Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Apr 25:2023.04.21.537839. [Version 1] doi: 10.1101/2023.04.21.537839

scDEED: a statistical method for detecting dubious 2D single-cell embeddings

Lucy Xia, Christy Lee, Jingyi Jessica Li
PMCID: PMC10168265  PMID: 37163087

Abstract

Two-dimensional (2D) embedding methods are crucial for single-cell data visualization. Popular methods such as t-SNE and UMAP are commonly used for visualizing cell clusters; however, it is well known that t-SNE and UMAP’s 2D embedding might not reliably inform the similarities among cell clusters. Motivated by this challenge, we developed a statistical method, scDEED, for detecting dubious cell embeddings output by any 2D embedding method. By calculating a reliability score for every cell embedding, scDEED identifies the cell embeddings with low reliability scores as dubious and those with high reliability scores as trustworthy. Moreover, by minimizing the number of dubious cell embeddings, scDEED provides intuitive guidance for optimizing the hyperparameters of an embedding method. Applied to multiple scRNA-seq datasets, scDEED demonstrates its effectiveness for detecting dubious cell embeddings and optimizing the hyperparameters of t-SNE and UMAP.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES