Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2023 Apr 14;79(Pt 5):458–464. doi: 10.1107/S2056989023003158

Crystal structures and Hirshfeld surface analyses of tetra­kis­(4,5-di­hydro­furan-2-yl)silane and tetra­kis­(4,5-di­hydro­furan-2-yl)germane

Arnold Ressel a, Anna Krupp a, Carsten Strohmann a,*
Editor: W T A Harrisonb
PMCID: PMC10162092  PMID: 37151822

The crystal structures of a di­hydro­furylsilane and a di­hydro­furylgermane are reported. Hirshfeld surface analyses were performed to investigate the inter­molecular inter­actions.

Keywords: crystal structure, di­hydro­furanyl groups (DHF), Hirshfeld surface analysis, di­hydro­furylsilan, di­hydro­furylgermane

Abstract

The title compounds Si(C4H5O)4 (1) and Ge(C4H5O)4 (2) are di­hydro­furyl compounds of silicon and germanium and are useful building blocks for the functionalization of these elements. Both structures crystallize in space group P21/n in the monoclinic crystal system with two mol­ecules in the asymmetric unit: the Si and Ge atoms adopt slightly distorted tetra­hedral geometries, while the C4H5O moieties exhibit shallow envelope conformations. Through a Hirshfeld surface analysis of the structures, inter­actions within the crystal packing could be elucidated: compound 1 features a polymeric chain in the (101) plane via C—H⋯O hydrogen bonds whereas in 2 C—H⋯O hydrogen bonds create a polymeric chain in the (010) plane.

1. Chemical context

The first di­hydro­furylsilanes (DHF) were prepared by Lukevits and co-workers in the 1980s (Gevorgyan et al., 1989). The di­hydro­furyl substituent is a good leaving group for nucleophilic substitution on silicon and has therefore been further investigated since then (Lukevits et al., 1993). Primarily carbon nucleophiles (e.g. lithium alkyls) can be used for substitution of the DHF groups (Lukevits et al., 1993). Nitro­gen and oxygen nucleophiles (e.g. LiNEt2 or t-butanol) also serve to cleave the Si­–C(DHF) bond: this is an alternative way of introducing an Si—N bond into a compound compared to conventional synthesis methods using, for example, meth­oxy­silanes (Bauer & Strohmann, 2014). With an oxygen nucleophile such as pyrocatechol, penta­valent silicates can be synthesized (Tacke et al., 1991, 1993). Hydrides, likewise, are useful for substitutions (e.g. LiAlH4) (Gevorgyan et al., 1990, 1992). Thus, silanes can be synthesised in a very precise way (Lukevics et al., 1985, 1997). Analogous to DHF silanes, it is also possible to form germanes with di­hydro­furyl substituents. The substitution of the DHF groups on germanium is possible via lithium alkyls or hydrides, similar to silanes (Lukevics et al., 1985). The crystal structures of various di­hydro­furylsilanes such as bis­(4,5-di­hydro­furan-2-yl)(dimeth­yl)silane and (4,5-di­hydro­furan-2-yl)(meth­yl)di­phenyl­silane (Schmidt et al., 2022) or tris­(4,5-di­hydro­furan-2-yl)(meth­yl)silane and tris(4,5-di­hydro­furan-2-yl)(phen­yl)silane (Krupp et al., 2020) are already known. Here, we report the crystal structures of tetra­kis­(4,5-di­hydro­furan-2-yl)silane, Si(C4H5O)4 (1) and tetra­kis­(4,5-di­hydro­furan-2-yl)germane, Ge(C4H5O)4 (2) and their extended structures, which were investigated using a Hirshfeld surface analysis. The two compounds are already known in the literature (Lukevics et al., 1984; Ertschak et al., 1982). 1.

2. Structural commentary

The mol­ecular structure of 1 is shown in Fig. 1 and selected bond lengths and angles of the solid-state structure are shown in Table 1. There are two mol­ecules in the asymmetric unit. The listed bond lengths of the Si–C(DHF) links are all in a comparable range. In addition, the bond lengths are consistent with the characteristic Si—C bond length (Allen et al., 1987). The C—Si—C bond angles deviate from the ideal value of 109.47° and indicate a slightly distorted tetra­hedron. This has already been described in related compounds by Strohmann and co-workers (Krupp et al., 2020; Schmidt et al., 2022). This slight distortion is possibly due to the packing in the solid state. The bond lengths of the C=C bonds within the di­hydro­furanyl substituent show agreement with bond lengths known in the literature. The C—C single bond between the two sp 3 carbon atoms shows a clear deviation from the median known in literature, and is nearly in the lower quartile. This was also previously described by Strohmann and co-workers (Krupp et al., 2020; Schmidt et al., 2022). The DHF rings of the structure do not show complete planarity and have the r.m.s deviations shown in Table 2. The largest deviation of an atom from the planar position is shown by the sp 3 carbon atom C28, which is located next to the oxygen atom O7. This has also been reported for comparable structures (Schmidt et al., 2022). In addition, Table 2 shows the dihedral angles between the normals of two rings.

Figure 1.

Figure 1

The mol­ecular structure of compound 1 with displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °) for 1 .

Si1—C1 1.8632 (10) Si2—C17 1.8621 (10)
Si1—C5 1.8611 (9) Si2—C21 1.8598 (10)
Si1—C9 1.8604 (10) Si2—C25 1.8615 (10)
Si1—C13 1.8633 (10) Si2—C29 1.8609 (10)
       
C5—Si1—C1 110.75 (4) C21—Si2—C17 106.75 (4)
C5—Si1—C13 108.60 (4) C21—Si2—C25 109.54 (4)
C9—Si1—C1 109.39 (4) C21—Si2—C29 112.87 (4)
C9—Si1—C5 106.46 (4) C25—Si2—C17 110.57 (4)
C9—Si1—C13 113.04 (4) C29—Si2—C17 108.47 (4)
C13—Si1—C1 108.60 (4) C29—Si2—C25 108.64 (4)

Table 2. Conformations (Å, °) of the DHF rings for compound 1 .

DHF ring r.m.s. deviation Largest deviation Angle between ring normals
C1–C4/O1 0.067 C4 −0.0936 (6)
C5–C8/O2 0.038 C8 −0.0521 (8) 82.18 (4) a
C9–C12/O3 0.034 C12 −0.0468 (7) 42.32 (4) a
C13–C16/O4 0.049 C16 −0.0679 (7) 45.01 (4) a
C17–C20/O5 0.054 C20 −0.0934 (6)
C21–C24/O6 0.050 C24 −0.0699 (7) 48.41 (6) b
C25–C28/O7 0.093 C28 0.1298 (9) 55.30 (6) b
C29–C32/O8 0.029 C32 −0.0397 (7) 81.77 (4) b

Notes: (a) compared to C1–C4/O1; (b) compared to C17–C20/O5.

The mol­ecular structure of 2 is shown in Fig. 2. There are two mol­ecules in the asymmetric unit and selected bond lengths and angles are given in Table 3. The Ge—C bonds are in a comparable range and are consistent with similar bond lengths in the literature (Lazraq et al., 1988). As already described for structure 1, the germane 2 also shows a slight deviation from the ideal tetra­hedral value for the C—Ge—C bond angles, which can also be explained by the packing in the solid state. Likewise, the bond lengths of the C=C groups within the di­hydro­furanyl rings show consistency with bond lengths known in the literature, as well as the C—C bond between two sp 3 carbon atoms showing similar peculiarities as previously described (Krupp et al., 2020; Schmidt et al., 2022). The DHF rings of the structure do not show complete planarity and have the r.m.s deviations shown in Table 3. Compared to 1, the deviations in 2 are smaller and, again, the sp 3 carbon atom C28, which is located next to O7, shows the highest deviation. However, this does not apply to the C21–C24/O6 ring as this has a very low r.m.s. deviation and C21 shows the highest deviation. The dihedral angles between the normals of two rings are listed in Table 4.

Figure 2.

Figure 2

The mol­ecular structure of compound 2 with displacement ellipsoids drawn at the 50% probability level.

Table 3. Selected geometric parameters (Å, °) for 2 .

Ge1—C1 1.9331 (13) Ge2—C17 1.9370 (13)
Ge1—C5 1.9326 (14) Ge2—C21 1.9290 (13)
Ge1—C9 1.9299 (14) Ge2—C25 1.9329 (13)
Ge1—C13 1.9351 (14) Ge2—C29 1.9353 (14)
       
C1—Ge1—C13 109.37 (6) C21—Ge2—C17 108.03 (6)
C5—Ge1—C1 109.74 (6) C21—Ge2—C25 108.58 (5)
C5—Ge1—C13 108.78 (6) C21—Ge2—C29 112.88 (6)
C9—Ge1—C1 107.67 (6) C25—Ge2—C17 107.92 (5)
C9—Ge1—C5 108.46 (6) C25—Ge2—C29 106.91 (6)
C9—Ge1—C13 112.79 (6) C29—Ge2—C17 112.36 (6)

Table 4. Conformations (Å, °) of the DHF rings for compound 2 .

DHF ring r.m.s. deviation Largest deviation Angle between ring normals
C1–C4/O1 0.015 C3 −0.0196 (12)
C5–C8/O2 0.038 C8 −0.0526 (9) 81.75 (6) a
C9–C12/O3 0.017 C12 0.0240 (13) 62.38 (7) a
C13–C16/O4 0.029 C16 0.0399 (11) 82.47 (7) a
C17–C20/O5 0.032 C20 0.0442 (11)
C21–C24/O6 0.007 C21 0.0094 (10) 87.22 (9) b
C25–C28/O7 0.068 C28 −0.0941 (9) 45.36 (6) b
C29–C32/O8 0.033 C32 0.0462 (9) 80.68 (7) b

Notes: (a) compared to C1–C4/O1; (b) compared to C17–C20/O5.

3. Supra­molecular features

In order to qu­antify the inter­molecular inter­actions in the crystal structure, a Hirshfeld surface analysis was carried out, generated by CrystalExplorer21 (Spackman et al., 2021). The Hirshfeld surface of 1 is shown in Fig. 3, where the red areas represent closer inter­actions between adjacent atoms. The Hirshfeld surface is mapped over d norm, in the range −0.11 to 1.37 a.u. The distribution of the different inter­actions is illus­trated by the two-dimensional fingerprint plots (Fig. 4). Inter­actions identified by the Hirshfeld surface are mostly H⋯H inter­actions, which contribute 69.9% to the crystal packing. The close inter­action H23A⋯H23A i [symmetry code: (i) −x, −y, −z] with a distance of 2.22 (4) Å was identified by the red spots on the Hirshfeld surface. However, these red spots show only a small proportion of the inter­actions indicated in the fingerprint. Furthermore, a C30⋯H24B ii [symmetry code: (ii) Inline graphic  − x, Inline graphic  + y, Inline graphic  − z] van der Waals inter­action with a separation of 2.796 (16) Å was also identified. The contribution of the C⋯H inter­actions is 10.7%, which is a low contribution to the crystal packing. Besides these inter­actions, H⋯O inter­actions could be identified and contribute 19.2% of the structure in the solid state. Hydrogen bonds between C—H⋯O, which are indicated by red spots on the Hirshfeld surface are listed in Table 5. The C—H⋯O hydrogen bonds C8—H8A⋯O5ii, C27—H27B⋯O3iii and C31—H31A⋯O4 can be described as having a D 1 1(2) graph-set motif. C23—H23B⋯O5i is described by Inline graphic (7) (Etter et al., 1990). Through the hydrogen bonds C27—H27B⋯O3iii and C31—H31A⋯O4, a part of the crystal packing is defined along the [101] direction (Fig. 5).

Figure 3.

Figure 3

Hirshfeld surface analysis of 1 showing close contacts in the crystal. (a) The hydrogen bonds between C8—H8A⋯O5ii, C23i—H23B i⋯O5, C27iii—H27B iii⋯O3 and C31—H31A⋯O4 are labelled [symmetry codes: (i) − Inline graphic  + x, Inline graphic  + y, Inline graphic  − z; (ii) Inline graphic  + x, Inline graphic  − y, Inline graphic  + z; (iii) Inline graphic  + x, Inline graphic  − y, Inline graphic  + z]. (b) The close hydrogen–hydrogen inter­action H23A⋯H23A i and close carbon–hydrogen inter­action C30ii⋯H24B are labelled [symmetry codes: (i) −x + 1, −y + 1, −z + 2; (ii) Inline graphic  − x, − Inline graphic  + y, Inline graphic  − z].

Figure 4.

Figure 4

Two-dimensional fingerprint plots for compound 1, showing (a) all contributions, and (b)–(d) delineated into the contributions of atoms within specific inter­acting pairs (blue areas).

Table 5. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯O5i 0.974 (18) 2.531 (18) 3.3484 (14) 141.5 (14)
C8—H8A⋯O5ii 0.95 (2) 2.61 (2) 3.3800 (15) 137.9 (15)
C27—H27B⋯O3iii 0.92 (2) 2.61 (2) 3.4200 (16) 147.1 (18)
C31—H31A⋯O4 0.986 (18) 2.561 (18) 3.5358 (14) 169.6 (15)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 5.

Figure 5

A part of the crystal packing of compound 1 via hydrogen bonds C27–H27B⋯O3iii and C31—H31A⋯O4 in the (101) plane. C—H⋯O hydrogen bonds are shown as dashed blue lines. [Symmetry codes: (iii) − Inline graphic  + x, Inline graphic  − y, Inline graphic  + z].

For the Hirshfeld surface analysis of 2, a surface mapped over d norm in the range −0.15 to 1.33 a.u. was used (Fig. 6). The distribution of the various inter­actions is illustrated by the two-dimensional fingerprint plots (Fig. 7). The distribution of the inter­actions is very similar and minimally larger for H⋯H (71.6%) than for 1. The inter­actions between H31B⋯H31B i at 2.17 (4) Å and H7B⋯H7B i [symmetry code: (i) −x, −y, −z] at 2.20 (4) Å are visible as red spots and could be identified as close inter­actions by the Hirshfeld surface. The contribution of the van der Waals inter­actions is slightly lower at 10.0%. The inter­action C32⋯H4A ii [symmetry code: (ii) Inline graphic  − x, Inline graphic  + y, Inline graphic  − z] at 2.79 (2) Å could also be detected on the Hirshfeld surface. As in the case of 1, inter­actions of the form H⋯O could be determined, which contribute 18.3% to the crystal packing. These hydrogen bonds were detected by red spots on the Hirshfeld surface and are shown in Table 6. C4—H4A⋯O7i and C23–H23A⋯O4ii can be described by the graph-set motif D 1 1(2). In contrast, the hydrogen bond C31—H31A⋯O7iii is described by the graph-set motif Inline graphic (7) (Etter et al., 1990). With C4—H4A⋯O7iii and C31—H31A⋯O7i, a part of the crystal packing, which forms a plane in the [010] direction, can be seen in Fig. 8.

Figure 6.

Figure 6

Hirshfeld surface analysis of 2 showing close contacts in the crystal. (a) The hydrogen bonds between C4iii—H4A iii⋯O7, C23—H23A⋯O4ii and C31i—H31A i⋯O7 are labelled [symmetry codes: (i) Inline graphic  + x, − Inline graphic  + y, Inline graphic  − z; (ii) − Inline graphic  + x, Inline graphic  − y, Inline graphic  + z; (iii) x, y, 1 + z]. (b) The close hydrogen–hydrogen inter­actions H31B⋯H31B i and H7B⋯H7B i [symmetry code: (i) −x, −y, −z] and the close carbon–hydrogen inter­action C32⋯H4A ii are labelled [symmetry code: (ii) Inline graphic  − x, Inline graphic  + y, Inline graphic  − z].

Figure 7.

Figure 7

Two-dimensional fingerprint plots for compound 2, showing (a) all contributions, and (b)–(d) delineated into the contributions of atoms within specific inter­acting pairs (blue areas).

Table 6. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯O7i 0.964 (19) 2.60 (2) 3.3279 (18) 132.1 (14)
C23—H23A⋯O4ii 0.97 (2) 2.57 (2) 3.530 (2) 168.0 (17)
C4—H4A⋯O7iii 0.93 (2) 2.63 (2) 3.398 (2) 140.8 (17)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

Figure 8.

Figure 8

A part of the crystal packing of compound 2 via hydrogen bonds C4—H4A⋯O7i and C23—H23A⋯O4ii in the (010) plane. C—H⋯O hydrogen bonds are shown as dashed blue lines [symmetry codes: (i) Inline graphic  − x, − Inline graphic  + y, 3/2 − z; (ii) − Inline graphic  + x, Inline graphic  − y, Inline graphic  + z].

4. Database survey

A search of the Cambridge Crystallographic Database (Groom et al., 2016; WebCSD, accessed January 2023) for the term 2-(4,5-di­hydro­fur­yl)silanes gave bis­(4,5-di­hydro­furan-2-yl)(dimeth­yl)silane and (4,5-di­hydro­furan-2-yl)(meth­yl)di­phenyl­silane (CSD refcodes GAVJUM and GAVKAT; Schmidt et al., 2022) as well as tris­(4,5-di­hydro­furan-2-yl)(meth­yl)silane and tris­(4,5-di­hydro­furan-2-yl)(phen­yl)silane (YUYCED and YUYCON; Krupp et al., 2020), previously published by our group. These compounds show comparable Si—C(DHF), C—C and C=C bond lengths to those of 1 and 2. They also display similar (DHF)C—Si—C(DHF) bond angles and also a slightly distorted tetra­hedron. In addition, a deviation in the planarity of the di­hydro­furyl rings was found there. An extended search for 3-(4,5-di­hydro­fur­yl)silanes revealed the compounds [4-(4-fluoro­phen­yl)-5-(4-nitro­phen­yl)-4,5-di­hydro­furan-3-yl](trimeth­yl)silane (JIVLIM; Li & Zhang, 2018), (1′S,2R)-5-methyl-4-(t-butyl­diphenyl­sil­yl)-2,3-di­hydro-furan-2-carb­oxy­lic acid (1′-phenyl­eth­yl)amide (PUXCAM; Evans et al., 2001) and 2,2-di­chloro-5-phenyl-4-(tri­methyl­sil­yl)-3(2H)-furan­one (YIHDOI; Murakami et al., 1994), which have little resemblance to the structure of 1. Tetra­kis(2-furan­yl)silane was also found in the database when searching for (2-furan­yl)silane (XAMZOA; Neugebauer et al., 2000).

A search for 2-(4,5-di­hydro­fur­yl)germane and an extended search for 3-(4,5-di­hydro­fur­yl)germane found no hits.

5. Synthesis and crystallization

Compound 1 and 2 have already been described by Lukevits and Ertschak (Lukevics et al., 1984; Ertschak et al., 1982). For the synthesis of tetra­kis­(4,5-di­hydro­furan-2-yl)silane (1), tert-butyl­lithium (31.0 ml, 1.90 M in pentane, 58.90 mmol, 4.00 eq.) was added at 228 K to a solution of 2,3-di­hydro­furan (4.14 g, 59.10 mmol, 4.00 eq.) in diethyl ether (approx. 100 ml). The reaction solution was stirred for 1 h at room temperature. Then, tetra­chloro­silane (2.50 g, 14.70 mmol, 1.00 eq.) was added at 243 K and the reaction solution was stirred for 1 h. The resulting solid was separated by inert filtration. The obtained solution was concentrated in vacuo and crystallized at 243 K. The solvent was removed and the solid was washed with cold diethyl ether. The product tetra­kis­(4,5-di­hydro­furan-2-yl)silane (1) (3.05 g, 10.0 mmol, 68%) was obtained as colourless blocks.

1H NMR: (600.29 MHz, C6D6): δ = 2.25 [dt, 3 J HH = 2.57 Hz, 3 J HH = 9.72 Hz, 8H; Si(CCHCH 2)4], 4.06 [t, 3 J HH = 9.72 Hz, 8H; Si(COCH 2)4], 5.88 [t, 3 J HH = 2.57 Hz, 4H; Si(CCH)4] ppm. {1H}13C NMR: (150.94 MHz, C6D6): δ = 31.4 [4C; Si(CCHCH2)4], 71.0 [4C; Si(COCH2)4], 117.8 [4C; Si(CCH)4], 155.1 [4C; (Si(CO)4] ppm. {1H}29Si NMR: (119.26 MHz, C6D6): δ = −51.40 [s, 1Si; Si(DHF)4] ppm.

For the synthesis of tetra­kis­(4,5-di­hydro­furan-2-yl)germane (2), tert-butyl­lithium (19.60 ml, 1.90 M in pentane, 37.30 mmol, 4.00 eq.) was added at 228 K to a solution of 2,3-di­hydro­furan (2.60 g, 37.30 mmol, 4.00 eq.) in diethyl ether (approx. 100 ml). The reaction solution was stirred for 1 h at rt. Tetra­chloro­germane (2.00 g, 9.33 mmol, 1.00 eq.) was added at 213 K and the reaction solution was stirred for 1 h. The resulting solid was separated by inert filtration. The obtained solution was concentrated in vacuo and crystallized at 243 K. The solvent was removed, and the solid was washed with cold diethyl ether. The product tetra­kis­(4,5-di­hydro­furan-2-yl)germane (2) (2.94 g, 8.44 mmol, 91%) was obtained as colourless blocks.

1H NMR: (400.25 MHz, C6D6): δ = 2.26 [dt, 3 J HH = 2.57 Hz, 3 J HH = 9.66 Hz, 8H; Ge(CCHCH 2)4], 4.05 [t, 3 J HH = 9.66 Hz, 8H; Ge(COCH 2)4], 5.62 [t, 3 J HH = 2.57 Hz, 4H; Ge(CCH)4] ppm. {1H}13C NMR: (100.64 MHz, C6D6): δ = 30.8 [4C; Ge(CCHCH2)4], 71.0 [4C; Ge(COCH2)4], 113.8 [4C; Si(CCH)4], 155.7 [4C; (Ge(CO)4] ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 7. Hydrogen atoms H8A,B, H23A,B, H24A,B, H27A,B and H31A,B for compound 1 and all H atoms for compound 2 were refined independently. Other H atoms were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with U iso(H) = 1.2U eq(C) for CH2 and CH hydrogen.

Table 7. Experimental details.

  1 2
Crystal data
Chemical formula C16H20O4Si C16H20GeO4
M r 304.41 348.91
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 14.2044 (7), 14.2458 (7), 15.4851 (8) 14.3828 (5), 14.2069 (5), 15.3594 (6)
β (°) 102.605 (2) 101.159 (1)
V3) 3057.9 (3) 3079.13 (19)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.17 2.00
Crystal size (mm) 0.68 × 0.54 × 0.48 0.19 × 0.16 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE Bruker D8 VENTURE
Absorption correction Multi-scan (SADABS; Krause et al., 2015) Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.532, 0.570 0.496, 0.568
No. of measured, independent and observed [I > 2σ(I)] reflections 371220, 9331, 8779 71639, 13541, 10143
R int 0.036 0.046
(sin θ/λ)max−1) 0.714 0.807
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.103, 1.03 0.032, 0.077, 1.02
No. of reflections 9331 13541
No. of parameters 419 539
H-atom treatment H atoms treated by a mixture of independent and constrained refinement All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.89, −0.38 0.67, −0.56

Computer programs: APEX2 and SAINT (Bruker, 2018), SHELXS (Sheldrick, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2019/2 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009), CrystalExplorer21 (Spackman et al., 2021), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1. DOI: 10.1107/S2056989023003158/hb8058sup1.cif

e-79-00458-sup1.cif (41.3KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989023003158/hb80581sup2.hkl

e-79-00458-1sup2.hkl (740.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003158/hb80581sup4.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989023003158/hb80582sup3.hkl

Supporting information file. DOI: 10.1107/S2056989023003158/hb80582sup5.cml

CCDC reference: 2254180

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Crystal data

C16H20O4Si F(000) = 1296
Mr = 304.41 Dx = 1.322 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.2044 (7) Å Cell parameters from 9905 reflections
b = 14.2458 (7) Å θ = 2.6–17.2°
c = 15.4851 (8) Å µ = 0.17 mm1
β = 102.605 (2)° T = 100 K
V = 3057.9 (3) Å3 Block, white
Z = 8 0.68 × 0.54 × 0.48 mm

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Data collection

Bruker D8 VENTURE diffractometer 9331 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 8779 reflections with I > 2σ(I)
HELIOS mirror optics monochromator Rint = 0.036
Detector resolution: 10.4167 pixels mm-1 θmax = 30.5°, θmin = 2.1°
ω and φ scans h = −20→20
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −20→20
Tmin = 0.532, Tmax = 0.570 l = −22→22
371220 measured reflections

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0578P)2 + 1.2587P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
9331 reflections Δρmax = 0.89 e Å3
419 parameters Δρmin = −0.38 e Å3
0 restraints

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Si1 0.74622 (2) 0.28841 (2) 0.75077 (2) 0.01509 (6)
O1 0.93162 (5) 0.25935 (5) 0.85344 (5) 0.02192 (14)
O2 0.66166 (7) 0.30739 (6) 0.89526 (5) 0.02813 (17)
O3 0.72770 (6) 0.45724 (6) 0.65291 (5) 0.02471 (15)
O4 0.68036 (6) 0.15675 (7) 0.61688 (6) 0.03055 (19)
C1 0.86791 (7) 0.32761 (7) 0.81134 (6) 0.01724 (16)
C2 0.90373 (7) 0.41431 (7) 0.82338 (7) 0.02177 (18)
H2 0.871274 0.469549 0.798507 0.026*
C3 1.00352 (8) 0.41171 (8) 0.88241 (7) 0.0249 (2)
H3A 1.003889 0.437693 0.941784 0.030*
H3B 1.050636 0.446387 0.855916 0.030*
C4 1.02411 (7) 0.30597 (8) 0.88647 (7) 0.02419 (19)
H4A 1.070235 0.289812 0.849205 0.029*
H4B 1.052002 0.286370 0.948076 0.029*
C5 0.67360 (7) 0.24575 (7) 0.82938 (6) 0.01708 (16)
C6 0.63131 (8) 0.16312 (7) 0.83393 (7) 0.02348 (19)
H6 0.630973 0.112660 0.793750 0.028*
C7 0.58398 (9) 0.16119 (7) 0.91211 (8) 0.0264 (2)
H7A 0.616413 0.116278 0.957809 0.032*
H7B 0.514695 0.144991 0.893973 0.032*
C8 0.59827 (10) 0.26230 (8) 0.94469 (8) 0.0310 (2)
C9 0.67957 (7) 0.39005 (7) 0.69126 (6) 0.01753 (16)
C10 0.58506 (7) 0.40639 (8) 0.68000 (7) 0.02276 (18)
H10 0.540808 0.367188 0.701030 0.027*
C11 0.55907 (8) 0.49611 (8) 0.62906 (8) 0.0270 (2)
H11A 0.537713 0.544989 0.666015 0.032*
H11B 0.507913 0.485739 0.575246 0.032*
C12 0.65508 (8) 0.52240 (8) 0.60570 (7) 0.0257 (2)
H12A 0.649902 0.517179 0.541082 0.031*
H12B 0.672832 0.587780 0.623997 0.031*
C13 0.76134 (7) 0.19008 (7) 0.67562 (6) 0.01761 (16)
C14 0.84148 (7) 0.14317 (7) 0.67128 (6) 0.02059 (17)
H14 0.903761 0.156174 0.706378 0.025*
C15 0.81904 (8) 0.06663 (8) 0.60272 (7) 0.02422 (19)
H15A 0.827125 0.003588 0.630249 0.029*
H15B 0.860033 0.071638 0.558782 0.029*
C16 0.71307 (7) 0.08715 (8) 0.56085 (7) 0.02435 (19)
H16A 0.706698 0.111915 0.500114 0.029*
H16B 0.674129 0.029137 0.557871 0.029*
Si2 0.27704 (2) 0.32421 (2) 0.76377 (2) 0.01562 (6)
O5 0.09592 (6) 0.28846 (5) 0.65743 (5) 0.02374 (15)
O6 0.27220 (6) 0.47644 (6) 0.87285 (5) 0.02643 (16)
O7 0.21828 (7) 0.14802 (6) 0.81068 (5) 0.03273 (19)
O8 0.34396 (7) 0.33545 (6) 0.60778 (5) 0.02971 (18)
C17 0.15457 (7) 0.35882 (6) 0.70150 (6) 0.01701 (16)
C18 0.11405 (8) 0.44363 (7) 0.69027 (7) 0.02251 (18)
H18 0.143122 0.499966 0.716098 0.027*
C19 0.01501 (8) 0.43670 (7) 0.63035 (7) 0.02359 (19)
H19A 0.013165 0.466606 0.572297 0.028*
H19B −0.034782 0.465527 0.657760 0.028*
C20 0.00210 (7) 0.33032 (7) 0.62152 (7) 0.02269 (19)
H20A −0.045780 0.308461 0.654906 0.027*
H20B −0.020752 0.312609 0.558609 0.027*
C21 0.33102 (7) 0.42965 (7) 0.82634 (6) 0.01817 (16)
C22 0.41603 (8) 0.47116 (8) 0.83225 (8) 0.0262 (2)
H22 0.465781 0.449003 0.805262 0.031*
C23 0.42186 (8) 0.55853 (8) 0.88805 (9) 0.0290 (2)
C24 0.31965 (8) 0.56474 (7) 0.90322 (7) 0.02153 (18)
C25 0.26895 (7) 0.22739 (7) 0.84255 (6) 0.01758 (16)
C26 0.30693 (9) 0.22394 (8) 0.92899 (7) 0.0288 (2)
H26 0.343000 0.272690 0.962848 0.035*
C27 0.28359 (12) 0.13035 (9) 0.96465 (8) 0.0375 (3)
C28 0.20576 (9) 0.09462 (8) 0.88849 (8) 0.0285 (2)
H28A 0.213710 0.026545 0.879398 0.034*
H28B 0.140908 0.105698 0.900266 0.034*
C29 0.34752 (7) 0.28210 (7) 0.68322 (6) 0.01786 (16)
C30 0.39575 (7) 0.20199 (7) 0.68338 (7) 0.02305 (19)
H30 0.406776 0.157557 0.730256 0.028*
C31 0.43036 (8) 0.19189 (8) 0.59856 (8) 0.0278 (2)
C32 0.38774 (9) 0.28001 (8) 0.54776 (7) 0.0271 (2)
H32A 0.439067 0.316510 0.528906 0.033*
H32B 0.338577 0.262374 0.494472 0.033*
H23A 0.4712 (13) 0.5512 (12) 0.9465 (11) 0.041 (5)*
H23B 0.4341 (13) 0.6133 (13) 0.8545 (11) 0.041 (4)*
H8A 0.6292 (14) 0.2656 (14) 1.0055 (13) 0.052 (5)*
H8B 0.5353 (15) 0.2977 (14) 0.9324 (13) 0.053 (5)*
H27A 0.3448 (15) 0.0826 (15) 0.9746 (13) 0.059 (6)*
H27B 0.2664 (15) 0.1338 (15) 1.0187 (14) 0.061 (6)*
H31A 0.5013 (13) 0.1894 (13) 0.6088 (11) 0.040 (4)*
H31B 0.4046 (14) 0.1348 (14) 0.5651 (13) 0.050 (5)*
H24A 0.3158 (10) 0.5717 (11) 0.9629 (10) 0.024 (3)*
H24B 0.2840 (11) 0.6143 (11) 0.8672 (10) 0.030 (4)*

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Si1 0.01493 (11) 0.01596 (12) 0.01465 (11) −0.00030 (8) 0.00382 (8) −0.00069 (8)
O1 0.0174 (3) 0.0222 (3) 0.0238 (3) −0.0004 (3) −0.0006 (3) 0.0016 (3)
O2 0.0447 (5) 0.0198 (3) 0.0264 (4) −0.0128 (3) 0.0220 (3) −0.0079 (3)
O3 0.0213 (3) 0.0232 (3) 0.0288 (4) 0.0003 (3) 0.0036 (3) 0.0100 (3)
O4 0.0163 (3) 0.0400 (5) 0.0336 (4) 0.0013 (3) 0.0016 (3) −0.0198 (4)
C1 0.0162 (4) 0.0208 (4) 0.0150 (4) −0.0006 (3) 0.0039 (3) 0.0003 (3)
C2 0.0225 (4) 0.0212 (4) 0.0208 (4) −0.0030 (3) 0.0030 (3) −0.0010 (3)
C3 0.0218 (4) 0.0290 (5) 0.0230 (4) −0.0070 (4) 0.0026 (4) −0.0047 (4)
C4 0.0167 (4) 0.0316 (5) 0.0227 (4) −0.0027 (4) 0.0008 (3) 0.0011 (4)
C5 0.0181 (4) 0.0170 (4) 0.0168 (4) −0.0005 (3) 0.0054 (3) −0.0019 (3)
C6 0.0285 (5) 0.0179 (4) 0.0278 (5) −0.0048 (4) 0.0145 (4) −0.0059 (4)
C7 0.0351 (5) 0.0192 (4) 0.0295 (5) −0.0081 (4) 0.0171 (4) −0.0036 (4)
C8 0.0477 (7) 0.0216 (5) 0.0322 (6) −0.0104 (5) 0.0271 (5) −0.0062 (4)
C9 0.0191 (4) 0.0174 (4) 0.0159 (4) −0.0001 (3) 0.0033 (3) −0.0011 (3)
C10 0.0194 (4) 0.0243 (5) 0.0241 (4) 0.0021 (3) 0.0037 (3) 0.0000 (4)
C11 0.0244 (5) 0.0257 (5) 0.0277 (5) 0.0067 (4) −0.0016 (4) 0.0003 (4)
C12 0.0290 (5) 0.0210 (4) 0.0246 (5) 0.0032 (4) 0.0000 (4) 0.0048 (4)
C13 0.0171 (4) 0.0190 (4) 0.0168 (4) −0.0010 (3) 0.0037 (3) −0.0020 (3)
C14 0.0198 (4) 0.0205 (4) 0.0201 (4) 0.0029 (3) 0.0012 (3) −0.0025 (3)
C15 0.0240 (4) 0.0221 (4) 0.0252 (5) 0.0048 (4) 0.0025 (4) −0.0058 (4)
C16 0.0217 (4) 0.0270 (5) 0.0240 (4) −0.0009 (4) 0.0043 (3) −0.0096 (4)
Si2 0.01722 (12) 0.01467 (12) 0.01523 (11) −0.00029 (8) 0.00411 (9) −0.00052 (8)
O5 0.0218 (3) 0.0164 (3) 0.0287 (4) 0.0020 (2) −0.0038 (3) −0.0029 (3)
O6 0.0260 (4) 0.0261 (4) 0.0300 (4) −0.0089 (3) 0.0122 (3) −0.0140 (3)
O7 0.0474 (5) 0.0228 (4) 0.0234 (4) −0.0128 (3) −0.0022 (3) 0.0023 (3)
O8 0.0418 (5) 0.0291 (4) 0.0225 (4) 0.0143 (3) 0.0164 (3) 0.0068 (3)
C17 0.0193 (4) 0.0165 (4) 0.0158 (4) 0.0002 (3) 0.0051 (3) −0.0006 (3)
C18 0.0257 (5) 0.0171 (4) 0.0238 (4) 0.0023 (3) 0.0035 (4) −0.0006 (3)
C19 0.0244 (4) 0.0227 (4) 0.0234 (4) 0.0074 (4) 0.0046 (4) 0.0032 (4)
C20 0.0178 (4) 0.0252 (5) 0.0245 (4) 0.0024 (3) 0.0033 (3) −0.0003 (4)
C21 0.0218 (4) 0.0156 (4) 0.0174 (4) −0.0007 (3) 0.0048 (3) −0.0001 (3)
C22 0.0233 (5) 0.0203 (4) 0.0365 (5) −0.0024 (4) 0.0100 (4) −0.0042 (4)
C23 0.0243 (5) 0.0195 (4) 0.0425 (6) −0.0054 (4) 0.0060 (4) −0.0061 (4)
C24 0.0268 (5) 0.0170 (4) 0.0202 (4) −0.0022 (3) 0.0037 (3) −0.0028 (3)
C25 0.0187 (4) 0.0159 (4) 0.0183 (4) 0.0007 (3) 0.0044 (3) 0.0002 (3)
C26 0.0353 (6) 0.0249 (5) 0.0216 (5) −0.0109 (4) −0.0037 (4) 0.0042 (4)
C27 0.0539 (8) 0.0304 (6) 0.0227 (5) −0.0157 (5) −0.0039 (5) 0.0089 (4)
C28 0.0301 (5) 0.0211 (5) 0.0324 (5) −0.0068 (4) 0.0025 (4) 0.0044 (4)
C29 0.0181 (4) 0.0186 (4) 0.0174 (4) −0.0007 (3) 0.0049 (3) −0.0005 (3)
C30 0.0219 (4) 0.0208 (4) 0.0283 (5) 0.0028 (3) 0.0095 (4) 0.0027 (4)
C31 0.0267 (5) 0.0268 (5) 0.0330 (5) 0.0044 (4) 0.0133 (4) −0.0041 (4)
C32 0.0300 (5) 0.0330 (5) 0.0210 (4) 0.0036 (4) 0.0111 (4) −0.0027 (4)

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Geometric parameters (Å, º)

Si1—C1 1.8632 (10) Si2—C17 1.8621 (10)
Si1—C5 1.8611 (9) Si2—C21 1.8598 (10)
Si1—C9 1.8604 (10) Si2—C25 1.8615 (10)
Si1—C13 1.8633 (10) Si2—C29 1.8609 (10)
O1—C1 1.3901 (11) O5—C17 1.3843 (11)
O1—C4 1.4613 (12) O5—C20 1.4552 (12)
O2—C5 1.3842 (11) O6—C21 1.3869 (12)
O2—C8 1.4525 (13) O6—C24 1.4559 (12)
O3—C9 1.3834 (12) O7—C25 1.3729 (12)
O3—C12 1.4598 (12) O7—C28 1.4683 (14)
O4—C13 1.3853 (11) O8—C29 1.3853 (12)
O4—C16 1.4587 (12) O8—C32 1.4583 (13)
C1—C2 1.3334 (13) C17—C18 1.3332 (13)
C2—H2 0.9500 C18—H18 0.9500
C2—C3 1.5102 (14) C18—C19 1.5099 (15)
C3—H3A 0.9900 C19—H19A 0.9900
C3—H3B 0.9900 C19—H19B 0.9900
C3—C4 1.5332 (16) C19—C20 1.5291 (15)
C4—H4A 0.9900 C20—H20A 0.9900
C4—H4B 0.9900 C20—H20B 0.9900
C5—C6 1.3304 (13) C21—C22 1.3297 (14)
C6—H6 0.9500 C22—H22 0.9500
C6—C7 1.5078 (14) C22—C23 1.5071 (15)
C7—H7A 0.9900 C23—C24 1.5230 (15)
C7—H7B 0.9900 C23—H23A 1.022 (18)
C7—C8 1.5251 (15) C23—H23B 0.974 (18)
C8—H8A 0.95 (2) C24—H24A 0.942 (14)
C8—H8B 1.01 (2) C24—H24B 0.971 (16)
C9—C10 1.3358 (13) C25—C26 1.3303 (14)
C10—H10 0.9500 C26—H26 0.9500
C10—C11 1.5049 (15) C26—C27 1.5073 (16)
C11—H11A 0.9900 C27—C28 1.5175 (17)
C11—H11B 0.9900 C27—H27A 1.09 (2)
C11—C12 1.5317 (16) C27—H27B 0.92 (2)
C12—H12A 0.9900 C28—H28A 0.9900
C12—H12B 0.9900 C28—H28B 0.9900
C13—C14 1.3343 (13) C29—C30 1.3307 (13)
C14—H14 0.9500 C30—H30 0.9500
C14—C15 1.5065 (14) C30—C31 1.5065 (15)
C15—H15A 0.9900 C31—C32 1.5341 (17)
C15—H15B 0.9900 C31—H31A 0.986 (18)
C15—C16 1.5315 (15) C31—H31B 0.99 (2)
C16—H16A 0.9900 C32—H32A 0.9900
C16—H16B 0.9900 C32—H32B 0.9900
C5—Si1—C1 110.75 (4) C21—Si2—C17 106.75 (4)
C5—Si1—C13 108.60 (4) C21—Si2—C25 109.54 (4)
C9—Si1—C1 109.39 (4) C21—Si2—C29 112.87 (4)
C9—Si1—C5 106.46 (4) C25—Si2—C17 110.57 (4)
C9—Si1—C13 113.04 (4) C29—Si2—C17 108.47 (4)
C13—Si1—C1 108.60 (4) C29—Si2—C25 108.64 (4)
C1—O1—C4 106.85 (8) C17—O5—C20 107.10 (7)
C5—O2—C8 107.31 (8) C21—O6—C24 107.11 (8)
C9—O3—C12 107.07 (8) C25—O7—C28 106.23 (8)
C13—O4—C16 107.27 (8) C29—O8—C32 107.34 (8)
O1—C1—Si1 117.64 (7) O5—C17—Si2 117.21 (7)
C2—C1—Si1 129.18 (8) C18—C17—Si2 129.46 (8)
C2—C1—O1 113.14 (8) C18—C17—O5 113.31 (9)
C1—C2—H2 125.0 C17—C18—H18 125.1
C1—C2—C3 109.94 (9) C17—C18—C19 109.80 (9)
C3—C2—H2 125.0 C19—C18—H18 125.1
C2—C3—H3A 111.5 C18—C19—H19A 111.5
C2—C3—H3B 111.5 C18—C19—H19B 111.5
C2—C3—C4 101.21 (8) C18—C19—C20 101.38 (8)
H3A—C3—H3B 109.3 H19A—C19—H19B 109.3
C4—C3—H3A 111.5 C20—C19—H19A 111.5
C4—C3—H3B 111.5 C20—C19—H19B 111.5
O1—C4—C3 106.46 (8) O5—C20—C19 106.85 (8)
O1—C4—H4A 110.4 O5—C20—H20A 110.4
O1—C4—H4B 110.4 O5—C20—H20B 110.4
C3—C4—H4A 110.4 C19—C20—H20A 110.4
C3—C4—H4B 110.4 C19—C20—H20B 110.4
H4A—C4—H4B 108.6 H20A—C20—H20B 108.6
O2—C5—Si1 116.71 (7) O6—C21—Si2 115.61 (7)
C6—C5—Si1 130.14 (7) C22—C21—Si2 131.30 (8)
C6—C5—O2 113.14 (8) C22—C21—O6 113.05 (9)
C5—C6—H6 124.9 C21—C22—H22 125.0
C5—C6—C7 110.13 (9) C21—C22—C23 110.01 (9)
C7—C6—H6 124.9 C23—C22—H22 125.0
C6—C7—H7A 111.5 C22—C23—C24 101.63 (8)
C6—C7—H7B 111.5 C22—C23—H23A 111.4 (10)
C6—C7—C8 101.42 (8) C22—C23—H23B 110.5 (10)
H7A—C7—H7B 109.3 C24—C23—H23A 111.2 (10)
C8—C7—H7A 111.5 C24—C23—H23B 108.8 (10)
C8—C7—H7B 111.5 H23A—C23—H23B 112.7 (14)
O2—C8—C7 107.24 (8) O6—C24—C23 106.83 (8)
O2—C8—H8A 107.2 (12) O6—C24—H24A 106.6 (9)
O2—C8—H8B 107.8 (11) O6—C24—H24B 107.2 (9)
C7—C8—H8A 112.0 (12) C23—C24—H24A 114.7 (9)
C7—C8—H8B 111.2 (12) C23—C24—H24B 110.5 (9)
H8A—C8—H8B 111.2 (16) H24A—C24—H24B 110.6 (13)
O3—C9—Si1 120.36 (7) O7—C25—Si2 118.49 (7)
C10—C9—Si1 126.06 (8) C26—C25—Si2 128.12 (8)
C10—C9—O3 113.58 (9) C26—C25—O7 113.39 (9)
C9—C10—H10 125.0 C25—C26—H26 125.4
C9—C10—C11 109.94 (9) C25—C26—C27 109.14 (10)
C11—C10—H10 125.0 C27—C26—H26 125.4
C10—C11—H11A 111.4 C26—C27—C28 101.14 (9)
C10—C11—H11B 111.4 C26—C27—H27A 111.9 (11)
C10—C11—C12 101.67 (8) C26—C27—H27B 114.0 (14)
H11A—C11—H11B 109.3 C28—C27—H27A 108.9 (11)
C12—C11—H11A 111.4 C28—C27—H27B 115.5 (14)
C12—C11—H11B 111.4 H27A—C27—H27B 105.5 (17)
O3—C12—C11 107.13 (8) O7—C28—C27 105.41 (9)
O3—C12—H12A 110.3 O7—C28—H28A 110.7
O3—C12—H12B 110.3 O7—C28—H28B 110.7
C11—C12—H12A 110.3 C27—C28—H28A 110.7
C11—C12—H12B 110.3 C27—C28—H28B 110.7
H12A—C12—H12B 108.5 H28A—C28—H28B 108.8
O4—C13—Si1 118.38 (7) O8—C29—Si2 117.54 (7)
C14—C13—Si1 128.60 (7) C30—C29—Si2 128.85 (8)
C14—C13—O4 112.99 (8) C30—C29—O8 113.34 (9)
C13—C14—H14 124.9 C29—C30—H30 124.9
C13—C14—C15 110.26 (9) C29—C30—C31 110.25 (9)
C15—C14—H14 124.9 C31—C30—H30 124.9
C14—C15—H15A 111.5 C30—C31—C32 101.63 (8)
C14—C15—H15B 111.5 C30—C31—H31A 112.3 (10)
C14—C15—C16 101.39 (8) C30—C31—H31B 112.4 (11)
H15A—C15—H15B 109.3 C32—C31—H31A 112.8 (11)
C16—C15—H15A 111.5 C32—C31—H31B 110.1 (11)
C16—C15—H15B 111.5 H31A—C31—H31B 107.6 (15)
O4—C16—C15 106.81 (8) O8—C32—C31 106.97 (8)
O4—C16—H16A 110.4 O8—C32—H32A 110.3
O4—C16—H16B 110.4 O8—C32—H32B 110.3
C15—C16—H16A 110.4 C31—C32—H32A 110.3
C15—C16—H16B 110.4 C31—C32—H32B 110.3
H16A—C16—H16B 108.6 H32A—C32—H32B 108.6
Si1—C1—C2—C3 176.08 (7) Si2—C17—C18—C19 177.05 (7)
Si1—C5—C6—C7 177.67 (8) Si2—C21—C22—C23 176.66 (8)
Si1—C9—C10—C11 179.51 (7) Si2—C25—C26—C27 −178.46 (9)
Si1—C13—C14—C15 177.84 (8) Si2—C29—C30—C31 172.10 (8)
O1—C1—C2—C3 −1.60 (12) O5—C17—C18—C19 −0.92 (12)
O2—C5—C6—C7 −1.12 (13) O6—C21—C22—C23 −0.58 (14)
O3—C9—C10—C11 −1.00 (12) O7—C25—C26—C27 1.49 (15)
O4—C13—C14—C15 −0.17 (13) O8—C29—C30—C31 −1.61 (13)
C1—Si1—C5—O2 55.68 (9) C17—Si2—C21—O6 47.49 (8)
C1—Si1—C5—C6 −123.08 (10) C17—Si2—C21—C22 −129.70 (11)
C1—Si1—C9—O3 36.98 (9) C17—Si2—C25—O7 53.20 (9)
C1—Si1—C9—C10 −143.56 (9) C17—Si2—C25—C26 −126.85 (11)
C1—Si1—C13—O4 −173.06 (8) C17—Si2—C29—O8 45.79 (9)
C1—Si1—C13—C14 9.04 (11) C17—Si2—C29—C30 −127.70 (10)
C1—O1—C4—C3 14.79 (10) C17—O5—C20—C19 12.05 (11)
C1—C2—C3—C4 10.34 (11) C17—C18—C19—C20 8.05 (11)
C2—C3—C4—O1 −14.89 (10) C18—C19—C20—O5 −11.93 (10)
C4—O1—C1—Si1 173.47 (7) C20—O5—C17—Si2 174.56 (6)
C4—O1—C1—C2 −8.56 (11) C20—O5—C17—C18 −7.20 (11)
C5—Si1—C1—O1 68.57 (8) C21—Si2—C17—O5 −172.97 (7)
C5—Si1—C1—C2 −109.02 (10) C21—Si2—C17—C18 9.12 (11)
C5—Si1—C9—O3 156.69 (7) C21—Si2—C25—O7 170.57 (8)
C5—Si1—C9—C10 −23.85 (10) C21—Si2—C25—C26 −9.48 (12)
C5—Si1—C13—O4 66.43 (9) C21—Si2—C29—O8 −72.29 (9)
C5—Si1—C13—C14 −111.48 (10) C21—Si2—C29—C30 114.22 (10)
C5—O2—C8—C7 8.28 (14) C21—O6—C24—C23 −11.72 (11)
C5—C6—C7—C8 5.96 (13) C21—C22—C23—C24 −6.51 (13)
C6—C7—C8—O2 −8.43 (13) C22—C23—C24—O6 10.84 (11)
C8—O2—C5—Si1 176.40 (8) C24—O6—C21—Si2 −169.79 (7)
C8—O2—C5—C6 −4.63 (13) C24—O6—C21—C22 7.92 (12)
C9—Si1—C1—O1 −174.39 (7) C25—Si2—C17—O5 −53.90 (8)
C9—Si1—C1—C2 8.02 (11) C25—Si2—C17—C18 128.20 (9)
C9—Si1—C5—O2 −63.14 (8) C25—Si2—C21—O6 −72.25 (8)
C9—Si1—C5—C6 118.10 (10) C25—Si2—C21—C22 110.57 (11)
C9—Si1—C13—O4 −51.47 (9) C25—Si2—C29—O8 166.02 (8)
C9—Si1—C13—C14 130.62 (9) C25—Si2—C29—C30 −7.47 (11)
C9—O3—C12—C11 7.40 (11) C25—O7—C28—C27 −20.72 (13)
C9—C10—C11—C12 5.34 (12) C25—C26—C27—C28 −13.98 (15)
C10—C11—C12—O3 −7.57 (11) C26—C27—C28—O7 20.51 (14)
C12—O3—C9—Si1 175.37 (7) C28—O7—C25—Si2 −167.63 (7)
C12—O3—C9—C10 −4.16 (12) C28—O7—C25—C26 12.41 (13)
C13—Si1—C1—O1 −50.60 (8) C29—Si2—C17—O5 65.13 (8)
C13—Si1—C1—C2 131.81 (9) C29—Si2—C17—C18 −112.78 (10)
C13—Si1—C5—O2 174.85 (7) C29—Si2—C21—O6 166.57 (7)
C13—Si1—C5—C6 −3.91 (12) C29—Si2—C21—C22 −10.62 (12)
C13—Si1—C9—O3 −84.16 (8) C29—Si2—C25—O7 −65.72 (9)
C13—Si1—C9—C10 95.30 (9) C29—Si2—C25—C26 114.22 (11)
C13—O4—C16—C15 11.15 (12) C29—O8—C32—C31 −7.05 (12)
C13—C14—C15—C16 6.83 (12) C29—C30—C31—C32 −2.78 (12)
C14—C15—C16—O4 −10.65 (11) C30—C31—C32—O8 5.86 (12)
C16—O4—C13—Si1 174.68 (7) C32—O8—C29—Si2 −168.91 (7)
C16—O4—C13—C14 −7.10 (12) C32—O8—C29—C30 5.58 (13)

Tetrakis(4,5-dihydrofuran-2-yl)silane (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C23—H23B···O5i 0.974 (18) 2.531 (18) 3.3484 (14) 141.5 (14)
C8—H8A···O5ii 0.95 (2) 2.61 (2) 3.3800 (15) 137.9 (15)
C27—H27B···O3iii 0.92 (2) 2.61 (2) 3.4200 (16) 147.1 (18)
C31—H31A···O4 0.986 (18) 2.561 (18) 3.5358 (14) 169.6 (15)

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z+1/2.

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Crystal data

C16H20GeO4 F(000) = 1440
Mr = 348.91 Dx = 1.505 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.3828 (5) Å Cell parameters from 8295 reflections
b = 14.2069 (5) Å θ = 2.6–23.2°
c = 15.3594 (6) Å µ = 2.00 mm1
β = 101.159 (1)° T = 100 K
V = 3079.13 (19) Å3 Block, colourless
Z = 8 0.19 × 0.16 × 0.08 mm

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Data collection

Bruker D8 VENTURE diffractometer 13541 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs 10143 reflections with I > 2σ(I)
HELIOS mirror optics monochromator Rint = 0.046
Detector resolution: 10.4167 pixels mm-1 θmax = 35.0°, θmin = 2.2°
ω and φ scans h = −23→23
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −22→22
Tmin = 0.496, Tmax = 0.568 l = −24→24
71639 measured reflections

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 All H-atom parameters refined
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.639P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.002
13541 reflections Δρmax = 0.67 e Å3
539 parameters Δρmin = −0.56 e Å3
0 restraints

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ge1 0.76646 (2) 0.79656 (2) 0.25601 (2) 0.01725 (4)
O1 0.85960 (11) 0.80852 (8) 0.11071 (9) 0.0405 (3)
O2 0.57907 (7) 0.77199 (8) 0.15770 (7) 0.0234 (2)
O3 0.78696 (8) 0.96600 (8) 0.35784 (8) 0.0284 (2)
O4 0.82066 (8) 0.67821 (10) 0.40676 (8) 0.0360 (3)
C1 0.83902 (10) 0.74624 (10) 0.17308 (9) 0.0198 (2)
C2 0.87060 (12) 0.66001 (11) 0.16430 (11) 0.0266 (3)
H2 0.8597 (14) 0.6081 (15) 0.2001 (13) 0.042 (6)*
C3 0.91833 (13) 0.65498 (12) 0.08575 (12) 0.0284 (3)
H3A 0.8873 (15) 0.6142 (16) 0.0419 (14) 0.046 (6)*
H3B 0.9832 (15) 0.6336 (15) 0.1007 (13) 0.040 (6)*
C4 0.91262 (16) 0.75656 (12) 0.05442 (12) 0.0337 (4)
C5 0.64477 (10) 0.84006 (10) 0.19256 (9) 0.0192 (2)
C6 0.61438 (11) 0.92783 (11) 0.17540 (10) 0.0240 (3)
H6 0.6487 (14) 0.9854 (14) 0.1928 (12) 0.032 (5)*
C7 0.51501 (11) 0.92654 (13) 0.12080 (11) 0.0289 (3)
C8 0.49159 (10) 0.82158 (12) 0.11877 (10) 0.0250 (3)
H8A 0.4679 (15) 0.7944 (14) 0.0582 (14) 0.038 (6)*
H8B 0.4508 (13) 0.8053 (12) 0.1537 (12) 0.021 (4)*
C9 0.83515 (10) 0.90293 (10) 0.31455 (9) 0.0200 (2)
C10 0.92565 (11) 0.92402 (13) 0.31889 (11) 0.0288 (3)
H10 0.9719 (16) 0.8885 (15) 0.2931 (14) 0.049 (6)*
C11 0.94986 (12) 1.01363 (13) 0.37105 (12) 0.0319 (4)
H11A 0.9997 (14) 1.0013 (14) 0.4282 (13) 0.039 (6)*
H11B 0.9740 (13) 1.0595 (14) 0.3353 (12) 0.034 (5)*
C12 0.85364 (12) 1.04082 (12) 0.39196 (11) 0.0280 (3)
H12A 0.8284 (13) 1.0973 (14) 0.3656 (13) 0.034 (5)*
H12B 0.8548 (13) 1.0425 (13) 0.4541 (13) 0.032 (5)*
C13 0.74617 (9) 0.69873 (10) 0.33799 (9) 0.0188 (2)
C14 0.66946 (10) 0.64706 (11) 0.33906 (10) 0.0221 (3)
H14 0.6147 (14) 0.6514 (14) 0.2963 (13) 0.035 (5)*
C15 0.68669 (11) 0.58031 (12) 0.41642 (11) 0.0267 (3)
H15A 0.6842 (14) 0.5155 (14) 0.3967 (13) 0.033 (5)*
H15B 0.6374 (14) 0.5901 (14) 0.4575 (13) 0.036 (5)*
C16 0.78647 (11) 0.60903 (12) 0.46348 (10) 0.0259 (3)
H16A 0.8283 (14) 0.5559 (15) 0.4694 (13) 0.039 (6)*
H16B 0.7876 (12) 0.6372 (13) 0.5198 (12) 0.024 (5)*
Ge2 0.72156 (2) 0.67613 (2) 0.73024 (2) 0.01539 (3)
O5 0.66868 (7) 0.79050 (9) 0.57513 (7) 0.0292 (2)
O6 0.65130 (9) 0.67107 (9) 0.89028 (8) 0.0319 (3)
O7 0.90223 (7) 0.71570 (7) 0.83475 (7) 0.02075 (19)
O8 0.73350 (7) 0.50898 (8) 0.63530 (7) 0.0237 (2)
C17 0.73712 (9) 0.77827 (10) 0.65076 (9) 0.0172 (2)
C18 0.80834 (11) 0.83944 (11) 0.65802 (10) 0.0241 (3)
H18 0.8624 (14) 0.8432 (14) 0.7071 (13) 0.032 (5)*
C19 0.79407 (11) 0.90342 (12) 0.57842 (11) 0.0266 (3)
H19A 0.7938 (14) 0.9697 (14) 0.5976 (13) 0.035 (5)*
H19B 0.8440 (14) 0.8900 (14) 0.5411 (13) 0.037 (6)*
C20 0.69603 (11) 0.87337 (12) 0.52929 (11) 0.0265 (3)
H20A 0.6984 (13) 0.8555 (13) 0.4700 (12) 0.027 (5)*
H20B 0.6490 (14) 0.9218 (15) 0.5329 (13) 0.037 (5)*
C21 0.64670 (9) 0.72187 (10) 0.81286 (9) 0.0182 (2)
C22 0.59783 (10) 0.80127 (11) 0.81080 (10) 0.0235 (3)
H22 0.5888 (14) 0.8425 (14) 0.7631 (13) 0.038 (6)*
C23 0.56360 (13) 0.81459 (12) 0.89642 (12) 0.0294 (3)
C24 0.60078 (15) 0.72545 (13) 0.94731 (11) 0.0324 (4)
H24A 0.5493 (16) 0.6861 (15) 0.9582 (14) 0.045 (6)*
H24B 0.6453 (16) 0.7397 (16) 1.0018 (15) 0.046 (6)*
C25 0.84566 (9) 0.64211 (9) 0.79573 (8) 0.0166 (2)
C26 0.88659 (10) 0.55803 (11) 0.81029 (10) 0.0215 (3)
H26 0.8613 (14) 0.4975 (15) 0.7893 (13) 0.040 (6)*
C27 0.98385 (10) 0.56899 (11) 0.86794 (10) 0.0216 (3)
H27A 1.0330 (14) 0.5386 (14) 0.8448 (13) 0.034 (5)*
H27B 0.9826 (14) 0.5428 (14) 0.9284 (13) 0.033 (5)*
C28 0.99617 (10) 0.67601 (11) 0.86798 (9) 0.0203 (2)
H28A 1.0206 (14) 0.7041 (13) 0.9236 (13) 0.027 (5)*
H28B 1.0331 (13) 0.6967 (12) 0.8283 (12) 0.022 (5)*
C29 0.66849 (9) 0.56460 (10) 0.66718 (9) 0.0185 (2)
C30 0.58084 (10) 0.53090 (11) 0.64952 (10) 0.0236 (3)
H30 0.5260 (13) 0.5604 (14) 0.6667 (12) 0.032 (5)*
C31 0.57860 (10) 0.43934 (11) 0.59975 (11) 0.0250 (3)
H31A 0.5534 (13) 0.3918 (14) 0.6335 (12) 0.033 (5)*
H31B 0.5415 (15) 0.4461 (15) 0.5397 (14) 0.047 (6)*
C32 0.68365 (11) 0.42402 (10) 0.59885 (10) 0.0227 (3)
H23A 0.4953 (16) 0.8203 (15) 0.8901 (14) 0.043 (6)*
H23B 0.5908 (16) 0.8691 (16) 0.9306 (15) 0.050 (7)*
H4A 0.8817 (15) 0.7617 (15) −0.0042 (14) 0.040 (6)*
H4B 0.9781 (17) 0.7862 (16) 0.0636 (15) 0.052 (7)*
H32A 0.6975 (14) 0.4156 (15) 0.5409 (14) 0.041 (6)*
H32B 0.7082 (13) 0.3748 (13) 0.6351 (12) 0.027 (5)*
H7A 0.4702 (16) 0.9630 (15) 0.1448 (14) 0.048 (6)*
H7B 0.5180 (15) 0.9528 (15) 0.0576 (14) 0.045 (6)*

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ge1 0.01688 (6) 0.01865 (7) 0.01668 (6) 0.00177 (5) 0.00433 (5) 0.00107 (5)
O1 0.0733 (10) 0.0227 (6) 0.0364 (6) 0.0195 (6) 0.0374 (7) 0.0121 (5)
O2 0.0211 (4) 0.0209 (5) 0.0254 (5) 0.0006 (4) −0.0023 (4) 0.0009 (4)
O3 0.0227 (5) 0.0265 (6) 0.0361 (6) −0.0032 (4) 0.0055 (4) −0.0116 (5)
O4 0.0179 (4) 0.0551 (8) 0.0320 (6) −0.0060 (5) −0.0026 (4) 0.0239 (6)
C1 0.0215 (6) 0.0198 (6) 0.0192 (6) 0.0030 (5) 0.0070 (5) 0.0028 (5)
C2 0.0319 (7) 0.0198 (7) 0.0325 (8) 0.0051 (6) 0.0171 (6) 0.0063 (6)
C3 0.0369 (8) 0.0197 (7) 0.0323 (8) 0.0067 (6) 0.0161 (7) 0.0023 (6)
C4 0.0546 (11) 0.0231 (8) 0.0308 (8) 0.0133 (8) 0.0265 (8) 0.0067 (6)
C5 0.0195 (5) 0.0217 (7) 0.0169 (5) 0.0028 (5) 0.0047 (4) 0.0005 (5)
C6 0.0259 (6) 0.0211 (7) 0.0245 (7) 0.0041 (6) 0.0039 (5) 0.0028 (5)
C7 0.0270 (7) 0.0315 (9) 0.0276 (7) 0.0090 (7) 0.0034 (6) 0.0087 (6)
C8 0.0192 (6) 0.0334 (8) 0.0217 (6) 0.0038 (6) 0.0021 (5) 0.0010 (6)
C9 0.0202 (6) 0.0205 (6) 0.0190 (6) −0.0008 (5) 0.0029 (5) 0.0006 (5)
C10 0.0201 (6) 0.0361 (9) 0.0300 (7) −0.0024 (6) 0.0041 (5) 0.0017 (7)
C11 0.0253 (7) 0.0341 (9) 0.0322 (8) −0.0095 (7) −0.0045 (6) 0.0069 (7)
C12 0.0331 (8) 0.0209 (7) 0.0273 (7) −0.0070 (6) −0.0007 (6) −0.0003 (6)
C13 0.0177 (5) 0.0215 (6) 0.0172 (5) 0.0033 (5) 0.0035 (4) 0.0016 (5)
C14 0.0223 (6) 0.0218 (7) 0.0208 (6) −0.0018 (5) 0.0006 (5) 0.0023 (5)
C15 0.0231 (6) 0.0291 (8) 0.0271 (7) −0.0021 (6) 0.0028 (5) 0.0074 (6)
C16 0.0218 (6) 0.0314 (8) 0.0240 (7) 0.0004 (6) 0.0030 (5) 0.0088 (6)
Ge2 0.01513 (6) 0.01417 (6) 0.01657 (6) −0.00089 (5) 0.00231 (4) −0.00060 (5)
O5 0.0213 (5) 0.0340 (6) 0.0278 (5) −0.0084 (5) −0.0062 (4) 0.0122 (5)
O6 0.0454 (7) 0.0298 (6) 0.0246 (5) 0.0172 (5) 0.0168 (5) 0.0083 (5)
O7 0.0192 (4) 0.0148 (5) 0.0254 (5) 0.0014 (4) −0.0029 (4) −0.0022 (4)
O8 0.0208 (4) 0.0193 (5) 0.0304 (5) −0.0021 (4) 0.0036 (4) −0.0091 (4)
C17 0.0168 (5) 0.0165 (6) 0.0174 (5) 0.0014 (5) 0.0014 (4) 0.0010 (4)
C18 0.0243 (6) 0.0230 (7) 0.0226 (6) −0.0061 (5) −0.0016 (5) 0.0029 (5)
C19 0.0234 (6) 0.0243 (7) 0.0299 (7) −0.0048 (6) −0.0001 (6) 0.0077 (6)
C20 0.0231 (6) 0.0293 (8) 0.0254 (7) −0.0026 (6) 0.0005 (5) 0.0105 (6)
C21 0.0173 (5) 0.0186 (6) 0.0189 (6) −0.0007 (5) 0.0041 (4) 0.0012 (5)
C22 0.0229 (6) 0.0215 (7) 0.0275 (7) 0.0037 (5) 0.0088 (5) 0.0046 (6)
C23 0.0310 (7) 0.0268 (8) 0.0338 (8) 0.0086 (7) 0.0149 (6) 0.0009 (6)
C24 0.0447 (10) 0.0310 (9) 0.0261 (7) 0.0095 (8) 0.0180 (7) 0.0020 (6)
C25 0.0168 (5) 0.0156 (6) 0.0171 (5) −0.0003 (5) 0.0025 (4) −0.0008 (4)
C26 0.0219 (6) 0.0165 (6) 0.0242 (6) 0.0014 (5) −0.0001 (5) 0.0000 (5)
C27 0.0210 (6) 0.0203 (7) 0.0225 (6) 0.0054 (5) 0.0018 (5) 0.0011 (5)
C28 0.0172 (5) 0.0227 (7) 0.0200 (6) 0.0023 (5) 0.0015 (4) 0.0000 (5)
C29 0.0210 (5) 0.0158 (6) 0.0180 (5) −0.0014 (5) 0.0023 (4) −0.0008 (5)
C30 0.0205 (6) 0.0193 (7) 0.0293 (7) −0.0024 (5) 0.0007 (5) −0.0024 (5)
C31 0.0222 (6) 0.0163 (6) 0.0326 (8) −0.0011 (5) −0.0047 (6) 0.0009 (6)
C32 0.0264 (6) 0.0162 (6) 0.0238 (6) −0.0027 (5) 0.0008 (5) −0.0022 (5)

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Geometric parameters (Å, º)

Ge1—C1 1.9331 (13) Ge2—C17 1.9370 (13)
Ge1—C5 1.9326 (14) Ge2—C21 1.9290 (13)
Ge1—C9 1.9299 (14) Ge2—C25 1.9329 (13)
Ge1—C13 1.9351 (14) Ge2—C29 1.9353 (14)
O1—C1 1.3776 (17) O5—C17 1.3806 (16)
O1—C4 1.4592 (19) O5—C20 1.4641 (19)
O2—C5 1.3852 (17) O6—C21 1.3816 (17)
O2—C8 1.4649 (17) O6—C24 1.4624 (19)
O3—C9 1.3797 (17) O7—C25 1.3877 (16)
O3—C12 1.4595 (18) O7—C28 1.4619 (16)
O4—C13 1.3822 (16) O8—C29 1.3840 (17)
O4—C16 1.4603 (19) O8—C32 1.4592 (17)
C1—C2 1.323 (2) C17—C18 1.3314 (19)
C2—H2 0.95 (2) C18—H18 0.97 (2)
C2—C3 1.501 (2) C18—C19 1.505 (2)
C3—H3A 0.93 (2) C19—H19A 0.99 (2)
C3—H3B 0.97 (2) C19—H19B 1.02 (2)
C3—C4 1.518 (2) C19—C20 1.526 (2)
C4—H4A 0.93 (2) C20—H20A 0.952 (18)
C4—H4B 1.02 (2) C20—H20B 0.97 (2)
C5—C6 1.331 (2) C21—C22 1.326 (2)
C6—H6 0.97 (2) C22—H22 0.93 (2)
C6—C7 1.511 (2) C22—C23 1.503 (2)
C7—C8 1.528 (2) C23—C24 1.529 (2)
C7—H7A 0.96 (2) C23—H23A 0.97 (2)
C7—H7B 1.05 (2) C23—H23B 0.97 (2)
C8—H8A 1.00 (2) C24—H24A 0.97 (2)
C8—H8B 0.899 (18) C24—H24B 0.97 (2)
C9—C10 1.325 (2) C25—C26 1.3313 (19)
C10—H10 0.98 (2) C26—H26 0.96 (2)
C10—C11 1.509 (3) C26—C27 1.5119 (19)
C11—H11A 1.04 (2) C27—H27A 0.95 (2)
C11—H11B 0.960 (19) C27—H27B 1.00 (2)
C11—C12 1.530 (3) C27—C28 1.531 (2)
C12—H12A 0.94 (2) C28—H28A 0.946 (19)
C12—H12B 0.951 (19) C28—H28B 0.930 (18)
C13—C14 1.328 (2) C29—C30 1.3266 (19)
C14—H14 0.92 (2) C30—H30 0.974 (19)
C14—C15 1.503 (2) C30—C31 1.506 (2)
C15—H15A 0.97 (2) C31—H31A 0.964 (19)
C15—H15B 1.046 (19) C31—H31B 0.98 (2)
C15—C16 1.532 (2) C31—C32 1.529 (2)
C16—H16A 0.96 (2) C32—H32A 0.96 (2)
C16—H16B 0.950 (18) C32—H32B 0.920 (19)
C1—Ge1—C13 109.37 (6) C21—Ge2—C17 108.03 (6)
C5—Ge1—C1 109.74 (6) C21—Ge2—C25 108.58 (5)
C5—Ge1—C13 108.78 (6) C21—Ge2—C29 112.88 (6)
C9—Ge1—C1 107.67 (6) C25—Ge2—C17 107.92 (5)
C9—Ge1—C5 108.46 (6) C25—Ge2—C29 106.91 (6)
C9—Ge1—C13 112.79 (6) C29—Ge2—C17 112.36 (6)
C1—O1—C4 107.12 (11) C17—O5—C20 106.95 (11)
C5—O2—C8 106.84 (11) C21—O6—C24 107.04 (12)
C9—O3—C12 106.83 (12) C25—O7—C28 106.57 (10)
C13—O4—C16 107.29 (11) C29—O8—C32 107.01 (11)
O1—C1—Ge1 115.90 (10) O5—C17—Ge2 118.30 (9)
C2—C1—Ge1 130.51 (11) C18—C17—Ge2 128.10 (11)
C2—C1—O1 113.56 (13) C18—C17—O5 113.59 (12)
C1—C2—H2 124.1 (12) C17—C18—H18 125.9 (12)
C1—C2—C3 110.22 (13) C17—C18—C19 110.14 (13)
C3—C2—H2 125.5 (12) C19—C18—H18 123.9 (12)
C2—C3—H3A 112.3 (13) C18—C19—H19A 110.0 (11)
C2—C3—H3B 113.2 (12) C18—C19—H19B 110.1 (11)
C2—C3—C4 101.79 (13) C18—C19—C20 101.56 (12)
H3A—C3—H3B 106.4 (17) H19A—C19—H19B 113.0 (16)
C4—C3—H3A 111.9 (14) C20—C19—H19A 111.0 (12)
C4—C3—H3B 111.4 (13) C20—C19—H19B 110.7 (11)
O1—C4—C3 107.18 (12) O5—C20—C19 107.20 (12)
O1—C4—H4A 109.2 (13) O5—C20—H20A 107.9 (11)
O1—C4—H4B 106.5 (13) O5—C20—H20B 106.7 (12)
C3—C4—H4A 111.6 (13) C19—C20—H20A 110.3 (11)
C3—C4—H4B 111.0 (13) C19—C20—H20B 111.1 (12)
H4A—C4—H4B 111.1 (18) H20A—C20—H20B 113.3 (16)
O2—C5—Ge1 117.07 (10) O6—C21—Ge2 116.77 (10)
C6—C5—Ge1 129.06 (12) C22—C21—Ge2 129.17 (11)
C6—C5—O2 113.85 (13) C22—C21—O6 113.68 (13)
C5—C6—H6 127.5 (12) C21—C22—H22 123.3 (13)
C5—C6—C7 109.74 (14) C21—C22—C23 110.38 (13)
C7—C6—H6 122.8 (12) C23—C22—H22 126.3 (12)
C6—C7—C8 101.79 (12) C22—C23—C24 101.63 (12)
C6—C7—H7A 114.6 (13) C22—C23—H23A 114.8 (13)
C6—C7—H7B 107.8 (12) C22—C23—H23B 114.0 (13)
C8—C7—H7A 112.0 (13) C24—C23—H23A 111.5 (13)
C8—C7—H7B 112.1 (12) C24—C23—H23B 108.5 (14)
H7A—C7—H7B 108.5 (17) H23A—C23—H23B 106.3 (17)
O2—C8—C7 107.01 (12) O6—C24—C23 107.24 (13)
O2—C8—H8A 107.6 (12) O6—C24—H24A 106.5 (13)
O2—C8—H8B 103.9 (11) O6—C24—H24B 107.8 (13)
C7—C8—H8A 115.4 (12) C23—C24—H24A 111.3 (13)
C7—C8—H8B 114.0 (11) C23—C24—H24B 112.0 (14)
H8A—C8—H8B 108.1 (16) H24A—C24—H24B 111.7 (18)
O3—C9—Ge1 118.25 (9) O7—C25—Ge2 116.20 (9)
C10—C9—Ge1 127.58 (12) C26—C25—Ge2 130.20 (11)
C10—C9—O3 114.16 (14) C26—C25—O7 113.59 (12)
C9—C10—H10 127.0 (13) C25—C26—H26 128.1 (12)
C9—C10—C11 109.94 (15) C25—C26—C27 109.57 (13)
C11—C10—H10 123.1 (13) C27—C26—H26 122.3 (12)
C10—C11—H11A 111.0 (12) C26—C27—H27A 113.8 (12)
C10—C11—H11B 109.9 (12) C26—C27—H27B 108.9 (11)
C10—C11—C12 101.51 (13) C26—C27—C28 101.32 (11)
H11A—C11—H11B 109.4 (16) H27A—C27—H27B 108.9 (16)
C12—C11—H11A 111.8 (11) C28—C27—H27A 110.9 (12)
C12—C11—H11B 113.0 (12) C28—C27—H27B 113.0 (11)
O3—C12—C11 107.40 (13) O7—C28—C27 106.50 (11)
O3—C12—H12A 107.2 (12) O7—C28—H28A 108.0 (12)
O3—C12—H12B 105.2 (12) O7—C28—H28B 104.8 (11)
C11—C12—H12A 114.5 (12) C27—C28—H28A 116.2 (12)
C11—C12—H12B 112.1 (12) C27—C28—H28B 113.2 (11)
H12A—C12—H12B 110.0 (16) H28A—C28—H28B 107.4 (16)
O4—C13—Ge1 117.16 (10) O8—C29—Ge2 114.61 (9)
C14—C13—Ge1 129.45 (11) C30—C29—Ge2 131.68 (11)
C14—C13—O4 113.39 (13) C30—C29—O8 113.71 (12)
C13—C14—H14 123.4 (13) C29—C30—H30 125.3 (12)
C13—C14—C15 110.38 (13) C29—C30—C31 109.97 (13)
C15—C14—H14 126.2 (13) C31—C30—H30 124.8 (12)
C14—C15—H15A 111.2 (11) C30—C31—H31A 107.8 (12)
C14—C15—H15B 111.5 (11) C30—C31—H31B 110.4 (13)
C14—C15—C16 101.60 (12) C30—C31—C32 101.74 (12)
H15A—C15—H15B 109.1 (15) H31A—C31—H31B 112.5 (17)
C16—C15—H15A 112.0 (12) C32—C31—H31A 112.3 (11)
C16—C15—H15B 111.2 (11) C32—C31—H31B 111.5 (13)
O4—C16—C15 106.89 (12) O8—C32—C31 106.96 (12)
O4—C16—H16A 108.0 (12) O8—C32—H32A 106.6 (13)
O4—C16—H16B 108.1 (11) O8—C32—H32B 107.1 (12)
C15—C16—H16A 110.4 (12) C31—C32—H32A 114.2 (12)
C15—C16—H16B 113.0 (11) C31—C32—H32B 111.4 (11)
H16A—C16—H16B 110.2 (16) H32A—C32—H32B 110.2 (16)
Ge1—C1—C2—C3 176.36 (12) Ge2—C17—C18—C19 176.68 (11)
Ge1—C5—C6—C7 178.01 (11) Ge2—C21—C22—C23 −170.77 (12)
Ge1—C9—C10—C11 179.83 (11) Ge2—C25—C26—C27 −178.47 (10)
Ge1—C13—C14—C15 −179.37 (11) Ge2—C29—C30—C31 −178.54 (11)
O1—C1—C2—C3 −1.5 (2) O5—C17—C18—C19 −1.66 (19)
O2—C5—C6—C7 −0.57 (18) O6—C21—C22—C23 1.84 (19)
O3—C9—C10—C11 −0.27 (19) O7—C25—C26—C27 1.18 (17)
O4—C13—C14—C15 0.09 (19) O8—C29—C30—C31 0.67 (18)
C1—O1—C4—C3 2.7 (2) C17—O5—C20—C19 6.77 (18)
C1—C2—C3—C4 3.0 (2) C17—C18—C19—C20 5.58 (19)
C2—C3—C4—O1 −3.4 (2) C18—C19—C20—O5 −7.30 (18)
C4—O1—C1—Ge1 −179.00 (13) C20—O5—C17—Ge2 178.16 (10)
C4—O1—C1—C2 −0.8 (2) C20—O5—C17—C18 −3.32 (18)
C5—O2—C8—C7 8.45 (15) C21—O6—C24—C23 0.6 (2)
C5—C6—C7—C8 5.62 (17) C21—C22—C23—C24 −1.27 (19)
C6—C7—C8—O2 −8.37 (16) C22—C23—C24—O6 0.35 (19)
C8—O2—C5—Ge1 176.14 (9) C24—O6—C21—Ge2 172.03 (11)
C8—O2—C5—C6 −5.10 (16) C24—O6—C21—C22 −1.55 (19)
C9—O3—C12—C11 −4.04 (16) C25—O7—C28—C27 −15.01 (14)
C9—C10—C11—C12 −2.19 (18) C25—C26—C27—C28 −10.12 (16)
C10—C11—C12—O3 3.72 (17) C26—C27—C28—O7 14.94 (14)
C12—O3—C9—Ge1 −177.31 (10) C28—O7—C25—Ge2 −171.34 (9)
C12—O3—C9—C10 2.78 (18) C28—O7—C25—C26 8.96 (16)
C13—O4—C16—C15 6.62 (18) C29—O8—C32—C31 7.81 (15)
C13—C14—C15—C16 3.90 (18) C29—C30—C31—C32 4.11 (17)
C14—C15—C16—O4 −6.24 (17) C30—C31—C32—O8 −7.10 (16)
C16—O4—C13—Ge1 175.18 (11) C32—O8—C29—Ge2 173.88 (9)
C16—O4—C13—C14 −4.35 (19) C32—O8—C29—C30 −5.48 (17)

Tetrakis(4,5-dihydrofuran-2-yl)germane (2). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C31—H31A···O7i 0.964 (19) 2.60 (2) 3.3279 (18) 132.1 (14)
C23—H23A···O4ii 0.97 (2) 2.57 (2) 3.530 (2) 168.0 (17)
C4—H4A···O7iii 0.93 (2) 2.63 (2) 3.398 (2) 140.8 (17)

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, z+1/2; (iii) x, y, z−1.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bauer, J. O. & Strohmann, C. (2014). Angew. Chem. Int. Ed. 53, 720–724. [DOI] [PubMed]
  3. Bruker (2018). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Ertschak, N., Popelis, Û., Nichler, I. & Lukevics, E. (1982). Zh. Obshch. Khim. 5, 1181–1187.
  6. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  7. Evans, D. A., Sweeney, Z. K., Rovis, T. & Tedrow, J. S. (2001). J. Am. Chem. Soc. 123, 12095–12096. [DOI] [PubMed]
  8. Gevorgyan, V., Borisova, L. & Lukevics, E. (1989). J. Organomet. Chem. 368, 19–21.
  9. Gevorgyan, V., Borisova, L. & Lukevics, E. (1990). J. Organomet. Chem. 393, 57–67.
  10. Gevorgyan, V., Borisova, L. & Lukevics, E. (1992). J. Organomet. Chem. 441, 381–387.
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Krupp, A., Barth, E. R., Seymen, R. & Strohmann, C. (2020). Acta Cryst. E76, 1514–1519. [DOI] [PMC free article] [PubMed]
  14. Lazraq, M., Escudié, J., Couret, C., Satgé, J., Dräger, M. & Dammel, R. (1988). Angew. Chem. 100, 885–887.
  15. Li, T. & Zhang, L. (2018). J. Am. Chem. Soc. 140, 17439–17443. [DOI] [PMC free article] [PubMed]
  16. Lukevics, E., Gevorgyan, V. & Borisova, L. (1997). Chem. Heterocycl. Compd. 33, 161–163.
  17. Lukevics, E., Gevorgyan, V., Rosite, S., Gavaps, M. & Mascheika, I. (1984). LZA Vēstis, 1, 109–111.
  18. Lukevics, E., Gevorgyan, V. N., Goldberg, Y. S. & Shymanska, M. V. (1985). J. Organomet. Chem. 294, 163–171.
  19. Lukevits, E., Borisova, L. & Gevorgyan, V. (1993). Chem. Heterocycl. Compd. 29, 735–743.
  20. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. [DOI] [PMC free article] [PubMed]
  21. Murakami, M., Hayashi, M. & Ito, Y. (1994). J. Org. Chem. 59, 7910–7914.
  22. Neugebauer, P., Klingebiel, U. & Noltemeyer, M. (2000). Z. Naturforsch. B, 55, 913–923.
  23. Schmidt, A., Krupp, A., Barth, E. R. & Strohmann, C. (2022). Acta Cryst. E78, 23–28. [DOI] [PMC free article] [PubMed]
  24. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  25. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  26. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  27. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. [DOI] [PMC free article] [PubMed]
  28. Tacke, R., Lopex–Mras, A., Sperlich, J., Strohmann, C., Kuhs, W. F., Mattern, G. & Sebald, A. (1993). Chem. Ber. 126, 851–861.
  29. Tacke, R., Sperlich, J., Strohmann, C. & Mattern, G. (1991). Chem. Ber. 124, 1491–1496.
  30. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1. DOI: 10.1107/S2056989023003158/hb8058sup1.cif

e-79-00458-sup1.cif (41.3KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989023003158/hb80581sup2.hkl

e-79-00458-1sup2.hkl (740.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989023003158/hb80581sup4.cml

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989023003158/hb80582sup3.hkl

Supporting information file. DOI: 10.1107/S2056989023003158/hb80582sup5.cml

CCDC reference: 2254180

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES