Abstract
A transthyretin mutation was discovered in a French family with familial amyloidotic polyneuropathy originally described in 1983. The syndrome is of early onset (approximate age 35 to 40) with carpal tunnel syndrome. Death is from cardiac disease. By direct genomic DNA sequencing an A-->G mutation was found in the position corresponding to the first base of transthyretin codon 49. The predicted alanine for threonine substitution in the transthyretin protein was proven by amino acid sequencing of transthyretin isolated from the plasma of an affected subject. Since the DNA mutation does not result in the creation or abolition of a restriction endonuclease recognition site, a new DNA analysis technique was used in which site directed mutagenesis is used to create an RFLP when the introduced mutation is in proximity to the natural mutation. Using a 27 nucleotide mutagenesis primer in the PCR reaction, a new Bg1I site was created on amplification of the variant allele. Using this test, termed PCR-IMRA, four affected members of the family were shown to have the mutation.
Full text
PDF


Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLOCK W. D., CAREY J. G., CURTIS A. C., FALLS H. F., JACKSON C. E., RUKAVINA J. G. Primary systemic amyloidosis: a review and an experimental, genetic, and clinical study of 29 cases with particular emphasis on the familial form. Medicine (Baltimore) 1956 Sep;35(3):239–334. [PubMed] [Google Scholar]
- Benson M. D., Dwulet F. E. Prealbumin and retinol binding protein serum concentrations in the Indiana type hereditary amyloidosis. Arthritis Rheum. 1983 Dec;26(12):1493–1498. doi: 10.1002/art.1780261211. [DOI] [PubMed] [Google Scholar]
- Dwulet F. E., Benson M. D. Polymorphism of human plasma thyroxine binding prealbumin. Biochem Biophys Res Commun. 1983 Jul 29;114(2):657–662. doi: 10.1016/0006-291x(83)90831-8. [DOI] [PubMed] [Google Scholar]
- Haliassos A., Chomel J. C., Tesson L., Baudis M., Kruh J., Kaplan J. C., Kitzis A. Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res. 1989 May 11;17(9):3606–3606. doi: 10.1093/nar/17.9.3606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Julien J., Vital C., Vallat J. M., Lagueny A., Ferrer X. Neuropathies amyloides familiales dans trois familles d'origine française. Rev Neurol (Paris) 1983;139(4):259–267. [PubMed] [Google Scholar]
- Madisen L., Hoar D. I., Holroyd C. D., Crisp M., Hodes M. E. DNA banking: the effects of storage of blood and isolated DNA on the integrity of DNA. Am J Med Genet. 1987 Jun;27(2):379–390. doi: 10.1002/ajmg.1320270216. [DOI] [PubMed] [Google Scholar]
- Nichols W. C., Benson M. D. Hereditary amyloidosis: detection of variant prealbumin genes by restriction enzyme analysis of amplified genomic DNA sequences. Clin Genet. 1990 Jan;37(1):44–53. doi: 10.1111/j.1399-0004.1990.tb03389.x. [DOI] [PubMed] [Google Scholar]
- Nichols W. C., Liepnieks J. J., McKusick V. A., Benson M. D. Direct sequencing of the gene for Maryland/German familial amyloidotic polyneuropathy type II and genotyping by allele-specific enzymatic amplification. Genomics. 1989 Oct;5(3):535–540. doi: 10.1016/0888-7543(89)90020-7. [DOI] [PubMed] [Google Scholar]


