Summary
Cancer has been described as a genetic disease that clonally evolves in the face of selective pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-cell profiling of cancers has described unprecedented heterogeneity in tumors providing support for alternative models of branched and neutral evolution through both genetic and non-genetic mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic, and extrinsic environmental factors in shaping the evolution of tumors. In this perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-malignant states associated with hematological malignancies and esophageal cancer, we discuss recent paradigms of tumor evolution and prospective approaches to further enhance our understanding of this spatiotemporally regulated process.
Subject areas: Cancer, Cancer systems biology, Immunology
Graphical abstract

Cancer; Cancer systems biology; Immunology
Clonality as a cancer cell-intrinsic property
Cell-intrinsic differences between cancer cells can emerge from a range of genetic sources including point mutations, copy number changes, and large structural variations.1 Differences can also result from several non-genetic mechanisms, including transcriptional fluctuations,2 epigenetic reprogramming,3 metabolic plasticity,4 and altered protein conformations.5 Unlike the duality (presence or absence) of genetic alterations that could justify classical models of selection, non-genetic mechanisms can exist on multiple continua, further providing conceptually rich frameworks for newer models of tumor evolution, metastases, and responses to anti-cancer therapies.6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24
Cell-intrinsic non-genetic differences can either be pre-existing within a population or can be induced by the selective pressures (e.g., anti-cancer therapies).6,7,8,25,26,27,28 These modes are not necessarily mutually exclusive and are often attributed to phenotypic plasticity, such as the well-established paradigm of epithelial-mesenchymal transition.29 Collectively, genetic and non-genetic variabilities can impart fitness advantage to a cell, enhancing its survival, proliferation, and dominance over other cells in both pre-malignant lesions and cancerous tissues.30,31,32,33,34,35,36 Cell-intrinsic differences driving the clonal expansion of cancer cells are shown to impact clinically relevant outcomes, including tumor progression, metastasis, and drug resistance.1,9,12,13,14,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52 The wide breadth of cell-intrinsic factors driving diverse clonal architectures have been investigated in great depth in hematological cancers, which we discuss later.
Cell-intrinsic differences have been particularly implicated in driving differential responses in single cancer cells within a tumor when exposed to anti-cancer therapies, leading to drug resistance. Although few during the early stages of treatment, the treatment-resistant clones escape therapy and rapidly proliferate, ultimately leading to clinical relapse in patients. Response to therapy is heterogeneous within and across cancers and treatments, and several models have been proposed as potential resistance mechanisms47,51,53,54 (Figure 1). Indeed, studies have highlighted the role of both genetic alterations and non-genetic heterogeneity in enabling a rare subset of tumor cell clones to bypass therapies and develop resistance.1,9,12,13,14,37,38,39,40,41,42,43,44,45,46,47,48,50,55,56
Figure 1.
Tumor evolution is shaped by intrinsic and extrinsic factors
(left) Intrinsic genetic and non-genetic variations together with extrinsic tumor microenvironmental factors dynamically interact to shape fate responses and tumor evolution to selective pressures. Diversity within tumors can result from a number of factors, including but not limited to pre-existing genetic/non-genetic diversity; may be acquired as a response to selective pressures; as a result of reprogramming or phenotypic switching from one state to another; or perhaps as a consequence of clonal competition. Tumor composition has a bidirectional interaction with the microenvironment and response to selection pressures. (right) These various modes of tumor evolution are responsible for the changing clonal trajectories and structure in tumors. Models depicted are representative of detectable clonal formation and collapse over time. In the top pane, several successive waves of dominant clones drive the growth of the tumor, as might be seen in response to different therapeutic interventions. In the middle pane, a single clone outcompetes the founding clone and holds dominance for the majority of the tumor’s development, as might be seen in a tumor with low heterogeneity. In the bottom pane, several clones coexist and expand over time without completely outcompeting each other.
Although classical experiments have largely relied on measuring the spectrum of changes after the tumors have progressed, recent advent of quantitative imaging, single-cell profiling, and barcode-based lineage tracing techniques are facilitating longitudinal tracking of clones at an unprecedented resolution. For example, quantitative studies of therapy resistance in cancers have identified a new class of cell-intrinsic properties, i.e. transient, yet heritable non-genetic fluctuations in a rare subset of cancer cells, that enable them to escape therapies and adopt diverse drug-resistant fates.2,9,11,12,13,42,52,54,57,58 Such rare and heritable cell-intrinsic states have been associated with the emergence of dominant clones underpinning resistance to a variety of treatment regimens (e.g., targeted therapy, cytotoxic chemotherapy, and immunotherapy) and across cancers including melanoma, acute myeloid leukemia, triple-negative breast cancer, and lung adenocarcinoma.9,12,13,43,57 In metastasis, recent studies have integrated lineage tracing and computational algorithms in mouse models to quantitatively track properties of metastatic clones.59,60,61 Similar to the findings reported in therapy resistance, pre-existing, heritable cell-intrinsic states predicted the metastatic potential of individual clones.59,60 The clonal differences driving resistance and metastasis likely originate as a consequence of interplay between genetic alterations and non-genetic mechanisms, but the precise sequence of events remains to be elucidated.
Mathematical models of clonal evolutionary dynamics across spatial and temporal scales have played a major role in rationalizing experimental and clinical observations and, importantly, providing in silico predictions of tumor dynamics.27,62,63,64,65,66,67,68,69 For instance, seminal data-inspired mathematical models of somatic evolution in colon cancer demonstrated that selective advantage plays a more important role than either the cell population size or the mutation rate in driving malignancy.66 Other, more recent, computational frameworks are facilitating a finer and robust inference of cancer (sub)clone phylogenies from careful integration of spatial, bulk, and single-cell sequencing datasets. Similarly, dynamical systems models—both at molecular (e.g., gene regulation and signaling dynamics) and population scale—have revealed the origins and dynamics of relatively shorter timescale cell state transitions underlying phenotypic plasticity in cancer drug resistance and metastasis.2,7,24,70,71,72,73 Collectively, as computational capabilities continue to increase, both theoretical and data-driven modeling of clonal dynamics will play a pivotal role in informing rational experimental design and making testable predictions.
Together, a plethora of experimental and computational studies have established roles of cell-intrinsic factors in regulating clonal trajectories during therapy resistance, metastases, and more broadly tumor progression. However, several fundamental questions remain unanswered and stall progress toward durable cures. Yet to be answered are the origins of intrinsic determinants, their precise nature, interactions between determinants often separated by timescales, and how they bidirectionally communicate with their environment. These parameters remain critical for developing predictive computational models of cancer origin, progression, and responses to treatments.
Clonality influenced by tumor cell-extrinsic factors
Cancer cells evolve in intricate association with many non-cancer cell types that constitute the tumor microenvironment (Figure 1). In the past decade, whereas there is a greater appreciation of microenvironmental cues that could shape tumor cell evolutionary dynamics, studies have often relied on static snapshots which reveal little about how tumors genetically and non-genetically co-evolve with its microenvironment over space and time. Developing a comprehensive understanding of the co-evolution of tumors with their microenvironment necessitates performing longitudinal studies. Spatial transcriptomic and epigenomic measurements in clinical samples and animal models over time can identify the organization and relative contributions of non-cancer cells to altered tumor cell dynamics. Defining such dynamics over the course of tumor progression or during metastases or response to therapies can further highlight mechanisms that contribute to macro-evolutionary, saltatory events often thought to encompass the emergence of tumor heterogeneity22 (Figure 1).
Among various parameters that contribute to the tumor microenvironment, changes in immune system activity have been one of the best characterized and linked to critical steps during oncogenesis, such as initiation, progression, metastasis, and therapy resistance.74,75,76,77 The immune system by itself represents a diverse array of cell types, often with contrasting functions. For instance, although the infiltration of tumors by cytotoxic T cells and natural killer cells is associated with efficient anti-tumor responses and smaller tumor sizes, presence of regulatory T cells and myeloid-derived suppressor cells correlates with an immunosuppressive milieu and enhanced tumor burden.78 Besides, the role of other immune cell subsets such as B cells, macrophages, neutrophils, and T helper cell subsets is less well-characterized.78 Clinical and pre-clinical models have predominantly taken a “cell-centric” approach to describe the roles of distinct immune cell populations in cancers; however, a systems-level view to study the immune cell dynamics and their co-evolution with cancers is largely missing. Recent studies have begun to unravel systems level changes in the immune compartment in response to cancers.79,80,81,82 Application of contemporary lineage tracing approaches9,13,42,59,60,83,84 to simultaneously label both immune and cancer cells in pre-clinical models will be critical in examining how peripheral and tumor-associated immune cell populations change over time and may influence clonal dynamics within tumors.
Aging is another microenvironmental variable that naturally affects cancer initiation, progression, metastasis, and therapy resistance. Indeed, most cancers are thought to originate from temporal, age-associated accumulation of cellular damage that may in turn promote intrinsic cellular variability to both tumor and neighboring non-cancer cells.74,75,76,77,85 In general, aging can be seen as a multifactorial driver of oncogenesis, which impacts many critical body functions, including changes in metabolism, regenerative capacity, and immune surveillance.86,87 Each of these processes, in principle, could impose unique selective pressures. In addition, low-grade chronic inflammation, which is commonly associated with aging in many tissues, may lead to an altered cytokine and chemokine milieu that can itself function as growth stimuli to orchestrate clonal selection.75,76,77,88 More broadly, aging is a complex trait that may aggravate underlying cellular diversity to shape the clonal architectures during cancer initiation and progression. Systems level computational synthesis of experimental data offers a great opportunity to curate high-resolution interaction networks.89,90,91 These networks may help uncover the precise mechanisms of multifaceted processes such as aging during tumor formation and progression. Measuring how the age-associated local and systemic changes contribute to cancer cell-intrinsic variability is important to delineate the etiologies of age-linked malignancies.
Conceptualizing clonality through hematological cancers and other tumors
In non-human primates and humans, steady state hematopoiesis is estimated to be sustained by 50,000–200,000 hematopoietic stem cells (HSC) that give rise to many trillions of blood cells over the lifetime of an individual.92 These estimations mean that at any given time, thousands of peripheral blood cells can be traced back in their lineages to a few bonafide HSCs. Moreover, compared to other systems, the hematopoietic system is readily amenable to granular investigation of evolutionary trajectories in the context of hematological malignancies. In fact, the first evidence of clonality in cancers was described by coarse use of karyotyping methodologies in the hematopoietic compartment (Figure 2).93 The recent advent of next-generation sequencing technologies and computational approaches has further afforded interrogation of this system at an extraordinary resolution and scale. Notably, several studies in recent years have described that clonal attributes are associated with aging in the hematopoietic compartment and are present in a large proportion of seemingly healthy individuals. This condition, commonly known as Clonal Hematopoiesis of Indeterminate Potential (CHIP), is characterized by over-representation of clones harboring certain somatic mutations in peripheral blood of individuals that otherwise have no overt hematological disorder, and is considered a genuine pre-malignant state94,95 (Figures 2 and 3A). Furthermore, CHIP is highly prevalent in aging individuals; when defined with a variant allele fraction of 0.5%, it manifests in ∼20% of all individuals at age 50, and further increases to ∼50% by 70 years of age.96,97 More recent studies using very high-depth sequencing have shown that the incidence of age-associated CHIP could be even higher than previously reported. Although there is no current consensus on what variant allele frequency defines CHIP of clinical significance, advanced genomics methodologies could further aid in tracking the origins and progression of mutant clones over extended timescales.98
Figure 2.
Key discoveries and scientific advances in the area of tumor clonality
The timeline depicts three eras – Cytogenetics & Karyotyping, Pre-genomics, and Genomics – when research was guided by the prevailing philosophies and experimental tools. We postulate that in the near future, clonality analysis by deep sequencing and mathematical modeling may have broad implications in diagnosis and therapeutics. WES (whole exome sequencing); CHIP (Clonal Hematopoiesis of Indeterminate Potential).15,23,94,95,99,151,166,167,168,169,170,171,172,173,174,175,176,177
Figure 3.
Clonal hematopoiesis development shares similarities with tumor evolution
(A) The most commonly mutated genes in clonal hematopoiesis, categorized by the major pathways that they are associated with as reported by Kar et al.104 Among the common genetic alterations associated with CHIP, epigenetic modifiers such as DNMT3A, TET2, and ASXL1 are the top most recurrently mutated genes. Other known cancer associated genes and pathways such as TP53, ATM, and JAK2 also feature prominently.
(B) A model for clonal selection and progression of CHIP. Changes in HSC clonal diversity in CHIP is influenced by cell-intrinsic and extrinsic factors that wax or wane as an individual ages. Certain genetic mutations serve as initiating events and confer selective advantage to a clone that may skew HSC diversity and function. The initiating genetic events may cause further selection through genetic and non-genetic mechanisms leading to enhanced clonal diversity. The genetic alterations and skewed clonal architectures would in turn promote immune dysfunction leading to increased risk of infections and chronic inflammatory states that could further drive the clonal selection and eventual transformation.
CHIP is suspected to emerge when hematopoietic stem cells (HSCs) acquire somatic mutations that confer a fitness advantage, consequently producing clones which account for a disproportionately large fraction of mature peripheral blood cells.99,100 Mutations identified in CHIP are commonly thought of as drivers of cancer and predominantly include epigenetic modifiers (DNMT3A, TET2), and less frequently, splicing factors (U2AF1, SRSF2, SF3B1), DNA repair regulators (TP53, PPM1D), and signaling pathways (JAK2, CBL)94,95,101,102,103 (Figure 3A). Moreover, recent studies have shown that the somatic mutations associated with CHIP arise at different ages and appear to be biased by gender in some instances.104 Though not as well-studied, additional non-genetic programs associated with transcriptional control, RNA splicing, and chromatin and DNA states can further diversify the gamut of cell-intrinsic variabilities that may in turn impart clonal fitness.13,105 Therefore, the genetic and non-genetic diversity reported in CHIP is a multiscale process, likely operating through a combination of changes on molecular, cellular, and chronological levels (Figure 3B). These changes may be a direct consequence of aging or could themselves be drivers of the “aging phenotype”; decoupling these cell-intrinsic and extrinsic scenarios will be critical to pursue in future studies.
Although the causal relationship between CHIP and myeloid malignancies has been recognized, interestingly, only 0.5–1% of all individuals with CHIP progress further to develop hematological malignancies each year despite its high prevalence.96,106 Thus, the progression of CHIP to malignancies appears to be a relatively slow, stepwise process punctuated by iterative rounds of positive selection via several cooperating parameters.107,108,109,110,111 These parameters include contributions from both cell-intrinsic determinants (genetic and non-genetic) and cell-extrinsic factors (e.g., persistent infections driving chronic inflammation and immune cell regulation of developmental niches) which simultaneously steer the clonal selection process.106,112,113,114,115,116,117 The exact identity of such parameters and the combinatorial effect of the selective forces that shape the ultimate clonal architecture underlying an overt malignancy remains to be fully understood. Moreover, CHIP is not the only bonafide pre-malignant state associated with hematological malignancies; other well-studied examples include pre-malignant conditions like monoclonal B cell lymphocytosis118 and monoclonal gammopathy of undetermined significance119 with pre-dispositions to chronic lymphocytic leukemia and multiple myeloma, respectively. It would be interesting to study how these pre-malignant hematological states are conceptually related in their origin and eventual progression to frank neoplasms.
Advancement in single-cell multi-omic profiling approaches have introduced new paradigms wherein certain molecular states of cells are preferentially selected in pre-malignant conditions such as CHIP. Importantly, such cellular states likely arise from integration of multiple parameters and represent a more robust and stable readout than features influenced by individual parameters. Therefore, longitudinal identification and tracking of cellular states–similar to lineage tracing approaches recently used in the hematopoietic system120–could offer complementary approaches in defining the evolutionary history of pre-malignant conditions and the associated malignancies. Moreover, such clonal states could be more generalizable besides characterizing clonality by mutational spectra alone.121 In summary, the hematopoietic compartment offers an attractive and tractable system to perform longitudinal studies to monitor the progression of CHIP to hematological neoplasms for revealing quantitative and systems-level principles that underlie clonal evolution in cancers.
Beyond hematological malignancies, another well-studied example of pre-malignant clonal evolution is the pre-cancerous state called Barrett’s esophagus. In Barrett’s esophagus, squamous cell lining in the esophagus acquires stochastic genomic alterations and clonal expansion which could transform into esophageal adenocarcinomas.30,33,122,123 Similar to CHIP, multiple clones in Barrett’s esophagus can coexist over long periods of time and could accumulate additional mutations and copy number variations, eventually leading to development of esophageal adenocarcinomas.124,125 However, in contrast to CHIP, the progression of Barrett’s esophagus to esophageal adenocarcinomas appear to be much less frequent and intriguingly associated with genetic architecture that is distinct between pre-malignant and malignant states.126 Therefore, unique modes of clonal evolution associated with distinct pre-malignant states may be operational in different tissue types. Future studies could test the broad relevance of the conceptual frameworks developed in particular systems to unrelated tissue and cancer types.
Next frontiers
The continued progress in developing links between clonality and clinical ramifications may pave the way for systematic and periodic monitoring of clonality in individuals with clinically defined pre-malignant states. In the near future, high-risk individuals such as those with chronic systemic inflammation, persistent infections, or familial history of cancers could be monitored for clonality changes, at least in the hematopoietic compartment, as routine care. In general, recent progress in cell-free DNA technologies could also allow identification of robust biomarkers that can faithfully track origins and progression of cancers across multiple tissue types.127 Among the various challenges that remain, simultaneous measurement of multiple modalities to identify traceable early biomarkers—beyond curated gene sets—will be important towards unbiased and robust monitoring. Furthermore, universal or perhaps system-specific interventions must be defined that consider the functional relevance of clones regardless of their profusion.56
On the technological front, advances across disciplines provide promising new toolkits for addressing the open questions in tumor clonality (Table 1). For example, advanced spatiotemporal lineage tracing coupled with computational modeling may resolve whether clonal states eventually selected for during tumor evolution are pre-existing or newly acquired during adaptation. Moving forward, defining clonality through surrogate means which go beyond the introduction of synthetic lineage tracers would be ideal to infer evolutionary trajectories emerging via genetic and non-genetic mechanisms. For instance, natural barcodes arising from the mitochondrial genome enable lineage inference in both health and disease.128,129 Rapid advances in automated image analysis with machine learning also offer complementary tools to leverage phenotypic differences–such as cellular and subcellular morphology and localization–to infer clonality.130,131,132,133 Similarly, computational methodologies relying on transcriptional memory between progenies may also enable barcode-free lineage tracing with single cell RNA-sequencing datasets alone.134,135 However, although clonality in some cancers can be well-described by single cell RNA-sequencing, others may require multi-parameter approaches.136 Furthermore, it will be critical to perform simultaneous evolutionary measurements of cell-intrinsic factors and extrinsic environments, and identify the chronological order of molecular and cellular events to unravel unifying and cancer-specific systems-level control principles (Figure 1). This will entail development of not just experimental multimodal biochemical and imaging techniques, but also computational and analytical frameworks to complement such rich and composite datasets.
Table 1.
Recent advances in the study of clonality
| Publication | Type | Specifics | System |
|---|---|---|---|
| Rodriques et al.137 | Sequencing | Spatial | Brain |
| Payne et al.138 | Development | ||
| Zhao et al.139 | Various | ||
| Young et al.140 | Error-corrected | Leukemia | |
| Martelotto et al.141 | Single-cell genome | Fixed | |
| Dong et al.142 | N/A | ||
| Chu et al.143 | N/A | ||
| Biezuner et al.144 | Scalable | Various | |
| Tao et al.145 | Melanoma | ||
| Nam et al.146,147 | Multiomics | MPN, CHIP | |
| Wagner et al.148 | Barcoding | Transposase | Development |
| Pei et al.149 | Cre Recombination | Hematopoiesis | |
| Biddy et al.150 | Retrovirus | Stem Cell Reprogramming | |
| Goyal et al.9 | Drug resistance | ||
| Fennell et al.13 | AML | ||
| Weinreb et al.91 | Hematopoiesis | ||
| Gutierrez et al.151 | CLL | ||
| Oren et al.11 | Drug resistance | ||
| Umkehrer et al.42 | Drug resistance | ||
| Ludwig et al.128 | Mitochondrial | Various | |
| Miller et al.129 | Hematopoiesis | ||
| Klahor et al.152 | CRISPR/Cas9 | Development | |
| Spanjaard et al.153 | Development | ||
| Zhang et al.154 | Metastasis | ||
| Simeonov et al.155 | Metastasis | ||
| Yang et al.60 | NSCLC | ||
| Chan et al.156 | Development | ||
| Alemany et al.157 | Development | ||
| McKenna et al.158 | Development | ||
| Frieda et al.159 | N/A | ||
| Raj et al.160 | Brain | ||
| Clark et al.161 | Rabies virus | Brain | |
| Loveless et al.162 | CRISPR/Cas9 and TdT | Various | |
| Quinn et al.59 | Hybrid (Retrovirus and CRISPR) | Metastasis | |
| Satas et al.163 | Computational | Phylogeny | Various |
| Eisele et al.135 | Various | ||
| Gao et al.164 | Various | ||
| Yang et al.45 | Imaging | Timelapse | Drug resistance |
| Tian et al.133 | Various | ||
| Chakrabarti et al.165 | Drug resistance |
We have provided recent studies of technological advances, including new hardware, computational frameworks, and experimental designs. The publications are primarily grouped by type of technology developed. Sequencing refers to technological advances in sample preparation and sequencing data acquisition that increase resolution for studying carcinogenesis and clonality. Barcoding refers to the use of synthetically introduced or endogenous inheritable DNA sequences for identification of cellular lineage. Computational refers to analytical methods and frameworks for interpreting clonal evolution over time. Imaging refers to microscopy-based tracking of tumor evolution using either reporter or label-free systems. The specifics of the technology are further described and similar technologies are presented together. Lastly, the model system in which the technology was applied in the cited publication is listed wherever relevant. Publications cited are not comprehensive, rather are representative examples; an omission from this list does not reflect the potential importance nor impact of that publication, but merely an oversight. Abbreviations: MPN, myeloproliferative neoplasms; AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia; and NSCLC, non-small cell lung cancer.
Acknowledgments
We thank Karun Kiani and the members of the Goyal and Shukla labs for helpful discussions and comments. Y.G. and E.I.G. acknowledge support from the Career Award at the Scientific Interface from BWF (1020614.01), startup funds from Northwestern University, and the NSF NRT 2021900-Synthesizing Biology Across Scales. V.S. and A.A. are supported by the R00 award from National Cancer Institute (CA248835), startup funds from Northwestern University and developmental funds from the Lurie Comprehensive Cancer Center at Northwestern University (P30CA060553). “Tumor microenvironment” depiction in Figure 1 was created with BioRender.com.
Author contributions
V.S. and Y.G. conceived the project and E.I.G., A.A., V.S., and Y.G. wrote the manuscript.
Declaration of interests
Y.G. received consultancy fees from the Schmidt Science Fellows and the Rhodes Trust. All other authors declare no conflict of interest.
Contributor Information
Vipul Shukla, Email: vipul.shukla@northwestern.edu.
Yogesh Goyal, Email: yogesh.goyal@northwestern.edu.
References
- 1.ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium Pan-cancer analysis of whole genomes. Nature. 2020;578:82–93. doi: 10.1038/s41586-020-1969-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Schuh L., Saint-Antoine M., Sanford E.M., Emert B.L., Singh A., Marr C., Raj A., Goyal Y. Gene networks with transcriptional bursting recapitulate rare transient coordinated high expression states in cancer. Cell Syst. 2020;10:363–378.e12. doi: 10.1016/j.cels.2020.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Su Y., Bintz M., Yang Y., Robert L., Ng A.H.C., Liu V., Ribas A., Heath J.R., Wei W. Phenotypic heterogeneity and evolution of melanoma cells associated with targeted therapy resistance. PLoS Comput. Biol. 2019;15:e1007034. doi: 10.1371/journal.pcbi.1007034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Kim J., DeBerardinis R.J. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metabol. 2019;30:434–446. doi: 10.1016/j.cmet.2019.08.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Mooney S.M., Jolly M.K., Levine H., Kulkarni P. Phenotypic plasticity in prostate cancer: role of intrinsically disordered proteins. Asian J. Androl. 2016;18:704–710. doi: 10.4103/1008-682X.183570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Bhang H.-E.C., Ruddy D.A., Krishnamurthy Radhakrishna V., Caushi J.X., Zhao R., Hims M.M., Singh A.P., Kao I., Rakiec D., Shaw P., et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 2015;21:440–448. doi: 10.1038/nm.3841. [DOI] [PubMed] [Google Scholar]
- 7.Gupta P.B., Fillmore C.M., Jiang G., Shapira S.D., Tao K., Kuperwasser C., Lander E.S. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell. 2011;146:633–644. doi: 10.1016/j.cell.2011.07.026. [DOI] [PubMed] [Google Scholar]
- 8.Sharma S.V., Lee D.Y., Li B., Quinlan M.P., Takahashi F., Maheswaran S., McDermott U., Azizian N., Zou L., Fischbach M.A., et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80. doi: 10.1016/j.cell.2010.02.027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Goyal Y., Dardani I.P., Busch G.T., Emert B., Fingerman D., Kaur A., Jain N., Mellis I.A., Li J., Kiani K., et al. Pre-determined diversity in resistant fates emerges from homogenous cells after anti-cancer drug treatment. bioRxiv. 2021 doi: 10.1101/2021.12.08.471833. Preprint at. [DOI] [Google Scholar]
- 10.Rambow F., Rogiers A., Marin-Bejar O., Aibar S., Femel J., Dewaele M., Karras P., Brown D., Chang Y.H., Debiec-Rychter M., et al. Toward minimal residual disease-directed therapy in melanoma. Cell. 2018;174:843–855.e19. doi: 10.1016/j.cell.2018.06.025. [DOI] [PubMed] [Google Scholar]
- 11.Oren Y., Tsabar M., Cuoco M.S., Amir-Zilberstein L., Cabanos H.F., Hütter J.C., Hu B., Thakore P.I., Tabaka M., Fulco C.P., et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature. 2021;596:576–582. doi: 10.1038/s41586-021-03796-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Shaffer S.M., Dunagin M.C., Torborg S.R., Torre E.A., Emert B., Krepler C., Beqiri M., Sproesser K., Brafford P.A., Xiao M., et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431–435. doi: 10.1038/nature22794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Fennell K.A., Vassiliadis D., Lam E.Y.N., Martelotto L.G., Balic J.J., Hollizeck S., Weber T.S., Semple T., Wang Q., Miles D.C., et al. Non-genetic determinants of malignant clonal fitness at single-cell resolution. Nature. 2022;601:125–131. doi: 10.1038/s41586-021-04206-7. [DOI] [PubMed] [Google Scholar]
- 14.Tirosh I., Izar B., Prakadan S.M., Wadsworth M.H., 2nd, Treacy D., Trombetta J.J., Rotem A., Rodman C., Lian C., Murphy G., et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189–196. doi: 10.1126/science.aad0501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Tirosh I., Venteicher A.S., Hebert C., Escalante L.E., Patel A.P., Yizhak K., Fisher J.M., Rodman C., Mount C., Filbin M.G., et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309–313. doi: 10.1038/nature20123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Litzenburger U.M., Buenrostro J.D., Wu B., Shen Y., Sheffield N.C., Kathiria A., Greenleaf W.J., Chang H.Y. Single-cell epigenomic variability reveals functional cancer heterogeneity. Genome Biol. 2017;18:15. doi: 10.1186/s13059-016-1133-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.LaFave L.M., Kartha V.K., Ma S., Meli K., Del Priore I., Lareau C., Naranjo S., Westcott P.M.K., Duarte F.M., Sankar V., et al. Epigenomic state transitions characterize tumor progression in mouse lung adenocarcinoma. Cancer Cell. 2020;38:212–228.e13. doi: 10.1016/j.ccell.2020.06.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Williams M.J., Werner B., Barnes C.P., Graham T.A., Sottoriva A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 2016;48:238–244. doi: 10.1038/ng.3489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46. doi: 10.1158/2159-8290.CD-21-1059. [DOI] [PubMed] [Google Scholar]
- 20.McGranahan N., Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–628. doi: 10.1016/j.cell.2017.01.018. [DOI] [PubMed] [Google Scholar]
- 21.Black J.R.M., McGranahan N. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer. 2021;21:379–392. doi: 10.1038/s41568-021-00336-2. [DOI] [PubMed] [Google Scholar]
- 22.Vendramin R., Litchfield K., Swanton C. Cancer evolution: Darwin and beyond. EMBO J. 2021;40:e108389. doi: 10.15252/embj.2021108389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Navin N., Kendall J., Troge J., Andrews P., Rodgers L., McIndoo J., Cook K., Stepansky A., Levy D., Esposito D., et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472:90–94. doi: 10.1038/nature09807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Pillai M., Hojel E., Jolly M.K., Goyal Y. Unraveling non genetic heterogeneity in cancer with dynamical models and computational tools. Nat. Comput. Sci. 2023;3 doi: 10.1038/s43588-023-00427-. [DOI] [PubMed] [Google Scholar]
- 25.Russo M., Pompei S., Sogari A., Corigliano M., Crisafulli G., Puliafito A., Lamba S., Erriquez J., Bertotti A., Gherardi M., et al. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat. Genet. 2022;54:976–984. doi: 10.1038/s41588-022-01105-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Salgia R., Kulkarni P. The genetic/non-genetic duality of drug “resistance” in cancer. Trends Cancer. 2018;4:110–118. doi: 10.1016/j.trecan.2018.01.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Househam J., Heide T., Cresswell G.D., Spiteri I., Kimberley C., Zapata L., Lynn C., James C., Mossner M., Fernandez-Mateos J., et al. Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature. 2022;611:744–753. doi: 10.1038/s41586-022-05311-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.França G.S., Baron M., Pour M., King B.R., Rao A., Misirlioglu S., Barkley D., Dolgalev I., Ho-Tang K., Avital G., et al. Drug-induced adaptation along a resistance continuum in cancer cells. bioRxiv. 2022 doi: 10.1101/2022.06.21.496830. Preprint at. [DOI] [Google Scholar]
- 29.Kalluri R., Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009;119:1420–1428. doi: 10.1172/JCI39104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Murai K., Dentro S., Ong S.H., Sood R., Fernandez-Antoran D., Herms A., Kostiou V., Abnizova I., Hall B.A., Gerstung M., Jones P.H. p53 mutation in normal esophagus promotes multiple stages of carcinogenesis but is constrained by clonal competition. Nat. Commun. 2022;13:6206. doi: 10.1038/s41467-022-33945-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.Yoshida K., Gowers K.H.C., Lee-Six H., Chandrasekharan D.P., Coorens T., Maughan E.F., Beal K., Menzies A., Millar F.R., Anderson E., et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature. 2020;578:266–272. doi: 10.1038/s41586-020-1961-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Yokoyama A., Kakiuchi N., Yoshizato T., Nannya Y., Suzuki H., Takeuchi Y., Shiozawa Y., Sato Y., Aoki K., Kim S.K., et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature. 2019;565:312–317. doi: 10.1038/s41586-018-0811-x. [DOI] [PubMed] [Google Scholar]
- 33.Martincorena I., Fowler J.C., Wabik A., Lawson A.R.J., Abascal F., Hall M.W.J., Cagan A., Murai K., Mahbubani K., Stratton M.R., et al. Somatic mutant clones colonize the human esophagus with age. Science. 2018;362:911–917. doi: 10.1126/science.aau3879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Martincorena I., Roshan A., Gerstung M., Ellis P., Van Loo P., McLaren S., Wedge D.C., Fullam A., Alexandrov L.B., Tubio J.M., et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348:880–886. doi: 10.1126/science.aaa6806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 35.Colom B., Herms A., Hall M.W.J., Dentro S.C., King C., Sood R.K., Alcolea M.P., Piedrafita G., Fernandez-Antoran D., Ong S.H., et al. Mutant clones in normal epithelium outcompete and eliminate emerging tumours. Nature. 2021;598:510–514. doi: 10.1038/s41586-021-03965-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.van Neerven S.M., Vermeulen L. Cell competition in development, homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 2023;24:221–236. doi: 10.1038/s41580-022-00538-y. [DOI] [PubMed] [Google Scholar]
- 37.Li S., Garrett-Bakelman F.E., Chung S.S., Sanders M.A., Hricik T., Rapaport F., Patel J., Dillon R., Vijay P., Brown A.L., et al. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat. Med. 2016;22:792–799. doi: 10.1038/nm.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Duy C., Li M., Teater M., Meydan C., Garrett-Bakelman F.E., Lee T.C., Chin C.R., Durmaz C., Kawabata K.C., Dhimolea E., et al. Chemotherapy induces senescence-like resilient cells capable of initiating AML recurrence. Cancer Discov. 2021;11:1542–1561. doi: 10.1158/2159-8290.CD-20-1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Duchmann M., Laplane L., Itzykson R. Clonal architecture and evolutionary dynamics in acute myeloid leukemias. Cancers. 2021;13:4887. doi: 10.3390/cancers13194887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Sandén C., Lilljebjörn H., Orsmark Pietras C., Henningsson R., Saba K.H., Landberg N., Thorsson H., von Palffy S., Peña-Martinez P., Högberg C., et al. Clonal competition within complex evolutionary hierarchies shapes AML over time. Nat. Commun. 2020;11:579. doi: 10.1038/s41467-019-14106-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Nazarian R., Shi H., Wang Q., Kong X., Koya R.C., Lee H., Chen Z., Lee M.-K., Attar N., Sazegar H., et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468:973–977. doi: 10.1038/nature09626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Umkehrer C., Holstein F., Formenti L., Jude J., Froussios K., Neumann T., Cronin S.M., Haas L., Lipp J.J., Burkard T.R., et al. Isolating live cell clones from barcoded populations using CRISPRa-inducible reporters. Nat. Biotechnol. 2021;39:174–178. doi: 10.1038/s41587-020-0614-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Haas L., Elewaut A., Gerard C.L., Umkehrer C., Leiendecker L., Pedersen M., Krecioch I., Hoffmann D., Novatchkova M., Kuttke M., et al. Acquired resistance to anti-MAPK targeted therapy confers an immune-evasive tumor microenvironment and cross-resistance to immunotherapy in melanoma. Nat. Can. (Ott.) 2021;2:693–708. doi: 10.1038/s43018-021-00221-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Kinker G.S., Greenwald A.C., Tal R., Orlova Z., Cuoco M.S., McFarland J.M., Warren A., Rodman C., Roth J.A., Bender S.A., et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 2020;52:1208–1218. doi: 10.1038/s41588-020-00726-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Yang C., Tian C., Hoffman T.E., Jacobsen N.K., Spencer S.L. Melanoma subpopulations that rapidly escape MAPK pathway inhibition incur DNA damage and rely on stress signalling. Nat. Commun. 2021;12:1747. doi: 10.1038/s41467-021-21549-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Spencer S.L., Gaudet S., Albeck J.G., Burke J.M., Sorger P.K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature. 2009;459:428–432. doi: 10.1038/nature08012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Ramirez M., Rajaram S., Steininger R.J., Osipchuk D., Roth M.A., Morinishi L.S., Evans L., Ji W., Hsu C.-H., Thurley K., et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat. Commun. 2016;7:10690. doi: 10.1038/ncomms10690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Pillai M., Jolly M.K. Systems-level network modeling deciphers the master regulators of phenotypic plasticity and heterogeneity in melanoma. iScience. 2021;24:103111. doi: 10.1016/j.isci.2021.103111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Jolly M.K., Boareto M., Huang B., Jia D., Lu M., Ben-Jacob E., Onuchic J.N., Levine H. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front. Oncol. 2015;5:155. doi: 10.3389/fonc.2015.00155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Sahoo S., Mishra A., Kaur H., Hari K., Muralidharan S., Mandal S., Jolly M.K. A mechanistic model captures the emergence and implications of non-genetic heterogeneity and reversible drug resistance in ER+ breast cancer cells. NAR Cancer. 2021;3:zcab027. doi: 10.1093/narcan/zcab027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Mikubo M., Inoue Y., Liu G., Tsao M.-S. Mechanism of drug tolerant persister cancer cells: the landscape and clinical implication for therapy. J. Thorac. Oncol. 2021;16:1798–1809. doi: 10.1016/j.jtho.2021.07.017. [DOI] [PubMed] [Google Scholar]
- 52.Hinohara K., Wu H.-J., Vigneau S., McDonald T.O., Igarashi K.J., Yamamoto K.N., Madsen T., Fassl A., Egri S.B., Papanastasiou M., et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell. 2018;34:939–953.e9. doi: 10.1016/j.ccell.2018.10.014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Kochanowski K., Morinishi L., Altschuler S., Wu L. Drug persistence - from antibiotics to cancer therapies. Curr. Opin. Struct. Biol. 2018;10:1–8. doi: 10.1016/j.coisb.2018.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Marusyk A., Janiszewska M., Polyak K. Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell. 2020;37:471–484. doi: 10.1016/j.ccell.2020.03.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Ramos P., Bentires-Alj M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene. 2015;34:3617–3626. doi: 10.1038/onc.2014.314. [DOI] [PubMed] [Google Scholar]
- 56.Li Z., Seehawer M., Polyak K. Untangling the web of intratumour heterogeneity. Nat. Cell Biol. 2022;24:1192–1201. doi: 10.1038/s41556-022-00969-x. [DOI] [PubMed] [Google Scholar]
- 57.Prieto T., Landau D.A. A heritable, non-genetic road to cancer evolution. Nature. 2022;601:31–32. doi: 10.1038/d41586-021-03606-z. [DOI] [PubMed] [Google Scholar]
- 58.Richman L.P., Goyal Y., Jiang C.L., Raj A. ClonoCluster: a method for using clonal origin to inform transcriptome clustering. Cell Genomics. 2023:100247. doi: 10.1016/j.xgen.2022.100247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Quinn J.J., Jones M.G., Okimoto R.A., Nanjo S., Chan M.M., Yosef N., Bivona T.G., Weissman J.S. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science. 2021;371:eabc1944. doi: 10.1126/science.abc1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Yang D., Jones M.G., Naranjo S., Rideout W.M., 3rd, Min K.H.J., Ho R., Wu W., Replogle J.M., Page J.L., Quinn J.J., et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell. 2022;185:1905–1923.e25. doi: 10.1016/j.cell.2022.04.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 61.Roda N., Cossa A., Hillje R., Tirelli A., Ruscitto F., Cheloni S., Priami C., Dalmasso A., Gambino V., Blandano G., et al. The breast cancer pro-metastatic phenotype requires concomitant hyper-activation of ECM remodeling and dsRNA-IFN1 signaling in rare clone cells. bioRxiv. 2022 doi: 10.1101/2022.07.13.499961. Preprint at. [DOI] [Google Scholar]
- 62.Malikic S., Jahn K., Kuipers J., Sahinalp S.C., Beerenwinkel N. Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. Nat. Commun. 2019;10:2750. doi: 10.1038/s41467-019-10737-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 63.Beerenwinkel N., Greenman C.D., Lagergren J. Computational cancer Biology: an evolutionary perspective. PLoS Comput. Biol. 2016;12:e1004717. doi: 10.1371/journal.pcbi.1004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 64.Noble R., Burri D., Le Sueur C., Lemant J., Viossat Y., Kather J.N., Beerenwinkel N. Spatial structure governs the mode of tumour evolution. Nat. Ecol. Evol. 2022;6:207–217. doi: 10.1038/s41559-021-01615-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 65.Beerenwinkel N., Rahnenführer J., Däumer M., Hoffmann D., Kaiser R., Selbig J., Lengauer T. Proceedings of the eighth annual international conference on Research in computational molecular biology RECOMB ’04. Association for Computing Machinery; 2004. Learning multiple evolutionary pathways from cross-sectional data; pp. 36–44. [DOI] [PubMed] [Google Scholar]
- 66.Beerenwinkel N., Antal T., Dingli D., Traulsen A., Kinzler K.W., Velculescu V.E., Vogelstein B., Nowak M.A. Genetic progression and the waiting time to cancer. PLoS Comput. Biol. 2007;3:e225. doi: 10.1371/journal.pcbi.0030225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Sottoriva A., Kang H., Ma Z., Graham T.A., Salomon M.P., Zhao J., Marjoram P., Siegmund K., Press M.F., Shibata D., Curtis C. A Big Bang model of human colorectal tumor growth. Nat. Genet. 2015;47:209–216. doi: 10.1038/ng.3214. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Tari H., Kessler K., Trahearn N., Werner B., Vinci M., Jones C., Sottoriva A. Quantification of spatial subclonal interactions enhancing the invasive phenotype of pediatric glioma. Cell Rep. 2022;40:111283. doi: 10.1016/j.celrep.2022.111283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Maley C.C., Galipeau P.C., Finley J.C., Wongsurawat V.J., Li X., Sanchez C.A., Paulson T.G., Blount P.L., Risques R.-A., Rabinovitch P.S., Reid B.J. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 2006;38:468–473. doi: 10.1038/ng1768. [DOI] [PubMed] [Google Scholar]
- 70.Chauhan L., Ram U., Hari K., Jolly M.K. Topological signatures in regulatory network enable phenotypic heterogeneity in small cell lung cancer. Elife. 2021;10:e64522. doi: 10.7554/eLife.64522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.Udyavar A.R., Wooten D.J., Hoeksema M., Bansal M., Califano A., Estrada L., Schnell S., Irish J.M., Massion P.P., Quaranta V. Novel hybrid phenotype revealed in small cell lung cancer by a transcription factor network model that can explain tumor heterogeneity. Cancer Res. 2017;77:1063–1074. doi: 10.1158/0008-5472.CAN-16-1467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Rehman S.K., Haynes J., Collignon E., Brown K.R., Wang Y., Nixon A.M.L., Bruce J.P., Wintersinger J.A., Singh Mer A., Lo E.B.L., et al. Colorectal cancer cells enter a diapause-like DTP state to survive chemotherapy. Cell. 2021;184:226–242.e21. doi: 10.1016/j.cell.2020.11.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Risom T., Langer E.M., Chapman M.P., Rantala J., Fields A.J., Boniface C., Alvarez M.J., Kendsersky N.D., Pelz C.R., Johnson-Camacho K., et al. Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nat. Commun. 2018;9:3815. doi: 10.1038/s41467-018-05729-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Kaur A., Webster M.R., Marchbank K., Behera R., Ndoye A., Kugel C.H., 3rd, Dang V.M., Appleton J., O’Connell M.P., Cheng P., et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250–254. doi: 10.1038/nature17392. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- 75.Bottazzi B., Riboli E., Mantovani A. Aging, inflammation and cancer. Semin. Immunol. 2018;40:74–82. doi: 10.1016/j.smim.2018.10.011. [DOI] [PubMed] [Google Scholar]
- 76.Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 77.Greten F.R., Grivennikov S.I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27–41. doi: 10.1016/j.immuni.2019.06.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78.Galon J., Bruni D. Tumor immunology and tumor evolution: intertwined histories. Immunity. 2020;52:55–81. doi: 10.1016/j.immuni.2019.12.018. [DOI] [PubMed] [Google Scholar]
- 79.Hiam-Galvez K.J., Allen B.M., Spitzer M.H. Systemic immunity in cancer. Nat. Rev. Cancer. 2021;21:345–359. doi: 10.1038/s41568-021-00347-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Allen B.M., Hiam K.J., Burnett C.E., Venida A., DeBarge R., Tenvooren I., Marquez D.M., Cho N.W., Carmi Y., Spitzer M.H. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 2020;26:1125–1134. doi: 10.1038/s41591-020-0892-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Wu W.-C., Sun H.-W., Chen H.-T., Liang J., Yu X.-J., Wu C., Wang Z., Zheng L. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc. Natl. Acad. Sci. USA. 2014;111:4221–4226. doi: 10.1073/pnas.1320753111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 82.Riaz N., Havel J.J., Makarov V., Desrichard A., Urba W.J., Sims J.S., Hodi F.S., Martín-Algarra S., Mandal R., Sharfman W.H., et al. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017;171:934–949.e16. doi: 10.1016/j.cell.2017.09.028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 83.Mold J.E., Weissman M.H., Ratz M., Hagemann-Jensen M., Hård J., Eriksson C.-J., Toosi H., Berghenstråhle J., von Berlin L., Martin M., et al. Clonally heritable gene expression imparts a layer of diversity within cell types. bioRxiv. 2022 doi: 10.1101/2022.02.14.480352. Preprint at. [DOI] [PubMed] [Google Scholar]
- 84.Baldwin L.A., Bartonicek N., Yang J., Wu S.Z., Deng N., Roden D.L., Chan C.-L., Al-Eryani G., Zanker D.J., Parker B.S., et al. DNA barcoding reveals ongoing immunoediting of clonal cancer populations during metastatic progression and immunotherapy response. Nat. Commun. 2022;13:6539. doi: 10.1038/s41467-022-34041-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.de Magalhães J.P. How ageing processes influence cancer. Nat. Rev. Cancer. 2013;13:357–365. doi: 10.1038/nrc3497. [DOI] [PubMed] [Google Scholar]
- 86.Kennedy B.K., Berger S.L., Brunet A., Campisi J., Cuervo A.M., Epel E.S., Franceschi C., Lithgow G.J., Morimoto R.I., Pessin J.E., et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–713. doi: 10.1016/j.cell.2014.10.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88.Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018;14:576–590. doi: 10.1038/s41574-018-0059-4. [DOI] [PubMed] [Google Scholar]
- 89.Jerby-Arnon L., Regev A. DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nat. Biotechnol. 2022;40:1467–1477. doi: 10.1038/s41587-022-01288-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 90.Albers J.J., Pelka K. Listening in on multicellular communication in human tissue immunology. Front. Immunol. 2022;13:884185. doi: 10.3389/fimmu.2022.884185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 91.Weinreb C., Rodriguez-Fraticelli A., Camargo F.D., Klein A.M. Lineage tracing on transcriptional landscapes links state to fate during differentiation. Science. 2020;367:eaaw3381. doi: 10.1126/science.aaw3381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 92.Lee-Six H., Øbro N.F., Shepherd M.S., Grossmann S., Dawson K., Belmonte M., Osborne R.J., Huntly B.J.P., Martincorena I., Anderson E., et al. Population dynamics of normal human blood inferred from somatic mutations. Nature. 2018;561:473–478. doi: 10.1038/s41586-018-0497-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93.Bartram C.R., Ludwig W.D., Hiddemann W., Lyons J., Buschle M., Ritter J., Harbott J., Fröhlich A., Janssen J.W. Acute myeloid leukemia: analysis of ras gene mutations and clonality defined by polymorphic X-linked loci. Leukemia. 1989;3:247–256. [PubMed] [Google Scholar]
- 94.Genovese G., Kähler A.K., Handsaker R.E., Lindberg J., Rose S.A., Bakhoum S.F., Chambert K., Mick E., Neale B.M., Fromer M., et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 2014;371:2477–2487. doi: 10.1056/NEJMoa1409405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Jaiswal S., Fontanillas P., Flannick J., Manning A., Grauman P.V., Mar B.G., Lindsley R.C., Mermel C.H., Burtt N., Chavez A., et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 2014;371:2488–2498. doi: 10.1056/NEJMoa1408617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96.Steensma D.P., Ebert B.L. Clonal hematopoiesis as a model for premalignant changes during aging. Exp. Hematol. 2020;83:48–56. doi: 10.1016/j.exphem.2019.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97.Jaiswal S., Ebert B.L. Clonal hematopoiesis in human aging and disease. Science. 2019;366:eaan4673. doi: 10.1126/science.aan4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 98.Abelson S., Collord G., Ng S.W.K., Weissbrod O., Mendelson Cohen N., Niemeyer E., Barda N., Zuzarte P.C., Heisler L., Sundaravadanam Y., et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–404. doi: 10.1038/s41586-018-0317-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 99.Shlush L.I., Zandi S., Mitchell A., Chen W.C., Brandwein J.M., Gupta V., Kennedy J.A., Schimmer A.D., Schuh A.C., Yee K.W., et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–333. doi: 10.1038/nature13038. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 100.Steensma D.P., Bejar R., Jaiswal S., Lindsley R.C., Sekeres M.A., Hasserjian R.P., Ebert B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16. doi: 10.1182/blood-2015-03-631747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 101.Evans E.J., Jr., DeGregori J. Cells with cancer-associated mutations overtake our tissues as we age. Aging Cancer. 2021;2:82–97. doi: 10.1002/aac2.12037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 102.Mitchell E., Spencer Chapman M., Williams N., Dawson K.J., Mende N., Calderbank E.F., Jung H., Mitchell T., Coorens T.H.H., Spencer D.H., et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022;606:343–350. doi: 10.1038/s41586-022-04786-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 103.Fabre M.A., de Almeida J.G., Fiorillo E., Mitchell E., Damaskou A., Rak J., Orrù V., Marongiu M., Chapman M.S., Vijayabaskar M.S., et al. The longitudinal dynamics and natural history of clonal haematopoiesis. Nature. 2022;606:335–342. doi: 10.1038/s41586-022-04785-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 104.Kar S.P., Quiros P.M., Gu M., Jiang T., Mitchell J., Langdon R., Iyer V., Barcena C., Vijayabaskar M.S., Fabre M.A., et al. Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis. Nat. Genet. 2022;54:1155–1166. doi: 10.1038/s41588-022-01121-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105.Schwenger E., Steidl U. An evolutionary approach to clonally complex hematologic disorders. Blood Cancer Discov. 2021;2:201–215. doi: 10.1158/2643-3230.BCD-20-0219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106.Steensma D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematology. Am. Soc. Hematol. Educ. Program. 2018;2018:264–269. doi: 10.1182/asheducation-2018.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 107.Hsu J.I., Dayaram T., Tovy A., De Braekeleer E., Jeong M., Wang F., Zhang J., Heffernan T.P., Gera S., Kovacs J.J., et al. PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell. 2018;23:700–713.e6. doi: 10.1016/j.stem.2018.10.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 108.Lindsley R.C., Saber W., Mar B.G., Redd R., Wang T., Haagenson M.D., Grauman P.V., Hu Z.-H., Spellman S.R., Lee S.J., et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N. Engl. J. Med. 2017;376:536–547. doi: 10.1056/NEJMoa1611604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 109.Bhattacharya R., Zekavat S.M., Uddin M.M., Pirruccello J., Niroula A., Gibson C., Griffin G.K., Libby P., Ebert B.L., Bick A., Natarajan P. Association of diet quality with prevalence of clonal hematopoiesis and adverse cardiovascular events. JAMA Cardiol. 2021;6:1069–1077. doi: 10.1001/jamacardio.2021.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 110.Haring B., Reiner A.P., Liu J., Tobias D.K., Whitsel E., Berger J.S., Desai P., Wassertheil-Smoller S., LaMonte M.J., Hayden K.M., et al. Healthy lifestyle and clonal hematopoiesis of indeterminate potential: results from the women’s health initiative. J. Am. Heart Assoc. 2021;10:e018789. doi: 10.1161/JAHA.120.018789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111.SanMiguel J.M., Young K., Trowbridge J.J. Hand in hand: intrinsic and extrinsic drivers of aging and clonal hematopoiesis. Exp. Hematol. 2020;91:1–9. doi: 10.1016/j.exphem.2020.09.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 112.Dharan N.J., Yeh P., Bloch M., Yeung M.M., Baker D., Guinto J., Roth N., Ftouni S., Ognenovska K., Smith D., et al. HIV is associated with an increased risk of age-related clonal hematopoiesis among older adults. Nat. Med. 2021;27:1006–1011. doi: 10.1038/s41591-021-01357-y. [DOI] [PubMed] [Google Scholar]
- 113.Marnell C.S., Bick A., Natarajan P. Clonal hematopoiesis of indeterminate potential (CHIP): linking somatic mutations, hematopoiesis, chronic inflammation and cardiovascular disease. J. Mol. Cell. Cardiol. 2021;161:98–105. doi: 10.1016/j.yjmcc.2021.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 114.Bick A.G., Popadin K., Thorball C.W., Uddin M.M., Zanni M., Yu B., Cavassini M., Rauch A., Tarr P., Schmid P., et al. Increased prevalence of clonal hematopoiesis of indeterminate potential amongst people living with HIV. Sci. Rep. 2022;12:577. doi: 10.1038/s41598-021-04308-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 115.Pathai S., Bajillan H., Landay A.L., High K.P. Is HIV a model of accelerated or accentuated aging? J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:833–842. doi: 10.1093/gerona/glt168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116.Pawelec G., McElhaney J.E., Aiello A.E., Derhovanessian E. The impact of CMV infection on survival in older humans. Curr. Opin. Immunol. 2012;24:507–511. doi: 10.1016/j.coi.2012.04.002. [DOI] [PubMed] [Google Scholar]
- 117.Wattrus S.J., Smith M.L., Rodrigues C.P., Hagedorn E.J., Kim J.W., Budnik B., Zon L.I. Quality assurance of hematopoietic stem cells by macrophages determines stem cell clonality. Science. 2022;377:1413–1419. doi: 10.1126/science.abo4837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118.Marti G.E., Rawstron A.C., Ghia P., Hillmen P., Houlston R.S., Kay N., Schleinitz T.A., Caporaso N., International Familial CLL Consortium Diagnostic criteria for monoclonal B-cell lymphocytosis. Br. J. Haematol. 2005;130:325–332. doi: 10.1111/j.1365-2141.2005.05550.x. [DOI] [PubMed] [Google Scholar]
- 119.Landgren O., Kyle R.A., Pfeiffer R.M., Katzmann J.A., Caporaso N.E., Hayes R.B., Dispenzieri A., Kumar S., Clark R.J., Baris D., et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood. 2009;113:5412–5417. doi: 10.1182/blood-2008-12-194241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 120.Rodriguez-Fraticelli A.E., Wolock S.L., Weinreb C.S., Panero R., Patel S.H., Jankovic M., Sun J., Calogero R.A., Klein A.M., Camargo F.D. Clonal analysis of lineage fate in native haematopoiesis. Nature. 2018;553:212–216. doi: 10.1038/nature25168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 121.Barkley D., Moncada R., Pour M., Liberman D.A., Dryg I., Werba G., Wang W., Baron M., Rao A., Xia B., et al. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 2022;54:1192–1201. doi: 10.1038/s41588-022-01141-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 122.Bhat S., Coleman H.G., Yousef F., Johnston B.T., McManus D.T., Gavin A.T., Murray L.J. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J. Natl. Cancer Inst. 2011;103:1049–1057. doi: 10.1093/jnci/djr203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 123.Merlo L.M.F., Shah N.A., Li X., Blount P.L., Vaughan T.L., Reid B.J., Maley C.C. A comprehensive survey of clonal diversity measures in Barrett’s esophagus as biomarkers of progression to esophageal adenocarcinoma. Cancer Prev. Res. 2010;3:1388–1397. doi: 10.1158/1940-6207.CAPR-10-0108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 124.Weaver J.M.J., Ross-Innes C.S., Shannon N., Lynch A.G., Forshew T., Barbera M., Murtaza M., Ong C.-A.J., Lao-Sirieix P., Dunning M.J., et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 2014;46:837–843. doi: 10.1038/ng.3013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125.Agrawal N., Jiao Y., Bettegowda C., Hutfless S.M., Wang Y., David S., Cheng Y., Twaddell W.S., Latt N.L., Shin E.J., et al. Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma. Cancer Discov. 2012;2:899–905. doi: 10.1158/2159-8290.CD-12-0189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 126.Ross-Innes C.S., Becq J., Warren A., Cheetham R.K., Northen H., O’Donovan M., Malhotra S., di Pietro M., Ivakhno S., He M., et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat. Genet. 2015;47:1038–1046. doi: 10.1038/ng.3357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127.Cisneros-Villanueva M., Hidalgo-Pérez L., Rios-Romero M., Cedro-Tanda A., Ruiz-Villavicencio C.A., Page K., Hastings R., Fernandez-Garcia D., Allsopp R., Fonseca-Montaño M.A., et al. Cell-free DNA analysis in current cancer clinical trials: a review. Br. J. Cancer. 2022;126:391–400. doi: 10.1038/s41416-021-01696-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128.Ludwig L.S., Lareau C.A., Ulirsch J.C., Christian E., Muus C., Li L.H., Pelka K., Ge W., Oren Y., Brack A., et al. Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019;176:1325–1339.e22. doi: 10.1016/j.cell.2019.01.022. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 129.Miller T.E., Lareau C.A., Verga J.A., DePasquale E.A.K., Liu V., Ssozi D., Sandor K., Yin Y., Ludwig L.S., El Farran C.A., et al. Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nat. Biotechnol. 2022;40:1030–1034. doi: 10.1038/s41587-022-01210-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130.Bagheri N., Carpenter A.E., Lundberg E., Plant A.L., Horwitz R. The new era of quantitative cell imaging-challenges and opportunities. Mol. Cell. 2022;82:241–247. doi: 10.1016/j.molcel.2021.12.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 131.Haghighi M., Caicedo J.C., Cimini B.A., Carpenter A.E., Singh S. High-dimensional gene expression and morphology profiles of cells across 28,000 genetic and chemical perturbations. Nat. Methods. 2022;19:1550–1557. doi: 10.1038/s41592-022-01667-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 132.Way G.P., Natoli T., Adeboye A., Litichevskiy L., Yang A., Lu X., Caicedo J.C., Cimini B.A., Karhohs K., Logan D.J., et al. Morphology and gene expression profiling provide complementary information for mapping cell state. Cell Syst. 2022;13:911–923.e9. doi: 10.1016/j.cels.2022.10.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 133.Tian C., Yang C., Spencer S.L. EllipTrack: a global-local cell-tracking pipeline for 2D fluorescence time-lapse microscopy. Cell Rep. 2020;32:107984. doi: 10.1016/j.celrep.2020.107984. [DOI] [PubMed] [Google Scholar]
- 134.Phillips N.E., Mandic A., Omidi S., Naef F., Suter D.M. Memory and relatedness of transcriptional activity in mammalian cell lineages. Nat. Commun. 2019;10:1208. doi: 10.1038/s41467-019-09189-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135.Eisele A.S., Tarbier M., Dormann A.A., Pelechano V., Suter D.M. Barcode-free prediction of cell lineages from scRNA-seq datasets. bioRxiv. 2022 doi: 10.1101/2022.09.20.508646. Preprint at. [DOI] [Google Scholar]
- 136.Neftel C., Laffy J., Filbin M.G., Hara T., Shore M.E., Rahme G.J., Richman A.R., Silverbush D., Shaw M.L., Hebert C.M., et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178:835–849.e21. doi: 10.1016/j.cell.2019.06.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 137.Rodriques S.G., Stickels R.R., Goeva A., Martin C.A., Murray E., Vanderburg C.R., Welch J., Chen L.M., Chen F., Macosko E.Z. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463–1467. doi: 10.1126/science.aaw1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 138.Payne A.C., Chiang Z.D., Reginato P.L., Mangiameli S.M., Murray E.M., Yao C.-C., Markoulaki S., Earl A.S., Labade A.S., Jaenisch R., et al. In situ genome sequencing resolves DNA sequence and structure in intact biological samples. Science. 2021;371:eaay3446. doi: 10.1126/science.aay3446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139.Zhao T., Chiang Z.D., Morriss J.W., LaFave L.M., Murray E.M., Del Priore I., Meli K., Lareau C.A., Nadaf N.M., Li J., et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature. 2022;601:85–91. doi: 10.1038/s41586-021-04217-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 140.Young A.L., Wong T.N., Hughes A.E.O., Heath S.E., Ley T.J., Link D.C., Druley T.E. Quantifying ultra-rare pre-leukemic clones via targeted error-corrected sequencing. Leukemia. 2015;29:1608–1611. doi: 10.1038/leu.2015.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141.Martelotto L.G., Baslan T., Kendall J., Geyer F.C., Burke K.A., Spraggon L., Piscuoglio S., Chadalavada K., Nanjangud G., Ng C.K.Y., et al. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat. Med. 2017;23:376–385. doi: 10.1038/nm.4279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 142.Dong X., Zhang L., Milholland B., Lee M., Maslov A.Y., Wang T., Vijg J. Accurate identification of single-nucleotide variants in whole-genome-amplified single cells. Nat. Methods. 2017;14:491–493. doi: 10.1038/nmeth.4227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 143.Chu W.K., Edge P., Lee H.S., Bansal V., Bafna V., Huang X., Zhang K. Ultraaccurate genome sequencing and haplotyping of single human cells. Proc. Natl. Acad. Sci. USA. 2017;114:12512–12517. doi: 10.1073/pnas.1707609114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 144.Biezuner T., Spiro A., Raz O., Amir S., Milo L., Adar R., Chapal-Ilani N., Berman V., Fried Y., Ainbinder E., et al. A generic, cost-effective, and scalable cell lineage analysis platform. Genome Res. 2016;26:1588–1599. doi: 10.1101/gr.202903.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 145.Tao L., Raz O., Marx Z., Ghosh M.S., Huber S., Greindl-Junghans J., Biezuner T., Amir S., Milo L., Adar R., et al. Retrospective cell lineage reconstruction in humans by using short tandem repeats. Cell Rep. Methods. 2021;1:100054. doi: 10.1016/j.crmeth.2021.100054. None. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 146.Nam A.S., Dusaj N., Izzo F., Murali R., Myers R.M., Mouhieddine T.H., Sotelo J., Benbarche S., Waarts M., Gaiti F., et al. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 2022;54:1514–1526. doi: 10.1038/s41588-022-01179-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147.Nam A.S., Kim K.-T., Chaligne R., Izzo F., Ang C., Taylor J., Myers R.M., Abu-Zeinah G., Brand R., Omans N.D., et al. Somatic mutations and cell identity linked by Genotyping of Transcriptomes. Nature. 2019;571:355–360. doi: 10.1038/s41586-019-1367-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 148.Wagner D.E., Weinreb C., Collins Z.M., Briggs J.A., Megason S.G., Klein A.M. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science. 2018;360:981–987. doi: 10.1126/science.aar4362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149.Pei W., Feyerabend T.B., Rössler J., Wang X., Postrach D., Busch K., Rode I., Klapproth K., Dietlein N., Quedenau C., et al. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature. 2017;548:456–460. doi: 10.1038/nature23653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150.Biddy B.A., Kong W., Kamimoto K., Guo C., Waye S.E., Sun T., Morris S.A. Single-cell mapping of lineage and identity in direct reprogramming. Nature. 2018;564:219–224. doi: 10.1038/s41586-018-0744-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151.Gutierrez C., Al’Khafaji A.M., Brenner E., Johnson K.E., Gohil S.H., Lin Z., Knisbacher B.A., Durrett R.E., Li S., Parvin S., et al. Multifunctional barcoding with ClonMapper enables high-resolution study of clonal dynamics during tumor evolution and treatment. Nat. Can. (Ott.) 2021;2:758–772. doi: 10.1038/s43018-021-00222-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152.Kalhor R., Kalhor K., Mejia L., Leeper K., Graveline A., Mali P., Church G.M. Developmental barcoding of whole mouse via homing CRISPR. Science. 2018;361:eaat9804. doi: 10.1126/science.aat9804. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 153.Spanjaard B., Hu B., Mitic N., Olivares-Chauvet P., Janjuha S., Ninov N., Junker J.P. Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 2018;36:469–473. doi: 10.1038/nbt.4124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 154.Zhang W., Bado I.L., Hu J., Wan Y.-W., Wu L., Wang H., Gao Y., Jeong H.-H., Xu Z., Hao X., et al. The bone microenvironment invigorates metastatic seeds for further dissemination. Cell. 2021;184:2471–2486.e20. doi: 10.1016/j.cell.2021.03.011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 155.Simeonov K.P., Byrns C.N., Clark M.L., Norgard R.J., Martin B., Stanger B.Z., Shendure J., McKenna A., Lengner C.J. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell. 2021;39:1150–1162.e9. doi: 10.1016/j.ccell.2021.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 156.Chan M.M., Smith Z.D., Grosswendt S., Kretzmer H., Norman T.M., Adamson B., Jost M., Quinn J.J., Yang D., Jones M.G., et al. Molecular recording of mammalian embryogenesis. Nature. 2019;570:77–82. doi: 10.1038/s41586-019-1184-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 157.Alemany A., Florescu M., Baron C.S., Peterson-Maduro J., van Oudenaarden A. Whole-organism clone tracing using single-cell sequencing. Nature. 2018;556:108–112. doi: 10.1038/nature25969. [DOI] [PubMed] [Google Scholar]
- 158.McKenna A., Findlay G.M., Gagnon J.A., Horwitz M.S., Schier A.F., Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. 2016;353:aaf7907. doi: 10.1126/science.aaf7907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 159.Frieda K.L., Linton J.M., Hormoz S., Choi J., Chow K.-H.K., Singer Z.S., Budde M.W., Elowitz M.B., Cai L. Synthetic recording and in situ readout of lineage information in single cells. Nature. 2017;541:107–111. doi: 10.1038/nature20777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 160.Raj B., Wagner D.E., McKenna A., Pandey S., Klein A.M., Shendure J., Gagnon J.A., Schier A.F. Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain. Nat. Biotechnol. 2018;36:442–450. doi: 10.1038/nbt.4103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 161.Clark I.C., Gutiérrez-Vázquez C., Wheeler M.A., Li Z., Rothhammer V., Linnerbauer M., Sanmarco L.M., Guo L., Blain M., Zandee S.E.J., et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science. 2021;372:eabf1230. doi: 10.1126/science.abf1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 162.Loveless T.B., Grotts J.H., Schechter M.W., Forouzmand E., Carlson C.K., Agahi B.S., Liang G., Ficht M., Liu B., Xie X., Liu C.C. Lineage tracing and analog recording in mammalian cells by single-site DNA writing. Nat. Chem. Biol. 2021;17:739–747. doi: 10.1038/s41589-021-00769-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 163.Satas G., Zaccaria S., Mon G., Raphael B.J. SCARLET: single-cell tumor phylogeny inference with copy-number constrained mutation losses. Cell Syst. 2020;10:323–332.e8. doi: 10.1016/j.cels.2020.04.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 164.Gao R., Bai S., Henderson Y.C., Lin Y., Schalck A., Yan Y., Kumar T., Hu M., Sei E., Davis A., et al. Delineating copy number and clonal substructure in human tumors from single-cell transcriptomes. Nat. Biotechnol. 2021;39:599–608. doi: 10.1038/s41587-020-00795-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 165.Chakrabarti S., Paek A.L., Reyes J., Lasick K.A., Lahav G., Michor F. Hidden heterogeneity and circadian-controlled cell fate inferred from single cell lineages. Nat. Commun. 2018;9:5372. doi: 10.1038/s41467-018-07788-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 166.Fialkow P.J., Gartler S.M., Yoshida A. Clonal origin of chronic myelocytic leukemia in man. Proc. Natl. Acad. Sci. USA. 1967;58:1468–1471. doi: 10.1073/pnas.58.4.1468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 167.Rowley J.D. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–293. doi: 10.1038/243290a0. [DOI] [PubMed] [Google Scholar]
- 168.Rowley J.D. Identificaton of a translocation with quinacrine fluorescence in a patient with acute leukemia. Ann. Genet. 1973;16:109–112. [PubMed] [Google Scholar]
- 169.Nowell P.C. The clonal evolution of tumor cell populations. Science. 1976;194:23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
- 170.Vogelstein B., Fearon E.R., Hamilton S.R., Preisinger A.C., Willard H.F., Michelson A.M., Riggs A.D., Orkin S.H. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res. 1987;47:4806–4813. [PubMed] [Google Scholar]
- 171.Mao L., Lee D.J., Tockman M.S., Erozan Y.S., Askin F., Sidransky D. Microsatellite alterations as clonal markers for the detection of human cancer. Proc. Natl. Acad. Sci. USA. 1994;91:9871–9875. doi: 10.1073/pnas.91.21.9871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 172.Lapidot T., Sirard C., Vormoor J., Murdoch B., Hoang T., Caceres-Cortes J., Minden M., Paterson B., Caligiuri M.A., Dick J.E. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–648. doi: 10.1038/367645a0. [DOI] [PubMed] [Google Scholar]
- 173.Bonnet D., Dick J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997;3:730–737. doi: 10.1038/nm0797-730. [DOI] [PubMed] [Google Scholar]
- 174.Busque L., Patel J.P., Figueroa M.E., Vasanthakumar A., Provost S., Hamilou Z., Mollica L., Li J., Viale A., Heguy A., et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat. Genet. 2012;44:1179–1181. doi: 10.1038/ng.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175.Jaiswal S., Natarajan P., Silver A.J., Gibson C.J., Bick A.G., Shvartz E., McConkey M., Gupta N., Gabriel S., Ardissino D., et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 2017;377:111–121. doi: 10.1056/NEJMoa1701719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 176.Sano S., Oshima K., Wang Y., MacLauchlan S., Katanasaka Y., Sano M., Zuriaga M.A., Yoshiyama M., Goukassian D., Cooper M.A., et al. Tet2-Mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J. Am. Coll. Cardiol. 2018;71:875–886. doi: 10.1016/j.jacc.2017.12.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 177.Boveri T. Concerning the origin of malignant tumours by theodor boveri. Translated and annotated by henry harris. J. Cell Sci. 2008;121:1–84. doi: 10.1242/jcs.025742. [DOI] [PubMed] [Google Scholar]



