Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 1993 Dec;30(12):987–990. doi: 10.1136/jmg.30.12.987

Familial predisposition to recurrent mutations causing Huntington's disease: genetic risk to sibs of sporadic cases.

Y P Goldberg 1, S E Andrew 1, J Theilmann 1, B Kremer 1, F Squitieri 1, H Telenius 1, J D Brown 1, M R Hayden 1
PMCID: PMC1016629  PMID: 8133509

Abstract

Huntington's disease (HD) is associated with expansion of a CAG repeat in a new gene. We have recently defined a premutation in a paternal allele of 30 to 38 CAG repeats in the HD gene which is greater than that seen in the general population (< 30 repeats) but below the range seen in patients with HD (> 38). These intermediate alleles are unstable during transmission through the germline and in sporadic cases expand to the full mutation associated with the clinical phenotype of HD. Here we have analysed three new mutation families where, in each, the proband and at least one sib have CAG sizes in the HD range. In one of these families, two sibs with expanded CAG repeats are both clinically affected with HD, thus presenting a pseudorecessive pattern of inheritance. In all three families the parental intermediate allele has expanded in more than one offspring, thus showing a previously unrecognised risk of inheriting HD to sibs of sporadic cases of HD.

Full text

PDF
987

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Goldberg Y. P., Kremer B., Andrew S. E., Theilmann J., Graham R. K., Squitieri F., Telenius H., Adam S., Sajoo A., Starr E. Molecular analysis of new mutations for Huntington's disease: intermediate alleles and sex of origin effects. Nat Genet. 1993 Oct;5(2):174–179. doi: 10.1038/ng1093-174. [DOI] [PubMed] [Google Scholar]
  2. Hayden M. R., Martin W. R., Stoessl A. J., Clark C., Hollenberg S., Adam M. J., Ammann W., Harrop R., Rogers J., Ruth T. Positron emission tomography in the early diagnosis of Huntington's disease. Neurology. 1986 Jul;36(7):888–894. doi: 10.1212/wnl.36.7.888. [DOI] [PubMed] [Google Scholar]
  3. Kunkel L. M., Smith K. D., Boyer S. H., Borgaonkar D. S., Wachtel S. S., Miller O. J., Breg W. R., Jones H. W., Jr, Rary J. M. Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1245–1249. doi: 10.1073/pnas.74.3.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Murdoch J. L., Walker B. A., McKusick V. A. Parental age effects on the occurrence of new mutations for the Marfan syndrome. Ann Hum Genet. 1972 Mar;35(3):331–336. doi: 10.1111/j.1469-1809.1957.tb01406.x. [DOI] [PubMed] [Google Scholar]
  5. PENROSE L. S. Parental age and mutation. Lancet. 1955 Aug 13;269(6885):312–313. doi: 10.1016/s0140-6736(55)92305-9. [DOI] [PubMed] [Google Scholar]
  6. PENROSE L. S. Parental age in acondroplasia and mongolism. Am J Hum Genet. 1957 Sep;9(3):167–169. [PMC free article] [PubMed] [Google Scholar]
  7. Stevens D., Parsonage M. Mutation in Huntington's chorea. J Neurol Neurosurg Psychiatry. 1969 Apr;32(2):140–143. doi: 10.1136/jnnp.32.2.140. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES