)

S1—C7A 1.7340 (9) C15—C16 1.4382 (13)
S1—C2 1.7512 (9) C17—C18 1.4010 (13)
C2—N3 1.3094 (12) C17—C22 1.4010 (13)
C2—C8 1.4705 (12) C18—C19 1.3915 (14)
N3—C3A 1.3809 (12) C19—C20 1.3977 (15)
C3A—C4 1.4055 (13) C20—C21 1.3964 (14)
C3A—C7A 1.4082 (13) C20—C23 1.5057 (14)
C4—C5 1.3849 (14) C21—C22 1.3934 (13)
C5—C6 1.4085 (15) C4—H4 0.9500
C6—C7 1.3872 (14) C5—H5 0.9500
C7—C7A 1.4015 (13) C6—H6 0.9500
C8—C16 1.3600 (13) C7—H7 0.9500
C8—C9 1.4616 (12) C11—H11 0.9500
C9—N9 1.2708 (12) C12—H12 0.9500
C9—O1 1.3819 (11) C14—H14 0.9500
O1—C10 1.3751 (12) C16—H16 0.9500
N9—C17 1.4127 (12) C18—H18 0.9500
C10—C11 1.3896 (13) C19—H19 0.9500
C10—C15 1.3985 (13) C21—H21 0.9500
C11—C12 1.3931 (14) C22—H22 0.9500
C12—C13 1.3954 (14) C23—H23A 0.9800
C13—C14 1.3849 (13) C23—H23B 0.9800
C13—Br1 1.8969 (10) C23—H23C 0.9800
C14—C15 1.4049 (13)
C7A—S1—C2 88.85 (4) C22—C17—N9 123.92 (8)
N3—C2—C8 120.14 (8) C19—C18—C17 120.48 (9)
N3—C2—S1 115.73 (7) C18—C19—C20 121.05 (9)
C8—C2—S1 124.12 (6) C21—C20—C19 117.95 (9)
C2—N3—C3A 110.78 (8) C21—C20—C23 121.46 (9)
N3—C3A—C4 124.80 (8) C19—C20—C23 120.58 (9)
N3—C3A—C7A 114.92 (8) C22—C21—C20 121.80 (9)
C4—C3A—C7A 120.23 (8) C21—C22—C17 119.69 (9)
C5—C4—C3A 118.40 (9) C5—C4—H4 120.8
C4—C5—C6 121.12 (9) C3A—C4—H4 120.8
C7—C6—C5 121.06 (9) C4—C5—H5 119.4
C6—C7—C7A 118.06 (9) C6—C5—H5 119.4
C7—C7A—C3A 121.11 (8) C7—C6—H6 119.5
C7—C7A—S1 129.11 (7) C5—C6—H6 119.5
C3A—C7A—S1 109.69 (7) C6—C7—H7 121.0
C16—C8—C9 119.94 (8) C7A—C7—H7 121.0
C16—C8—C2 119.48 (8) C10—C11—H11 120.5
C9—C8—C2 120.55 (8) C12—C11—H11 120.5
N9—C9—O1 121.20 (8) C11—C12—H12 120.2
N9—C9—C8 120.80 (8) C13—C12—H12 120.2
O1—C9—C8 118.00 (8) C13—C14—H14 120.5
C10—O1—C9 121.82 (7) C15—C14—H14 120.5
C9—N9—C17 125.28 (8) C8—C16—H16 119.6
O1—C10—C11 117.00 (8) C15—C16—H16 119.6
O1—C10—C15 121.11 (8) C19—C18—H18 119.8
C11—C10—C15 121.89 (9) C17—C18—H18 119.8
C10—C11—C12 118.90 (9) C18—C19—H19 119.5
C11—C12—C13 119.52 (9) C20—C19—H19 119.5
C14—C13—C12 121.77 (9) C22—C21—H21 119.1
C14—C13—Br1 119.00 (7) C20—C21—H21 119.1
C12—C13—Br1 119.21 (7) C21—C22—H22 120.2
C13—C14—C15 119.05 (9) C17—C22—H22 120.2
C10—C15—C14 118.86 (8) C20—C23—H23A 109.5
C10—C15—C16 118.19 (8) C20—C23—H23B 109.5
C14—C15—C16 122.95 (8) H23A—C23—H23B 109.5
C8—C16—C15 120.85 (8) C20—C23—H23C 109.5
C18—C17—C22 119.00 (8) H23A—C23—H23C 109.5
C18—C17—N9 116.72 (8) H23B—C23—H23C 109.5
C7A—S1—C2—N3 0.05 (7) C9—O1—C10—C11 −176.93 (8)
C7A—S1—C2—C8 −179.77 (8) C9—O1—C10—C15 2.96 (13)
C8—C2—N3—C3A 179.03 (8) O1—C10—C11—C12 179.31 (8)
S1—C2—N3—C3A −0.79 (10) C15—C10—C11—C12 −0.57 (14)
C2—N3—C3A—C4 −176.34 (9) C10—C11—C12—C13 −0.22 (14)
C2—N3—C3A—C7A 1.36 (11) C11—C12—C13—C14 0.92 (15)
N3—C3A—C4—C5 177.03 (9) C11—C12—C13—Br1 −177.29 (7)
C7A—C3A—C4—C5 −0.56 (14) C12—C13—C14—C15 −0.80 (14)
C3A—C4—C5—C6 1.09 (16) Br1—C13—C14—C15 177.41 (7)
C4—C5—C6—C7 −0.75 (17) O1—C10—C15—C14 −179.19 (8)
C5—C6—C7—C7A −0.15 (16) C11—C10—C15—C14 0.68 (13)
C6—C7—C7A—C3A 0.68 (15) O1—C10—C15—C16 −0.42 (13)
C6—C7—C7A—S1 −175.47 (8) C11—C10—C15—C16 179.46 (8)
N3—C3A—C7A—C7 −178.14 (9) C13—C14—C15—C10 0.00 (13)
C4—C3A—C7A—C7 −0.33 (14) C13—C14—C15—C16 −178.71 (9)
N3—C3A—C7A—S1 −1.32 (10) C9—C8—C16—C15 0.14 (13)
C4—C3A—C7A—S1 176.50 (7) C2—C8—C16—C15 −177.59 (8)
C2—S1—C7A—C7 177.19 (10) C10—C15—C16—C8 −1.08 (13)
C2—S1—C7A—C3A 0.69 (7) C14—C15—C16—C8 177.64 (9)
N3—C2—C8—C16 5.52 (13) C9—N9—C17—C18 145.41 (10)
S1—C2—C8—C16 −174.66 (7) C9—N9—C17—C22 −41.55 (14)
N3—C2—C8—C9 −172.19 (8) C22—C17—C18—C19 0.84 (14)
S1—C2—C8—C9 7.62 (12) N9—C17—C18—C19 174.24 (9)
C16—C8—C9—N9 −178.29 (9) C17—C18—C19—C20 −1.56 (15)
C2—C8—C9—N9 −0.59 (13) C18—C19—C20—C21 0.79 (15)
C16—C8—C9—O1 2.26 (13) C18—C19—C20—C23 −179.58 (10)
C2—C8—C9—O1 179.97 (8) C19—C20—C21—C22 0.68 (15)
N9—C9—O1—C10 176.74 (8) C23—C20—C21—C22 −178.95 (10)
C8—C9—O1—C10 −3.82 (12) C20—C21—C22—C17 −1.37 (15)
O1—C9—N9—C17 −6.20 (14) C18—C17—C22—C21 0.59 (14)
C8—C9—N9—C17 174.37 (8) N9—C17—C22—C21 −172.29 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···Br1i 0.95 3.11 3.7721 (10) 128
C22—H22···N3ii 0.95 2.63 3.5716 (13) 169

Symmetry codes: (i) x−1, y−1, z−1; (ii) −x+1, −y+1, −z+1.

References

  1. Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2022). IUCrData, 7, x220332. [DOI] [PMC free article] [PubMed]
  2. Ahamed, B. N. & Ghosh, P. (2011). Dalton Trans. 40, 6411–6419. [DOI] [PubMed]
  3. Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. [DOI] [PMC free article] [PubMed]
  4. Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022d). Antibiotics, 11, 1799. [DOI] [PMC free article] [PubMed]
  5. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369–372. [DOI] [PMC free article] [PubMed]
  6. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. [DOI] [PMC free article] [PubMed]
  7. Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. [DOI] [PMC free article] [PubMed]
  8. Azzam, R. A., Elgemeie, G. H., Gad, N. M. & Jones, P. G. (2022c). IUCrData, 7, x220412. [DOI] [PMC free article] [PubMed]
  9. Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020d). J. Mol. Struct. 1201, 127194.
  10. Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894. [DOI] [PMC free article] [PubMed]
  11. Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. [DOI] [PMC free article] [PubMed]
  12. Azzam, R. A., Gad, N. M. & Elgemeie, G. H. (2022a). ACS Omega, 7, 35656–35667. [DOI] [PMC free article] [PubMed]
  13. Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. [DOI] [PMC free article] [PubMed]
  14. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  15. Das, A., Das, S., Biswas, A. & Chattopadhyay, N. (2021). J. Phys. Chem. B, 125, 13482–13493. [DOI] [PubMed]
  16. Elgemeie, G. H. (1989). Chem. Ind. 19, 653–654.
  17. Elgemeie, G. H., Ahmed, K. A., ahmed, E. A., helal, M. H. & Masoud, D. M. (2015). Pigm. Resin Technol. 44, 87–93.
  18. Elgemeie, G. H. & Elghandour, A. H. (1990). Bull. Chem. Soc. Jpn, 63, 1230–1232.
  19. Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272.
  20. Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.
  21. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  22. Lohar, S., Dhara, K., Roy, P., Sinha Babu, S. P. & Chattopadhyay, P. (2018). ACS Omega, 3, 10145–10153. [DOI] [PMC free article] [PubMed]
  23. Lu, F., Hu, R., Wang, S., Guo, X. & Yang, G. (2017). RSC Adv. 7, 4196–4202.
  24. Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022b). Egypt. J. Chem. 65, 679–686.
  25. Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021a). Acta Cryst. E77, 615–617. [DOI] [PMC free article] [PubMed]
  26. Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2021b). Acta Cryst. E77, 1054–1057. [DOI] [PMC free article] [PubMed]
  27. Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022a). Acta Cryst. E78, 445–448. [DOI] [PMC free article] [PubMed]
  28. Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  29. Satpati, A. K., Kumbhakar, M., Nath, S. & Pal, H. (2009). Photochem. Photobiol. 85, 119–129. [DOI] [PubMed]
  30. Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.
  31. Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.
  32. Shishkina, S. V., Konovalova, I. S., Kovalenko, S. M., Trostianko, P. V., Geleverya, A. O., Nikolayeva, L. L. & Bunyatyan, N. D. (2019). Acta Cryst. B75, 887–902. [DOI] [PubMed]
  33. Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  34. Singh, R., Chen, D.-G., Wang, C.-H., Wu, C.-C., Hsu, C.-H., Wu, C.-H., Lai, T.-Y., Chou, P. & Chen, C. (2022). J. Mater. Chem. B, 10, 6228–6236. [DOI] [PubMed]
  35. Wang, H., Chen, G., Xu, X., Chen, H. & Ji, S. (2010). Dyes Pigments, 86, 238–248.
  36. Wu, W., Wu, W., Ji, S., Guo, H. & Zhao, J. (2011). Dalton Trans. 40, 5953–5963. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989023002979/yz2032sup1.cif

e-79-00441-sup1.cif (4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989023002979/yz2032Isup2.hkl

e-79-00441-Isup2.hkl (989.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023002979/yz2032Isup3.cml

CCDC reference: 2252955

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES