Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

medRxiv logoLink to medRxiv
[Preprint]. 2023 Apr 29:2023.04.28.23289279. [Version 1] doi: 10.1101/2023.04.28.23289279

Solid-Phase Extraction and Enhanced Amplification-Free Detection of Pathogens Integrated by Dual-Functional CRISPR-Cas12a

Zimu Tian, He Yan, Yong Zeng
PMCID: PMC10168481  PMID: 37162995

Abstract

Public healthcare demands effective and pragmatic diagnostic tools to address the escalating challenges in infection management in resource-limited areas. Recent advance in CRISPR-based biosensing promises the development of next-generation tools for disease diagnostics, including point-of-care (POC) testing for infectious diseases. Currently prevailing strategy of developing CRISPR assays exploits only the non-specific trans-cleavage function of a CRISPR-Cas12a/Cas13a system for detection and combines it with an additional pre-amplification reaction to enhance the sensitivity. In contrast to this single-function strategy, here we present a new approach that collaboratively integrates the dual functions of CRISPR-Cas12a: sequence-specific binding and trans-cleavage activity. With this approach, we developed a POC nucleic acid assay termed Solid-Phase Extraction and Enhanced Detection assay Integrated by CRISPR-Cas12a (SPEEDi-CRISPR) that negates the need for preamplification but significantly improves the detection of limit (LOD) from the pM to fM level. Specifically, using Cas12a-coated magnetic beads, this assay combines efficient solid-phase extraction and enrichment of DNA targets enabled by the sequence-specific affinity of CRISPR-Cas12a with the fluorogenic detection by the activated Cas12a on beads. Our proof-of-concept study demonstrated that the SPEEDi-CRISPR assay affords an improved detection sensitivity for human papillomavirus (HPV)-18 with a LOD of 2.3 fM and excellent specificity to discriminate HPV-18 from HPV-16, Parvovirus B19, and scramble HPV-18. Furthermore, this robust assay was readily coupled with a portable smartphone-based fluorescence detector and a lateral flow assay for quantitative detection and visualized readout, respectively. Overall, these results should suggest that our dual-function strategy could pave a new way for developing the next-generation CRISPR diagnostics and that the SPEEDi-CRISPR assay provides a potentially useful tool for point-of-care testing.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from medRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES