Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 Apr 30:2023.04.30.538848. [Version 1] doi: 10.1101/2023.04.30.538848

Anaplastic Thyroid Cancer Cells Upregulate Mitochondrial One-Carbon Metabolism To Meet Purine Demand, Eliciting A Critical Targetable Vulnerability

Adam J Sugarman, Luong Do Huynh, Aidin Shabro, Antonio Di Cristofano
PMCID: PMC10168415  PMID: 37162981

Abstract

Anaplastic thyroid cancer (ATC) is one of the most aggressive and lethal tumor types, characterized by loss of differentiation, epithelial-to-mesenchymal transition, extremely high proliferation rate, and generalized resistance to therapy. To identify novel relevant, targetable molecular alterations, we analyzed gene expression profiles from a genetically engineered ATC mouse model and from human patient datasets, and found consistent upregulation of genes encoding enzymes involved in the one-carbon metabolic pathway, which uses serine and folates to generate both nucleotides and glycine.

Genetic and pharmacological inhibition of SHMT2 , a key enzyme of the mitochondrial arm of the one-carbon pathway, rendered ATC cells glycine auxotroph and led to significant inhibition of cell proliferation and colony forming ability, which was primarily caused by depletion of the purine pool. Notably, these growth-suppressive effects were significantly amplified when cells were grown in the presence of physiological types and levels of folates. Genetic depletion of SHMT2 dramatically impaired tumor growth in vivo, both in xenograft models and in an immunocompetent allograft model of ATC.

Together, these data establish the upregulation of the one-carbon metabolic pathway as a novel and targetable vulnerability of ATC cells, which can be exploited for therapeutic purposes.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES