Abstract
Ageing is the greatest risk factor of late‐onset neurodegenerative diseases. In the realm of sporadic tauopathies, modelling the process of biological ageing in experimental animals forms the foundation of searching for the molecular origin of pathogenic tau and developing potential therapeutic interventions. Although prior research into transgenic tau models offers valuable lessons for studying how tau mutations and overexpression can drive tau pathologies, the underlying mechanisms by which ageing leads to abnormal tau accumulation remains poorly understood. Mutations associated with human progeroid syndromes have been proposed to be able to mimic an aged environment in animal models. Here, we summarise recent attempts in modelling ageing in relation to tauopathies using animal models that carry mutations associated with human progeroid syndromes, or genetic elements unrelated to human progeroid syndromes, or have exceptional natural lifespans, or a remarkable resistance to ageing‐related disorders.
Keywords: ageing, animal models, progeria, tau, tauopathy
Modelling the process of biological ageing in experimental animals is necessary for understanding how ageing leads to abnormal tau accumulation and tau‐related neurodegeneration. As discussed in this review, recent attempts to model ageing in relation to tauopathies have utilised animal models with mutations associated with human progeroid syndromes, or with exceptional natural lifespans, or resistance to age‐related disorders.
Abbreviations
- AD
Alzheimer's disease
- AGD
argyrophilic grain disease
- A‐T
ataxia telangiectasia
- ATM
ataxia‐telangiectasia mutated serine/threonine kinase
- CBD
corticobasal degeneration
- CS
Cockayne syndrome
- DSBs
double‐stranded DNA breaks
- FTLD
frontotemporal dementia
- HGPS
Hutchinson Gilford progeria syndrome
- KL
Klotho
- MAPs
microtubule‐associated proteins
- MAPT
microtubule‐associated protein tau
- NCDs
non‐communicable conditions
- NMR
naked mole rat
- PiD
Pick's disease
- PS
progeroid syndromes
- PSP
progressive supranuclear palsy
- SAMP
senescence‐accelerated prone mouse
- WS
Werner syndrome
- XP
xeroderma pigmentosum
1. INTRODUCTION
Ageing is a time‐dependent progressive decline of physiological functions that compromises the ability to adapt to metabolic stresses. As a main risk factor for many prevalent non‐communicable conditions (NCDs), advancing age not only contributes to life‐threatening diseases (e.g., cancer [White et al., 2014], cardiovascular diseases [Rodgers et al., 2019] and neurodegeneration [Hou et al., 2019]), but also to less lethal conditions that significantly compromise life quality (e.g., cataract [Nirmalan et al., 2004], hypertension [Buford, 2016] and diabetes [Khan et al., 2020]). In the past few decades, human life expectancy has greatly increased worldwide, and it is expected to continue to increase (Bell & Miller, 2005; United Nations—Department of Economic and Social Affairs, 2019). While this is linked to a spectacular advancement in modern medical technologies, a longer life expectancy also confers a greater lifetime exposure to internal and external risk factors that may cumulatively result in ailments. Hence, compressing age‐related morbidity and further extending the human healthspan require substantial breakthroughs to understand the biology of ageing at an organismal, organ, cellular and molecular level.
One major drawback in in vivo ageing research is the duration and the cost of the experiments due to the requirement of keeping the animals for most of their lifespan (over 2 years for a typical mouse model) to be able to study the ageing process. Fuelled by the discovery of ageing‐related features in a variety of accelerated ageing (progeroid) syndromes, the past two decades has seen both advancement in understanding the underlying molecular mechanism behind these rare diseases and remarkable efforts in utilising progeroid pathological ageing to unveil the mystery of physiological ageing and ageing‐related disorders. In the realm of neurodegenerative diseases, some strides in understanding have been helped by the analysis of human patient samples. But advances in this period have also arisen from the emergence of new animal/tissue culture models that age faster while recapitulating key biochemical ageing‐related features such as senescence, nuclear envelope impairment and elevated levels of genomic damage—to name a few. Here, we recap recent attempts in utilising model organisms, which exhibit an accelerated or decelerated rate of ageing, to study neurodegenerative disorders that are predominantly driven by pathological changes of the tau protein (tauopathies). To understand the advantages and disadvantages of using fast/slow ageing models, it is necessary to briefly consider the ageing‐dependent nature of tauopathies and widely used animal models in tauopathy research.
1.1. Microtubule‐associated protein tau and tauopathies
Tau proteins are a group of low molecular weight microtubule‐associated proteins, of which there are six isoforms produced by alternative splicing of the MAPT gene, located on chromosome 17q21 (Goedert et al., 1988, 1989). A highly conserved protein, tau is expressed across many animal species, including human, mouse, rat and bovine species (Adolf, 1989; Takuma et al., 2003). Transcripts of tau are found primarily, though not exclusively, within the central nervous system, particularly in neurons. As would be expected of microtubule‐associated proteins (MAPs), the primary physiological function of tau is binding to microtubules, stabilising and mediating their assembly and modulating vesicle/organelle transport along microtubules (Binder et al., 1985; Weingarten et al., 1975). Within neurons, tau is primarily located within axons, though may also be found within somatodendritic compartments such as the cell membrane (Arrasate et al., 2000), mitochondria (Li et al., 2016) and nucleus (Wang et al., 1993). In addition, cellular localisation of tau allows it to participate in other vital cellular activities, such as regulating axonal transport (Morris et al., 2021), protecting against genetic damage (Sultan et al., 2011; Violet et al., 2014), modulating synaptic plasticity (Wang, Khandelwal, et al., 2022) and assisting in neuronal maturation (Fiock et al., 2020).
The term ‘tauopathy’ refers to a group of neurodegenerative diseases pathologically characterised by the accumulation of insoluble intracellular tau inclusions in the central nervous system, with symptoms of dementia and/or parkinsonism (Kovacs, 2015). Some examples of tauopathy include Alzheimer's disease (AD), argyrophilic grain disease (AGD), globular glial tauopathy, progressive supranuclear palsy (PSP), Pick's disease (PiD) and corticobasal degeneration (CBD; Review by [Götz et al., 2019]). Based upon the primary contributor of pathology, tauopathies can be classified as primary tauopathies, in which tau aggregation plays a prominent role in disease pathogenesis, and secondary tauopathies, where disease progression is mainly propelled by abnormalities of other proteins. Based upon its aetiology, tauopathies can be divided into two subtypes: familial and sporadic. Familial tauopathies are caused by mutations in the MAPT gene and are often autosomal dominant. To date, more than 100 tau mutations have been documented yet some do not have known functions in pathogenesis (ALZFORUM – Mutation Database, n.d.). Most exonic pathogenic mutations lie in the coding regions of exons 9, 10, 11 and 12, corresponding to the repeated microtubule‐binding domain of tau. Intronic mutations affect the ratio of 3R:4R tau splicing isoforms. Familial tauopathies generally associate with early onset of symptoms (~ 58.5 years in FTLD‐MAPT [Moore et al., 2020]). On the other hand, sporadic tauopathies are not hereditary and have delayed onset of symptoms (>65 years in most sporadic AD cases [Rabinovici, 2019]). Not linked to tau genetic mutations or any specific environmental factors, sporadic tauopathies occur in a seemingly unpredictable manner, suggesting a complex and multifactorial nature of its pathogenesis.
Among all known risk factors for sporadic late‐onset tauopathies, chronological age is strongly correlated with the prevalence of the disease. For instance, a recent epidemiological analysis showed a positive correlation between age and prevalence of progressive supranuclear palsy, a primary tauopathy (Viscidi et al., 2021; Figure 1a). The same correlation has also been established in Alzheimer's disease, a secondary tauopathy. An early longitudinal study conducted in the United States demonstrated a strong positive correlation between age and the incidence rate of Alzheimer's disease in both male and female participants (Kawas et al., 2000; Figure 1b). In 2014, a meta‐analysis of the prevalence of dementia (62% of which was Alzheimer's disease) in Western Europe illustrated the same correlation (Prince et al., 2014; Figure 1c). Notably, ageing is also an important risk factor in neurodegenerative diseases in which pathogenesis is driven by proteins other than tau. For example, advanced age also appears to correlate with high incidence of parkinsonism (Figure 1d), a neurological condition primarily caused by defects in α‐synuclein (Savica et al., 2013). The sex bias in dementia related to tau or synuclein may be explained by sex hormones (Rajsombath et al., 2019; Sundermann et al., 2020; Yang et al., 2022), or sex‐related differences in brain connectome and specific genes/transcription factors (López‐Cerdán et al., 2022; Shokouhi et al., 2020).
FIGURE 1.
Correlation of age and prevalence/incidence of neurodegenerative diseases—progressive supranuclear palsy (a), Alzheimer's disease (b), general dementia (c) and synucleinopathies (d). Plots were created from data from Viscidi et al. (2021), Kawas et al. (2000), Prince et al. (2014), and Savica et al. (2013).
1.2. Tauopathy rodent models
Model organisms form the foundations of sporadic tauopathy research, as they offer physiologically relevant platforms to study the influences of genetic, nutritional and environmental factors, and observe pathological changes at different time points of disease progression. Importantly, using model organisms with short natural lifespan allows for investigation of late‐onset disorders in a timely manner. In the realm of tauopathy research, more than 40 animal models have been developed over the past two decades (ALZFORUM—Animal Models, n.d.). The summary of single knock‐in transgenic tau rodent models captured in Table 1 highlights two limitations in these models. First, most of these animal models frequently rely on an overexpression of human tau protein (huTau) with disease‐related mutations, for example, P301L (Lewis et al., 2000) and R406W (Frost et al., 2016) in FTLD‐MAPT (frontotemporal lobar degeneration associated with MAPT mutations). In consequence, they recapitulate processes occurring in genetic tauopathies, but not necessarily the events of sporadic tauopathies. Second, overexpression of mutant tau significantly accelerates pathogenesis and therefore does not necessarily reflect the ageing‐dependent nature of idiopathic tauopathies. Indeed, only two out of 23 rodent models in Table 1 have a late‐onset cognitive impairment (>12 months in an average lifespan of 2 years for laboratory mice (Dutta & Sengupta, 2016) and 3 years for laboratory rats [Quinn, 2005; Sengupta, 2013]). As mimicking an aged cellular/physiological environment is an important practical and theoretical consideration that facilitates research into the origin of sporadic tauopathies, it is necessary to seek ways to combine the knowledge we inherited from studies using TgTau animal models and the lessons we learned from accelerated/decelerated ageing animal models.
TABLE 1.
Transgenic single knock‐in tau rodent models developed in the last two decades (ALZFORUM—Animal Models, n.d.).
Organism | Model | Transgene | Cognitive impairment onset (m.) | Promoter | Established in |
---|---|---|---|---|---|
Mouse | hTau (Andorfer et al., 2003) | HuTau | 6 | Tau promoter | 2003 |
hTau‐A152T (Maeda et al., 2016) | HuTau (1N4R, A152T) | 10 | CaMKIIα promoter | 2016 | |
hTau.P301S (Allen et al., 2002) | HuTau (0N4R, P301S) | 3 | Thy‐1 promoter | 2002 | |
JNPL3(P301L) (Lewis et al., 2000) | HuTau (0N4R, P301L) | Unknown | Mouse prion promoter | 2000 | |
MAPT knock‐in (Saito et al., 2019) | MuTau replaced with HuTau | Unknown | Mouse mapt promoter | 2019 | |
mThy‐1 3R tau (line 13) (Rockenstein et al., 2015) | HuTau (3R, L226V, G272V) | 8‐10 | Mouse Thy‐1 promoter | 2015 | |
rTgTauEC (de Calignon et al., 2012) | HuTau (4R0N, P301L) | 16 | Neuropsin promoter | 2012 | |
rTg(tauP301L)4510 (Santacruz et al., 2005) | HuTau (4R0N, P301L) | 2.5 | tTA promoter | 2005 | |
RW Tg mice (Zhang et al., 2004) | HuTau (4R2N, R406W) | Unknown | Mouse prion promoter | 2004 | |
Tau264 (Umeda et al., 2013) | HuTau (3R and 4R) | 6 | CaMKIIα promoter | 2013 | |
Tau35 (Bondulich et al., 2016) | HuTau (187‐441 a.a.) | 8 | Human tau promoter | 2016 | |
Tau4RTg2652 (Wheeler et al., 2015) | HuTau (4R1N, WT) | 3 | Thy1 promoter | 2015 | |
Tau609 (Tau 10+16) (Umeda et al., 2013) | HuTau (4R2N, IVS10+16 C>T) | 6 | CaMKIIα promoter | 2013 | |
TauC3 (Kim et al., 2016) | HuTau (0N4R, Δ20) | 1.3 | BAI1‐AP4 promoter | 2016 | |
Tau Exon 10 KO (Gumucio et al., 2013) | Deletion of exon 10 in muTau | Unknown | N/A | 2013 | |
TauΔK280 (Eckermann et al., 2007) | HuTau (4R2N, ΔK280) | 16 | CaMKIIα promoter | 2007 | |
Tau P301L (Terwel et al., 2005) | HuTau (4R2N, P301L) | 5 | Mouse Thy1 promoter | 2005 | |
Tau P301S (PS19) (Yoshiyama et al., 2007) | HuTau (4R1N, P301S) | 6 | Mouse prion promoter | 2007 | |
Tau R406W (Tatebayashi et al., 2002) | HuTau (4R2N, R406W) | 16 | CaMKIIα promoter | 2002 | |
TauRDΔK280 (Mocanu et al., 2008) | HuTau (244‐372 a.a.) | 10 | CaMKIIα promoter | 2008 | |
Tau V337M (Tanemura et al., 2001) | HuTau (4R2N, V337M) | 11 | PDGF‐β promoter | 2001 | |
THY‐Tau22 (Schindowski et al., 2006) | HuTau (4R2N, G272V, P301S) | 6 | Thy1 promoter | 2006 | |
TMHT (Flunkert et al., 2013) | HuTau (4R2N, V337M, R406W) | 5 | Thy1 promoter | 2013 | |
Rat | SHR24 (Filipcik et al., 2012) | HuTau (4R2N, 151‐274 a.a. and 306‐391 a.a.) | Unknown | Mouse Thy1 promoter | 2012 |
SHR318 (Zilka et al., 2006) | HuTau (4R2N, 151‐391 a.a.) | 4.5 | Mouse Thy1 promoter | 2006 | |
SHR72 (Koson et al., 2008) | HuTau (4R2N, 151‐391 a.a.) | Unknown | Mouse Thy1 promoter | 2008 |
2. AGEING MODEL ORGANISMS IN NEURODEGENERATION RESEARCH
In search for avenues to combat ageing and age‐related morbidities, two types of ageing processes have been studied: inborn normal (chronological) ageing and premature pathological ageing. Normal physiological ageing is associated with various defects at the subcellular level, including genome instability (Vijg & Suh, 2013), telomere shortening (Aubert & Lansdorp, 2008), mitochondrial and metabolic dysfunction (Trifunovic & Larsson, 2008), alterations in epigenetics (Saldanha & Watanabe, 2015), altered intercellular communication (Salminen et al., 2012), stem cell exhaustion (Oh et al., 2014), cellular senescence (di Micco et al., 2021), deregulated nutrient sensing (Houtkooper et al., 2010), loss of proteostasis (Santra et al., 2019), disabled macroautophagy (Pyo et al., 2013), chronic inflammation (Chung et al., 2019) and dysbiosis (Haran & McCormick, 2021), collectively known as ‘the 12 hallmarks of ageing’ proposed by Lopez‐Otin and colleagues (López‐Otín et al., 2023). As shown in Figure 1, in the following section, we will summarise two biological extremes: accelerated ageing models and decelerated ageing models. These have helped shed light on the basic genetic and physiological mechanisms associated with natural ageing and age‐dependent diseases (Figure 2).
FIGURE 2.
Ageing model organisms used in tauopathy research. Created with BioRender.com.
2.1. Accelerated ageing models in tauopathy research
In the field of cellular ageing and neurodegeneration, approaches to study the effects of ageing include the following: first, use of genetically modified animals that express mutated proteins which have been associated with human premature ageing syndromes (also called progeroid syndromes‐ PS). PS are rare congenital/genetic disorders that recapitulate some pathological features of normal ageing in an accelerated manner and thus provide potential insights into the natural ageing process. Most human PS are caused by either defects in the nuclear lamina, hence, the name ‘laminopathies’, or deficiencies in the DNA repair machineries. Table 2 offers a non‐exclusive summary of human PS. There have been attempts to exploit defects in these two cellular processes to mimic ageing in tauopathy model organisms; their benefits and limitations are summarised in Table 3. Second, the use of natural genetic variants that occur in animal lines that display phenotypes of premature ageing—these would include animals harbouring the polygenic SAMP8 trait or being homozygous for null alleles of the Klotho gene (Akiguchi et al., 2017; Kuro‐o et al., 1997). Third, using vertebrate organisms that have a naturally short lifespan, such as the African Turquoise Killifish, proved to be an effective model to study ageing.
TABLE 2.
Examples of genetic progeroid syndromes and associated neurological phenotypes.
Progeroid syndromes | Dominant/recessive | Mutated gene(s) | Affected protein(s) | Affected cellular mechanism | Neurological phenotypes |
---|---|---|---|---|---|
Ataxia telangiectasia (Rothblum‐Oviatt et al., 2016) | Recessive | ATM | ATM (Ataxia Telangiectasia, Mutated) | DNA damage response | Motor neuron defects, progressive cerebellar ataxia |
Cockayne syndrome (Laugel, 2013) | Recessive | ERCC8; ERCC6 | CSA, CSB | Nucleotide excision repair | Mental retardation, microcephaly, retinal atrophy and progressive neurodegeneration |
Hutchinson‐Gilford progeria syndrome (Pollex & Hegele, 2004; Ullrich & Gordon, 2015) | Dominant | LMNA | Lamin A | Nuclear lamina | None |
Nestor‐Guillermo progeria syndrome (Cabanillas et al., 2011) | Recessive | BANF1 | Barrier‐to‐autointegration factor | Nuclear lamina | None |
Restrictive dermopathy (Pradeep et al., 2022) | Recessive | ZMPSTE24 | Lamin A | Nuclear lamina | None |
Werner syndrome (Muftuoglu et al., 2008) | Recessive | WRN | WRN helicase | RecQ protein‐like helicase | Non‐AD senile dementia, schizophrenia, cerebrovascular disease and peripheral neuropathy |
Xeroderma pigmentosum (Lehmann et al., 2011) | Recessive | DDB2; ERCC2; ERCC3; ERCC4; CC5; XPA; XPC | XP DNA repair proteins | Nucleotide excision repair | Subtype‐dependent (see Table 3) |
TABLE 3.
Benefits and limitations of specific progeric models for tauopathy research.
Progeroid syndromes | Models | Benefits | Limitations | |
---|---|---|---|---|
Laminopathy models | Hutchinson–Gilford progeria syndrome | Progerin knock‐in mice (Jung et al., 2012; Osorio et al., 2011) | N/A |
|
Inducible progerin transgenic mice (Baek et al., 2015) |
|
|
||
Human iPSC‐derived neuron expressing progerin (Miller et al., 2013) |
|
|
||
Restrictive dermopathy | ZMPSTE24‐deficient mice (de Carlos et al., 2008; Yang et al., 2015) |
|
|
|
DNA repair deficiency models | Cockayne syndrome | Csa−/− mice (Jaarsma et al., 2011) |
|
|
Csa−/−/Xpa−/− mice (Jaarsma et al., 2011) |
|
|
||
CsbR571X/R571X rat (Xu et al., 2019) |
|
|
||
Ataxia telangiectasia |
AtmR35X/R35X/ Aptx−/− mice (Perez et al., 2021) |
|
|
|
Werner syndrome |
WrnΔhel/Δhel mice (Hui et al., 2018) |
|
|
|
Xeroderma pigmentosum | Subtype‐dependent (see Table 4) |
2.2. Transgenic progeroid model type 1: laminopathy models
Laminopathies are a diverse group of diseases caused by genetic malfunctions of proteins associated with the nuclear lamina—a protein meshwork coating the inner surface of the nuclear envelope and forming a part of the nucleoskeleton (Shin & Worman, 2021). The nuclear lamina is critical for maintaining the structure of the nucleus and the organisation of the chromatin. As the most common form of laminopathy, Hutchinson Gilford progeria syndrome (HGPS) is caused by an autosomal dominant mutation in LMNA, the gene encoding for lamin A and C proteins. The mutation leads to the production of a truncated form of lamin A (termed ‘progerin’; Ullrich & Gordon, 2015). Healthy lamin A precursor undergoes a 4‐step post‐translational process to produce mature lamin A: normal wild‐type pre‐lamin A undergoes farnesylation at its C‐terminal CaaX box by farnesyltransferase (FTase), C‐terminal cleavage after the cysteine residue, methylation by protein‐S‐isoprenylcysteine carboxyl methyltransferase and upstream cleavage by ZMPSTE24 (Davies et al., 2009). In HGPS, due to its permanent farnesylation state, progerin is constitutively retained in the nuclear lamina, acting as a dominant negative and leading to multiple defects relevant to cellular ageing. These include altered mechanical properties of the nuclei and increased nuclear stiffness (Goldman et al., 2004), altered chromatin organisation (Shevelyov & Ulianov, 2019), increased unrepaired DNA double‐stranded breaks (Zhang et al., 2016), disrupted nucleocytoplasmic transport (Kelley et al., 2011; Snow et al., 2013) and increased protein translation rate (Buchwalter & Hetzer, 2017). Models that recapitulate both tauopathy and laminopathy features have been built upon mutations in LMNA.
The first attempt of using progerin to accelerate ageing in a mouse model was accomplished in 2012. In knock‐in mice that express exclusively lamin A or exclusively progerin, it became apparent that lamin A, prelamin A and progerin are absent in neuronal and glial cells, suggesting that lamin A and its derivatives are not likely implicated in brain ageing (Jung et al., 2012). A neural‐specific microRNA, miR9, has been identified to suppress lamin A—and therefore progerin expression in the central nervous system; this finding was confirmed by an independent study performed on induced pluripotent stem cells derived from HGPS patient cells (Nissan et al., 2012). This is in agreement with the absence of Alzheimer's‐like pathology in HGPS post‐mortem tissues and with the clinical observations that HGPS patients do not develop neurological symptoms such as cognitive deterioration (Ullrich & Gordon, 2015). In Baek et al., 2015, the authors established an inducible HGPS transgenic mouse model that specifically expresses progerin in bone, skin, heart and neurons. This system showed that forced long‐term expression progerin in the hippocampal neurons resulted in severe nuclear distortions (e.g., nuclear blebbing and invagination) in cells from all tissues, without any apparent neuropathological defects, such as protein aggregation, adult neurogenesis ability, transcriptomic profile alteration (including lamin B1) and behavioural changes (Baek et al., 2015). It therefore suggests that progerin‐induced nuclear dysmorphology in neurons does not necessarily correlate with loss of neuronal functions and dementia‐related pathologies. The mechanisms behind this neuronal protection remain unknown. It is worth mentioning that progerin has also been used to assist in modelling pathological phenotypes of late‐onset Parkinson's disease in human iPSC‐derived neurons (Miller et al., 2013), where expression of progerin in PD iPSC‐derived dopamine neurons induced ageing‐related markers and disease phenotypes, such as dendrite degeneration, Lewy‐body‐precursor inclusions and dysregulated protein degradation mechanisms.
Recently, the role of the nuclear lamina in Alzheimer's disease has attracted more attention (Gil et al., 2021). Analyses of AD post‐mortem brain tissue revealed that lamin A mRNA levels increased at the late stage of AD in the hippocampus (Méndez‐López et al., 2019). Immunohistochemistry analysis further demonstrated the presence of lamin A immunopositive pyramidal neurons in the CA1 and CA3 regions of the hippocampus in AD brains from the Braak stages I to VI (Gil et al., 2020). Given these discoveries, the notion that lamin A and its derivatives are absent in neuronal cells and are therefore not involved in the function of the central nervous system deserves renewed scrutiny.
Apart from expressing progerin, ZMPSTE24, as an enzyme essential in lamin A processing, has also been exploited to generate progeroid ageing features in experimental model systems. ZMPSTE24 is an integral membrane zinc metallopeptidase that endoproteolytically cleaves the C‐terminal region of carboxymethylated prelamin A and produces mature lamin A (Quigley et al., 2013). Twenty human ZMPSTE24 mutations that reduce the enzyme activity have been identified to associate with three disease categories of increasing severity: mandibuloacral dysplasia type B, severe progeria (atypical ‘HGPS’) and restrictive dermopathy (Barrowman et al., 2012); the crucial involvement of ZMPSTE24 in laminopathies was further emphasised by a novel mouse model expressing non‐cleavable prelamin A (Wang, Shilagardi, et al., 2022). Despite its availability (Bergo et al., 2002; Varela et al., 2005), to the best of our knowledge, ZMPSTE24‐deficient mice have not been directly used to study brain ageing in neurodegenerative diseases. Nevertheless, neurological abnormalities, such as microcephalia (de Carlos et al., 2008) and oesophageal achalasia (Yang et al., 2015), have been observed in ZMPSTE24‐deficient mice, suggesting potential functions of ZMPSTE24 and lamin A in the nervous tissues.
It is noteworthy that multiple recent evidence has highlighted the involvement of other nuclear lamina proteins in tauopathies. In a TgTau Drosophila model, it has been demonstrated that a pathogenic mutation of tau (R406W) alters the arrangement of B‐type lamins, affecting maintenance of genomic architecture, cell cycle regulation and survival of adult neurons (Frost et al., 2016). Analysis of post‐mortem human FTLD‐MAPT cortex revealed a high incidence of nuclear deformation, indicating that tau mediates nuclear membrane dysfunction (Paonessa et al., 2019). Interestingly, two independent tissue culture‐based CRISPRi screening both pointed out potential involvement of BANF1 (Barrier‐to‐autointegration factor 1) in tau aggregation (Koss et al., 2022; Polanco et al., 2022). As loss of BANF1 has significant implications in nuclear envelope integrity in Nestor–Guillermo progeria syndrome (NGPS; Janssen et al., 2022), these findings raised the possibility of encompassing NGPS into the laminopathy‐tauopathy experimental model repertoire.
2.3. Transgenic progeroid model type 2: DNA repair deficiency models
DNA damage is a feature of both age‐related neurodegenerative diseases and of PS. Accumulation of DNA damage is a cardinal factor in physiological ageing as it can lead to cell death, senescence, stem cell loss and polyploidisation (reviewed by Schumacher et al., 2021). Unsurprisingly, reduced genomic stability has been a widely reported feature in Alzheimer's disease (reviewed by Lin et al., 2020). Immunostaining for γH2AX, a phosphorylated form of H2AX that is widely used as a marker of double‐stranded DNA breaks (DSBs), showed that DSBs accumulate in neurons and astrocytes in the hippocampus and frontal cortex of AD patients during the progression of neurodegeneration (Shanbhag et al., 2019). Consistent with these observations, in vitro studies with primary mouse cortical neurons revealed that non‐phosphorylated tau accumulates perinuclearly upon DSBs formation, followed by accumulation of phosphorylated tau immunoreactive to AT8 antibody (Asada‐Utsugi et al., 2022). In the field of pathological ageing, deficiencies in the DNA repair machineries result in many PS such as Werner syndrome (Muftuoglu et al., 2008), Cockayne syndrome (Laugel, 2013) and xeroderma pigmentosum (Lehmann et al., 2011). The wealth of DNA repair‐deficient models established for studying these progeroid syndromes offered an opportunity to explore neurodegeneration in a high DNA damage susceptibility system.
Werner syndrome (WS) is a DNA repair‐related premature ageing syndrome caused by mutations in a RecQ family DNA helicase, WRN (Muftuoglu et al., 2008). In contrast to progeroid laminopathies, Werner syndrome has a delayed onset—typically recognised by the third or fourth decades of life and is therefore sometimes referred to as ‘adult progeria’ (Oshima et al., 2017). Thus far, neurodegeneration has not been observed in individuals with WS. Nonetheless, though rare, non‐AD senile dementia, schizophrenia (Goto, 1997), cerebrovascular disease and peripheral neuropathy (Anderson & Haas, 2003) have been reported as WS‐associated neurological complications. The rarity of neurological manifestation in the central nervous system discouraged the attempts of accelerating neuronal ageing with WRN mutations. However, a recent longitudinal behavioural assessment on transgenic mice bearing a WRN helicase deletion (WrnΔhel/Δhel) demonstrated a loss of motor activity and coordination, reduction in perception, increase in repetitive behaviour and deficits in both spatial and social novelty memories in WRN mutant mice compared to age‐matched wild‐type mice, possibly through microglial dysfunction and elevated neuronal oxidative stress (Hui et al., 2018). Although this finding may benefit from wider validation in other model organisms, it encourages the use of WRN mutation in neurological models.
Xeroderma pigmentosum (XP) is a recessively inherited rare skin disorder caused by defects in enzymes responsible for nucleotide excision repair (Lehmann et al., 2011), leading to high vulnerability to UV‐induced damage, hypersensitivity to sunlight and high susceptibility to skin cancer. There are nine different genetic subtypes of XP depending on the affected gene: XPA, XPB (or ERCC3), XPC, XPD (or ERCC2), XPE (or DDB2), XPF (or ERCC4), XPG (or ERCC5), XPV (or POLH) and ERCC1 (Kraemer et al., 2003). Depending on the disease subtype, XP patients may have different neurological manifestations. Of note, cognitive dysfunction may develop in childhood and advance through later stages in XPA, and peripheral neuropathy has been reported in XPG patients (Anttinen et al., 2008). Table 4 summarises mouse models established for each XP subtype. In contrast to the prominent neurological phenotypes in XPA patients, Xpa−/− mice only displayed mild neurological manifestations, such as delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma (Tomasevic et al., 2012). Interestingly, overt neuropathology and cognitive/behavioural alterations have been observed in transgenic mouse models for XPG and ERCC1 (Barnhoorn et al., 2014; Borgesius et al., 2011; de Waard et al., 2010; Lawrence et al., 2008). Despite that no protein misfolding‐related pathology had been reported in XP patients or in these transgenic XP mouse models, the neurodegenerative features observed in XPG and ERCC1 models indicate that defects in nucleotide excision repair mechanism alone may lead to neurodegeneration and conformational assessment of aggregation‐prone proteins (e.g., tau, Aβ and α‐synuclein) may be a useful future step in XPG‐ and ERCC1‐deficient mouse models.
TABLE 4.
Summary of mouse models of xeroderma pigmentosum.
XP subtype | Mouse model | Neuropathology in brain | Neurological manifestation |
---|---|---|---|
XPA | Xpa−/− | No (de Vries et al., 1995; Nakane et al., 1995) | Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma (Tomasevic et al., 2012) |
XPB | XpbXPCS a | No (Andressoo et al., 2009) | No (Andressoo et al., 2009) |
Xpby/y | Unknown (Donnio et al., 2019) | Unknown | |
XPC | Xpc−/− | Unknown (Melis et al., 2013) | Unknown |
XPD | XpdR722W | Unknown (de Boer et al., 1998) | Unknown |
XpdXPCS a | No | Spastic and abnormal coordination of hindlimbs in male animals (Andressoo et al., 2006) | |
XPE | Ddb2−/− | Unknown (Yoon et al., 2005) | Unknown |
XPF | Ercc4em1(IMPC)J | Unknown | Unknown (https://www.jax.org/strain/033920) |
XPG | Xpg−/− |
Age‐related accumulation of neurodegenerative changes in central nervous system: prominent astrocytosis, loss of Purkinje cells and increased apoptosis in the cerebrum and the cerebellum at 14 weeks Smaller neocortex Ventricle enlargement (Barnhoorn et al., 2014) |
Gait ataxia Action tremor Cognitive decline |
XPV | Polh−/− | Unknown (Martomo et al., 2005) | Unknown |
ERCC1 | Ercc1Δ/− |
Age‐related motor neuron degeneration: widespread astrocytosis and microgliosis, and motor neuron loss and denervation of skeletal muscle fibres (de Waard et al., 2010) Age‐related neurodegeneration: reactive astrocytosis, mild neuronal degeneration, signs of genotoxic stress and reduced hippocampal synaptic plasticity (Borgesius et al., 2011) Mild neurodegenerative changes: peripheral (sciatic) nerve vacuolisation, brain mass reduction (Dollé et al., 2011) |
Progressive motor abnormalities and reduced life span: clasping of the hindlimbs, fine tremors and kyphosis, severe locomotor deficits and reduced ability to maintain balance (de Waard et al., 2010) Impaired fear conditioning and impaired water maze performance at 6 months of age (Borgesius et al., 2011) |
Ercc1−/− | No histopathological neurodegeneration, or of abnormal neuromuscular junctions. Observed uraemic encephalopathy (Lawrence et al., 2008) | Poor coordination, ataxia and loss of visual acuity (Lawrence et al., 2008) |
Double transgenic models that also include Cockayne syndrome‐related mutations.
Cockayne syndrome (CS) is a rare, autosomal recessively inherited genetic disorder characterised by premature ageing‐like features, such as severe growth failure and cutaneous photosensitivity. Defects of two genes, CSA (ERCC8) and CSB (ERCC6), are responsible for the disease (Henning et al., 1995; Troelstra et al., 1992). In contrast to other progeroid syndromes associated with DNA repair deficiencies, CS is a degenerative disorder and has more profound manifestations in the central nervous system, including mental retardation, microcephaly, retinal atrophy and progressive neurodegeneration (Spitz et al., 2021). To study neurological impairments caused by CSA and CSB deficiency, multiple animal models have been established. Knocking out CSA (Csa−/−) in mice showed no detectable neurodegeneration at 26 weeks of age; however, it revealed that CSA deficiency leads to increase of p53‐positive neurons in neocortex, cerebellar cortex and spinal cord (Jaarsma et al., 2011). A double mutant mouse model (Csa−/−/Xpa−/−) presents neurological dysfunction resembling CS patients, including myelin loss and loss of Purkinje cells. In animal models of CSB, microglia activation and astrocytosis have been reported in white matter regions in Csb−/− mice (Jaarsma et al., 2011). Similarly, using CSB‐deficient rats (CsbR571X/R571X), Xu et al. observed multiple neurological defects, including cerebellar atrophy, hippocampal dysplasia, axonal degeneration and astrocyte activation in cerebella (Xu et al., 2019). Beyond rodent models, Csb‐1 deficiency in C. elegans also associates with locomotion dysfunction and aged‐dependent loss of sensitivity to mechanosensory stimuli, possibly through its effects on mitochondrial activity (Lopes et al., 2020). It is noteworthy that protein misfolding and loss of proteostasis have been reported in CS patient‐derived fibroblasts (Alupei et al., 2018; Qiang et al., 2021). However, it is currently unclear if these proteostatic defects can be mirrored in CSA or CSB animal models, and whether this may accelerate the progression of proteinopathies in the central nervous system, such as tau aggregation.
Ataxia telangiectasia (A‐T) is a neuromotor dysfunction neurodegenerative disorder of childhood caused by the disruption of gene ATM (Ataxia‐telangiectasia mutated serine/threonine kinase). Clinically, A‐T patients represent a wide variety of symptoms including progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, susceptibility to malignancies and increased metabolic diseases (Amirifar et al., 2019). In an ATM knockout Drosophila model, it has been demonstrated that reducing the function of ATM significantly enhances tau‐induced neuronal apoptosis and exacerbates tau neurotoxicity (Khurana et al., 2012). To further increase the genotoxic stress, a novel double mutant mouse model, AtmR35X/R35X/Aptx−/−, has been generated; it not only develops a progressively severe ataxic phenotype but also exhibits significantly perturbed cerebellar Purkinje neurons (Perez et al., 2021). Of note, examination of Alzheimer's disease post‐mortem brain samples revealed an elevated level of ATM compared to the age‐matched control (Katsel et al., 2013), suggesting that activation of the DNA damage checkpoint is a shared feature between A‐T and AD.
2.4. Non‐progeroid models of accelerated ageing
Apart from the aforementioned transgenic animal models where the progeric alleles are artificially introduced to the genome to mimic ageing, there are other models to study accelerated ageing of the brain. Here, we briefly review Klotho‐deficient mice, SAMP8 mice and African Turquoise Killifish.
Klotho‐deficient (KL−/−) mice are a widely used animal model in ageing research. Named after one of the three Fates in Greek mythology, Klotho was discovered fortuitously as a monogenic recessive trait by Kuro‐o et al. in Kuro‐o et al., 1997, triggered by a transgene insertional inactivation event (Kuro‐o et al., 1997). There are three subfamilies of Klotho, α‐, β‐ and γ‐Klotho, and they have different physiological functions (Dolegowska et al., 2019). In the context of ageing biology, the term ‘Klotho’ generally refers to the α‐Klotho subfamily. Encoded by the KL gene, α‐Klotho has multiple molecular functions (e.g., β‐glucosidase activity and fibroblast growth factor receptor binding activity [Gaudet et al., 2011]) and has a wide variety of cellular implications (e.g., mitochondrial dysfunction [Sahu et al., 2018]). In the context of neurodegenerative disorders, the level of Klotho in the central nervous system is generally negatively correlated with the severity of proteinopathies. For instance, a longitudinal study in 2020 suggested that increased serum level of Klotho (in Klotho‐VS heterozygous individuals) is associated with reduced AD risk in APOE4 carriers from 60 to 80 years of age (Belloy et al., 2020). It was later reported that Klotho‐VS heterozygosity was associated with a lower cross‐sectional and longitudinal increase in amyloid‐related tau pathology and tau‐related memory defects (Neitzel et al., 2021). Echoed with these findings were two recent clinic observations suggesting that higher levels of CSF Klotho were associated with lower CSF Aβ42 and tau burden (total tau and phosphorylated tau; Driscoll et al., 2021; Grøntvedt et al., 2022). In the experimental realm, Klotho‐deficient mice display overt phenotypes compared to their wild‐type littermates, such as hypogonadism, premature thymic involution, ectopic calcification, impaired bone mineralisation, skin atrophy, hearing loss and neurodegeneration (Kuro‐o, 2009). Using a KL−/− mouse model, Nagai et al. showed that deficiency of Klotho in mouse brain results in an impairment of visual recognition memory and associative fear memory, which may be explained by an elevated level of apoptosis and oxidative stress in hippocampus (Nagai et al., 2003). More recently, Leon et al. showed that peripherally administered Klotho fragment (αKL‐F) can enhance cognitive parameters and neural resilience in transgenic α‐synuclein mice (Leon et al., 2017). Dubal et al., using hAPP (human amyloid beta precursor protein) transgenic mice that had been crossed with Klotho transgenic mice, demonstrated that elevated level of Klotho protects hAPP mice against premature mortality and cognitive impairments (Dubal et al., 2015). These studies altogether suggest a neural‐protective role of Klotho and this mechanism deserves further investigation in simplified tau aggregation reporter platforms, such as in the HEK293 tauRD‐YFP cell line (Sanders et al., 2014), and animal models carrying pathogenic tau mutations.
In pursuit of polygenic traits, senescence‐accelerated mouse prone (SAMP) substrains were established by Kyoto University through phenotypic selection from AKR/J breeding colonies. SAMP8 is one of the nine major SAMP substrains and shows features of rapid ageing. Functionally, SAMP8 mice show impairment of memory, deteriorations in learning ability (Miyamoto et al., 1986), emotional disorders (Miyamoto et al., 1992), altered circadian cycle and water consumption (Miyamoto, 1997). Pathologically, brain stem spongy degeneration, blood–brain barrier dysfunction and loss of cholinergic neurons are major anatomical changes in the central nervous system. Despite the absence of amyloid plaques and neurofibrillary tangles, SAMP8 mice show many cellular and molecular characteristics that mimic physiological brain ageing, such as increase in phosphorylated tau and increase in oxidative stress, severe cellular senescence, downregulation of glucose metabolism (Akiguchi et al., 2017) and age‐dependent neuroinflammations (Fernández et al., 2021). Moreover, amyloid‐β granules are present in the stratum radiatum of the CA1 region of hippocampus in SAMP8 mice, which contain Aβ42, Aβ40, tau, MAP2 and α‐synuclein peptides (Manich et al., 2011). An attempt to combine the characteristics of the APP/PS1 transgenic mouse model with a senescence‐accelerated background of SAMP8 mice revealed cognitive abnormalities, amyloid plaque formation and other AD markers (e.g., neuroinflammation, hyperphosphorylation of tau), but not neurofibrillary tangles (Porquet et al., 2015). To the best of our knowledge, a SAMP8‐based mouse model that expresses human tau has not been established but it may be a useful model.
African Turquoise Killifish (Nothobranchius furzeri) is a species of small freshwater fish native to southeast Africa, primarily found in Zimbabwe and Mozambique. Due to its small size and rapid life cycle, this fish has recently gained a resurgence of interest as an experimental model system in ageing science (Smith et al., 2017). Compared to other species, this species of fish reaches sexual maturity in 3–4 weeks (Terzibasi et al., 2008) and has a very short lifespan (9–16 weeks for the GRZ strain, and 23–28 weeks for the MZM‐0403 strain [Terzibasi et al., 2008]), 6–10 times shorter than that of zebrafish (Kishi et al., 2009). Their small size, fast reproductive cycle and easy‐to‐care‐for nature also make them an ideal species for laboratory experiments. Furthermore, the African Turquoise Killifish genome contains 96.8% of core eukaryotic genes and has been well annotated (Valenzano et al., 2015), thus making it a suitable vertebrate model organism for the study of ageing at an organismal level. In a preprint that recently became available on bioRxiv, using African Turquoise Killifish, Harel et al. identified that DDX5 (ATP‐dependent RNA helicase DDX5), a prion‐like RNA binding protein, forms mislocalised cytoplasmic aggregates in the brains of aged killifish (7 months) and such aggregates can be propagated in DDX5 aggregation reporter yeast (Harel et al., 2022), suggesting that transmissible prion‐like protein aggregates accumulate in the brain during vertebrate ageing. Despite that misfolded tau was not observed in protein aggregates that accumulate in old killifish brains, this pioneering observation encouraged more thorough examination of aged African Turquoise Killifish for tau‐specific pathologies. Indeed, (a) DDX5 is directly involved in exon 10 splicing of the MAPT gene (Kar et al., 2011); (b) similar to zebrafish (MacRae & Peterson, 2015), rapid reproduction and small size of African Turquoise Killifish allows it to be used in phenotype‐based screening in drug discovery; (c) existing protocols for genome engineering (Harel et al., 2016; Hartmann & Englert, 2012) allows for establishment of transgenic killifish expressing human MAPT gene.
2.5. Slow ageing model
2.5.1. Naked mole rat
The naked mole‐rat (NMR; Heterocephalus glaber) has attracted considerable biogerontological interest for multiple reasons. First, they have extraordinary longevity. As the longest‐lived rodent, the NMR has a maximal lifespan of more than 30 years in a laboratory environment (Ruby et al., 2018), 10‐fold greater than the allometrically predicted figure for a mouse‐sized rodent (Edrey et al., 2011). Second, the NMR has a high tolerance to stress, such as hypoxia (Park et al., 2017; Xiao et al., 2017) and hypercapnia (Clayson et al., 2020). Third, the NMR possesses unusual resistance against diseases. For instance, the NMR has a low susceptibility to spontaneous cancer and experimentally induced tumour growth (Liang et al., 2010), yet the mechanism behind this observation is currently controversial (Hadi et al., 2020; Tian et al., 2013). In the context of neurodegenerative diseases, low susceptibility of protein aggregation for tau and amyloid‐β has been observed in the central nervous system of naked mole rat (Edrey et al., 2013; Orr et al., 2015). NMRs offer a unique slow‐ageing system to study modulators of tau aggregation due to high sequence similarity between human tau and NMR tau—protein alignment comparison illustrates 95% overall identify and 100% identity at the functional microtubule‐binding domain (Orr et al., 2015). Unlike what is observed in human, NMR tau undergoes a progressive increase in molecular weight during development, a transition from a 62/72 kDa doublet to a 72 kDa singlet at 3 weeks of age, and to an 88 kDa band later (Orr et al., 2015). Interestingly, despite that NMRs have a considerable level of total tau and phospho‐tau, NMR tau remains localised in the axon and does not cause pathologies (Orr et al., 2015). It remains unclear whether NMR tau undergoes aggregation, and whether NMRs possess species‐specific mechanisms that might prevent pathological tau deposition. Thus far, a very limited number of studies have been conducted on NMR tau; however, understanding the post‐translational modifications of NMR tau and determining its aggregation propensity in both in vitro and in vivo experiments will extend our understanding of potential NMR‐specific mechanisms that could prevent tau misfolding.
2.5.2. Assessing the biological age in animal models of tauopathies
If using accelerated ageing models to study age‐related diseases such as tauopathies, it would be desirable to be able to measure the biological age of the animal models being used. Unlike chronological age, which is based solely on an organism's date of birth, biological age is instead a measure of an individual's age‐related risk of adverse outcomes. For humans, several biomarkers have been proposed which can be used to assess biological age, including telomere length, metabolic age scores and composite biomarkers (i.e., the combination of several biomarkers; Jylhävä et al., 2017). However, the translation of these biomarkers to non‐human animal models of ageing is complex. Taking telomere lengths as an example, initial telomere length and the rate of telomere shortening can vary substantially between species (Calado & Dumitriu, 2013). On the contrary, the ‘epigenetic clocks’ which predict an organism's biological age based upon DNA methylation at specific CpG sites have shown promise in being applied to other species. First developed as a predictor of biological age in humans (Bocklandt et al., 2011), this approach has been well validated in predicting biological age in many other species including mice (Stubbs et al., 2017), rats (Levine et al., 2020), great apes (Horvath et al., 2021) and ruminants (Caulton et al., 2021) to name a few.
Importantly, epigenetic clocks have also been developed for specific tissues, including brain. Biological age has been shown to correlate with tau load in the normal human brain (Maroni et al., 2020), and with risk of dementia in humans (Levine et al., 2015; Wu et al., 2021), although some studies have cast doubt on this association (Zhou et al., 2022). Given the inherent discrepancy between chronological and biological age in accelerated ageing models, being able to determine their biological age would be useful for a proper interpretation of the results. In mouse brain tissue, for which a specific epigenetic ageing clock has been developed (Coninx et al., 2020), the triple transgenic Alzheimer's Disease (3xTg‐AD) mouse model showed increased biological age relative to chronological age‐matched brain controls. Thus, these methylation‐based ‘epigenetic clocks’ might be a useful tool to measuring the biological age of tissues including brain in accelerated ageing animal models of dementia.
2.5.3. Outlook: Searching for the molecular origin of tau misfolding using animal models
In recent years, animal models with experimentally induced ageing features have emerged as a promising avenue for exploring sporadic tauopathies and other age‐dependent neurodegenerative diseases. This expanding interest has been supported by the rapidly improving gene editing technologies, extensive experience in husbandry and high‐quality genomic and transcriptomic sequencing data. Yet, despite increasing research on the determinants of tau aggregate formation, it is still not clear which molecular mechanisms drive the production of abnormal tau in idiopathic tauopathies. Thus far, most efforts have been put into in vitro experiments where tau aggregation is primarily driven by the presence of polyanionic inducers (Ingham et al., 2022) or specific combinations of salt ingredients (Lövestam et al., 2022)—the physiological relevance of these findings will need to be validated in human patient samples and in animal models. To the best of our knowledge, despite that many ageing model organisms have neurological manifestations, such as microgliosis in ERCC1‐deficient mice (de Waard et al., 2010) and amyloid‐β granules in SAMP8 mice (Manich et al., 2011), none of these canonical models displays spontaneous accumulation of tau in the central nervous system. It follows that acceleration of ageing driven by progeric mutations or polygenic traits have not yet recapitulated an environment that accurately mimics an aged brain. This obstacle thus begs the question ‘is it possible to establish alternative models to study delayed and accelerated brain ageing?’ Indeed, non‐canonical ageing model organisms have been elegantly summarised by Holtze et al., 2021. The wide range of lifespan of these models (ranging from <1 month for C. elegans to potential immortality for S. mediterranea) may help gain a more holistic understanding of the ageing process in the nervous tissues. It should be noted that tau misfolding may give rise to structurally distinct pathogenic species in different tauopathies (reviewed by [Han et al., 2022]). A future model should thus be expected to exhibit heterogeneity of tau conformers at an advanced biological age, similar to a low‐tau expression transgenic mouse model previously reported (Daude et al., 2020; Eskandari‐Sedighi et al., 2017). Apart from these animal models, certain experimental manipulations have also been employed to investigate the effects of ageing on neurodegeneration, such as parabiosis (a specialised type of blood transfusion procedure that surgically combines young and aged animals to study their physiological interactions [Hu et al., 2022; Kim et al., 2020; Wang et al., 2018; Zhao et al., 2020]) and caloric restriction (Brownlow et al., 2014; Cox et al., 2019; Müller et al., 2021). While current model organisms with ageing features have not yet fully recapitulated the physiological features associated with sporadic tauopathies, the early molecular events at the headwater of idiopathic proteinopathies may become better elucidated by more thorough characterisation of the cellular environment in naturally aged brain and combined use of transgenic animal models with age‐related experimental manipulations.
AUTHORS' CONTRIBUTIONS
Z.Z.H. and A.F. wrote the original draft of the article with insights from D.L. D.L. reviewed and edited the article.
FUNDING INFORMATION
D.L. was supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 206242/Z/17/Z). Z.Z.H. was supported by a Cambridge Trust Cambridge International Scholarship. A.F. was supported by funding from the International Journal of Experimental Pathology.
CONFLICT OF INTEREST STATEMENT
D. L. is a co‐founder of Adrestia Therapeutics and a scientific advisor for Shift Bioscience and Adrestia Therapeutics. The other authors declare that they have no conflicts of interest.
ACKNOWLEDGEMENTS
The authors are grateful to Dr. Anne Janssen and Denny Yang for helpful discussions and proofreading of the article.
Han, Z. Z. , Fleet, A. , & Larrieu, D. (2023). Can accelerated ageing models inform us on age‐related tauopathies? Aging Cell, 22, e13830. 10.1111/acel.13830
DATA AVAILABILITY STATEMENT
Not applicable.
REFERENCES
- Adolf, H. (1989). Structure of the bovine tau gene: Alternatively spliced transcripts generate a protein family. Molecular and Cellular Biology, 9, 1389–1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akiguchi, I. , Pallàs, M. , Budka, H. , Akiyama, H. , Ueno, M. , Han, J. , Yagi, H. , Nishikawa, T. , Chiba, Y. , Sugiyama, H. , Takahashi, R. , Unno, K. , Higuchi, K. , & Hosokawa, M. (2017). SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda's legacy and future directions. Neuropathology, 37, 293–305. [DOI] [PubMed] [Google Scholar]
- Allen, B. , Ingram, E. , Takao, M. , Smith, M. J. , Jakes, R. , Virdee, K. , Yoshida, H. , Holzer, M. , Craxton, M. , Emson, P. C. , Atzori, C. , Migheli, A. , Crowther, R. A. , Ghetti, B. , Spillantini, M. G. , & Goedert, M. (2002). Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. The Journal of Neuroscience, 22, 9340–9351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alupei, M. C. , Maity, P. , Esser, P. R. , Krikki, I. , Tuorto, F. , Parlato, R. , Penzo, M. , Schelling, A. , Laugel, V. , Montanaro, L. , Scharffetter‐Kochanek, K. , & Iben, S. (2018). Loss of proteostasis is a pathomechanism in Cockayne syndrome. Cell Reports, 23, 1612–1619. [DOI] [PubMed] [Google Scholar]
- ALZFORUM – Animal Models Animal Models . (n.d.). https://www.alzforum.org/research‐models
- ALZFORUM – Mutation Database Mutations Database . (n.d.). https://www.alzforum.org/mutations/mapt
- Amirifar, P. , Ranjouri, M. R. , Yazdani, R. , Abolhassani, H. , & Aghamohammadi, A. (2019). Ataxia‐telangiectasia: A review of clinical features and molecular pathology. Pediatric Allergy and Immunology, 30, 277–288. [DOI] [PubMed] [Google Scholar]
- Anderson, N. E. , & Haas, L. F. (2003). Neurological complications of Werner's syndrome. Journal of Neurology, 250, 1174–1178. [DOI] [PubMed] [Google Scholar]
- Andorfer, C. , Kress, Y. , Espinoza, M. , de Silva, R. , Tucker, K. L. , Barde, Y. A. , Duff, K. , & Davies, P. (2003). Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. Journal of Neurochemistry, 86, 582–590. [DOI] [PubMed] [Google Scholar]
- Andressoo, J.‐O. , Mitchell, J. R. , de Wit, J. , Hoogstraten, D. , Volker, M. , Toussaint, W. , Speksnijder, E. , Beems, R. B. , van Steeg, H. , Jans, J. , de Zeeuw, C. I. , Jaspers, N. G. J. , Raams, A. , Lehmann, A. R. , Vermeulen, W. , Hoeijmakers, J. H. J. , & van der Horst, G. T. J. (2006). An Xpd mouse model for the combined xeroderma pigmentosum/Cockayne syndrome exhibiting both cancer predisposition and segmental progeria. Cancer Cell, 10, 121–132. [DOI] [PubMed] [Google Scholar]
- Andressoo, J.‐O. , Weeda, G. , de Wit, J. , Mitchell, J. R. , Beems, R. B. , van Steeg, H. , van der Horst, G. T. J. , & Hoeijmakers, J. H. (2009). An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Molecular and Cellular Biology, 29, 1276–1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anttinen, A. , Koulu, L. , Nikoskelainen, E. , Portin, R. , Kurki, T. , Erkinjuntti, M. , Jaspers, N. G. J. , Raams, A. , Green, M. H. L. , Lehmann, A. R. , Wing, J. F. , Arlett, C. F. , & Marttila, R. J. (2008). Neurological symptoms and natural course of xeroderma pigmentosum. Brain, 131, 1979–1989. [DOI] [PubMed] [Google Scholar]
- Arrasate, M. , Pérez, M. , & Avila, J. (2000). Tau dephosphorylation at Tau‐1 site correlates with its association to cell membrane. Neurochemical Research, 25, 43–50. [DOI] [PubMed] [Google Scholar]
- Asada‐Utsugi, M. , Uemura, K. , Ayaki, T. , Uemura, M. , Minamiyama, S. , Hikiami, R. , Morimura, T. , Shodai, A. , Ueki, T. , Takahashi, R. , Kinoshita, A. , & Urushitani, M. (2022). Failure of DNA double‐strand break repair by tau mediates Alzheimer's disease pathology in vitro. Communications Biology, 5(1), 358. 10.1038/s42003-022-03312-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aubert, G. , & Lansdorp, P. M. (2008). Telomeres and aging. Physiological Reviews, 88, 557–579. [DOI] [PubMed] [Google Scholar]
- Baek, J. H. , Schmidt, E. , Viceconte, N. , Strandgren, C. , Pernold, K. , Richard, T. J. C. , van Leeuwen, F. W. , Dantuma, N. P. , Damberg, P. , Hultenby, K. , Ulfhake, B. , Mugnaini, E. , Rozell, B. , & Eriksson, M. (2015). Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior. Human Molecular Genetics, 24, 1305–1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnhoorn, S. , Uittenboogaard, L. M. , Jaarsma, D. , Vermeij, W. P. , Tresini, M. , Weymaere, M. , Menoni, H. , Brandt, R. M. C. , de Waard, M. C. , Botter, S. M. , Sarker, A. H. , Jaspers, N. G. J. , van der Horst, G. T. J. , Cooper, P. K. , Hoeijmakers, J. H. J. , & van der Pluijm, I. (2014). Cell‐autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency. PLoS Genetics, 10, e1004686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrowman, J. , Wiley, P. A. , Hudon‐Miller, S. E. , Hrycyna, C. A. , & Michaelis, S. (2012). Human ZMPSTE24 disease mutations: Residual proteolytic activity correlates with disease severity. Human Molecular Genetics, 21, 4084–4093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell, F. , & Miller, M. (2005). Life tables for the United States social security area 1900–2100. Social Security Administration . http://www.cdc.gov/nchs/products/pubs/pubd/lftbls/lftbls.htm
- Belloy, M. E. , Napolioni, V. , Han, S. S. , le Guen, Y. , & Greicius, M. D. (2020). Association of Klotho ‐VS heterozygosity with risk of Alzheimer disease in individuals who carry APOE4. JAMA Neurology, 77, 849–862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergo, M. O. , Gavino, B. , Ross, J. , Schmidt, W. K. , Hong, C. , Kendall, L. V. , Mohr, A. , Meta, M. , Genant, H. , Jiang, Y. , Wisner, E. R. , Van Bruggen, N. , Carano, R. A. , Michaelis, S. , Griffey, S. M. , & Young, S. G. (2002). Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proceedings of the National Academy of Sciences of the United States of America., 99(20), 13049–13054. 10.1073/pnas.192460799 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Binder, L. I. , Frankfurter, A. , & Rebhun, L. I. (1985). The distribution of tau in the mammalian central nervous central nervous. Journal of Cell Biology, 101, 1371–1378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bocklandt, S. , Lin, W. , Sehl, M. E. , Sánchez, F. J. , Sinsheimer, J. S. , Horvath, S. , & Vilain, E. (2011). Epigenetic predictor of age. PLoS One, 6, e14821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bondulich, M. K. , Guo, T. , Meehan, C. , Manion, J. , Rodriguez Martin, T. , Mitchell, J. C. , Hortobagyi, T. , Yankova, N. , Stygelbout, V. , Brion, J. P. , Noble, W. , & Hanger, D. P. (2016). Tauopathy induced by low level expression of a human brain‐derived tau fragment in mice is rescued by phenylbutyrate. Brain, 139, 2290–2306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borgesius, N. Z. , de Waard, M. C. , van der Pluijm, I. , Omrani, A. , Zondag, G. C. M. , van der Horst, G. T. J. , Melton, D. W. , Hoeijmakers, J. H. J. , Jaarsma, D. , & Elgersma, Y. (2011). Accelerated age‐related cognitive decline and neurodegeneration, caused by deficient DNA repair. The Journal of Neuroscience, 31, 12543–12553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownlow, M. L. , Joly‐Amado, A. , Azam, S. , Elza, M. , Selenica, M.‐L. , Pappas, C. , Small, B. , Engelman, R. , Gordon, M. N. , & Morgan, D. (2014). Partial rescue of memory deficits induced by calorie restriction in a mouse model of tau deposition. Behavioural Brain Research, 271, 79–88. [DOI] [PubMed] [Google Scholar]
- Buchwalter, A. , & Hetzer, M. W. (2017). Nucleolar expansion and elevated protein translation in premature aging. Nature Communications, 8, 328. 10.1038/s41467-017-00322-z [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buford, T. W. (2016). Hypertension and aging. Ageing Research Reviews, 26, 96–111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cabanillas, R. , Cadiñanos, J. , Villameytide, J. A. F. , Pérez, M. , Longo, J. , Richard, J. M. , Álvarez, R. , Durán, N. S. , Illán, R. , González, D. J. , & López‐Otín, C. (2011). Néstor‐Guillermo progeria syndrome: A novel premature aging condition with early onset and chronic development caused by BANF1 mutations. American Journal of Medical Genetics. Part A, 155, 2617–2625. [DOI] [PubMed] [Google Scholar]
- Calado, R. T. , & Dumitriu, B. (2013). Telomere dynamics in mice and humans. Seminars in Hematology, 50, 165–174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caulton, A. , Dodds, K. G. , McRae, K. M. , Couldrey, C. , Horvath, S. , & Clarke, S. M. (2021). Development of epigenetic clocks for key ruminant species. Genes (Basel)., 13(1), 96. 10.3390/genes13010096 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chung, H. Y. , Kim, D. H. , Lee, E. K. , Chung, K. W. , Chung, S. , Lee, B. , Seo, A. Y. , Chung, J. H. , Jung, Y. S. , Im, E. , Lee, J. , Kim, N. D. , Choi, Y. J. , Im, D. S. , & Yu, B. P. (2019). Redefining chronic inflammation in aging and age‐related diseases: Proposal of the senoinflammation concept. Aging and Disease, 10, 367–382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayson, M. S. , Devereaux, M. E. M. , & Pamenter, M. E. (2020). Neurokinin‐1 receptor activation is sufficient to restore the hypercapnic ventilatory response in the Substance P‐deficient naked mole‐rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 318, R712–R721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coninx, E. , Chew, Y. C. , Yang, X. , Guo, W. , Coolkens, A. , Baatout, S. , Moons, L. , Verslegers, M. , & Quintens, R. (2020). Hippocampal and cortical tissue‐specific epigenetic clocks indicate an increased epigenetic age in a mouse model for Alzheimer's disease. Aging, 12, 20817–20834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox, L. M. , Schafer, M. J. , Sohn, J. , Vincentini, J. , Weiner, H. L. , Ginsberg, S. D. , & Blaser, M. J. (2019). Calorie restriction slows age‐related microbiota changes in an Alzheimer's disease model in female mice. Scientific Reports, 9, 17904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daude, N. , Kim, C. , Kang, S. G. , Eskandari‐Sedighi, G. , Haldiman, T. , Yang, J. , Fleck, S. C. , Gomez‐Cardona, E. , Han, Z. Z. , Borrego‐Ecija, S. , Wohlgemuth, S. , Julien, O. , Wille, H. , Molina‐Porcel, L. , Gelpi, E. , Safar, J. G. , & Westaway, D. (2020). Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT‐P301L mutation. Acta Neuropathologica, 139(6), 1045–1070. 10.1007/s00401-020-02148-4 Erratum in: Acta Neuropathologica. 2021;141(3):467–468. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies, B. S. J. , Fong, L. G. , Yang, S. H. , Coffinier, C. , & Young, S. G. (2009). The posttranslational processing of prelamin A and disease. Annual Review of Genomics and Human Genetics, 10, 153–174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Boer, J. , de Wit, J. , van Steeg, H. , Berg, R. J. , Morreau, H. , Visser, P. , Lehmann, A. R. , Duran, M. , Hoeijmakers, J. H. , & Weeda, G. (1998). A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Molecular Cell, 1, 981–990. [DOI] [PubMed] [Google Scholar]
- de Calignon, A. , Polydoro, M. , Suárez‐Calvet, M. , William, C. , Adamowicz, D. H. , Kopeikina, K. J. , Pitstick, R. , Sahara, N. , Ashe, K. H. , Carlson, G. A. , Spires‐Jones, T. L. , & Hyman, B. T. (2012). Propagation of tau pathology in a model of early Alzheimer's disease. Neuron, 73, 685–697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Carlos, F. , Varela, I. , Germanà, A. , Montalbano, G. , Freije, J. M. P. , Vega, J. A. , López‐Otin, C. , & Cobo, J. M. (2008). Microcephalia with mandibular and dental dysplasia in adult Zmpste24‐deficient mice. Journal of Anatomy, 213, 509–519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vries, A. , van Oostrom, C. T. , Hofhuis, F. M. , Dortant, P. M. , Berg, R. J. , de Gruijl, F. R. , Wester, P. W. , van Kreijl, C. F. , Capel, P. J. , van Steeg, H. , & Verbeek, S. J. (1995). Increased susceptibility to ultraviolet‐B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature, 377, 169–173. [DOI] [PubMed] [Google Scholar]
- de Waard, M. C. , van der Pluijm, I. , Zuiderveen Borgesius, N. , Comley, L. H. , Haasdijk, E. D. , Rijksen, Y. , Ridwan, Y. , Zondag, G. , Hoeijmakers, J. H. J. , Elgersma, Y. , Gillingwater, T. H. , & Jaarsma, D. (2010). Age‐related motor neuron degeneration in DNA repair‐deficient Ercc1 mice. Acta Neuropathologica, 120, 461–475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- di Micco, R. , Krizhanovsky, V. , Baker, D. , & D'Adda di Fagagna, F. (2021). Cellular senescence in ageing: From mechanisms to therapeutic opportunities. Nature Reviews. Molecular Cell Biology, 22, 75–95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolegowska, K. , Marchelek‐Mysliwiec, M. , Nowosiad‐Magda, M. , Slawinski, M. , & Dolegowska, B. (2019). FGF19 subfamily members: FGF19 and FGF21. Journal of Physiology and Biochemistry, 75, 229–240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dollé, M. E. T. , Kuiper, R. V. , Roodbergen, M. , Robinson, J. , de Vlugt, S. , Wijnhoven, S. W. P. , Beems, R. B. , de la Fonteyne, L. , de With, P. , van der Pluijm, I. , Niedernhofer, L. J. , Hasty, P. , Vijg, J. , Hoeijmakers, J. H. J. , & van Steeg, H. (2011). Broad segmental progeroid changes in short‐lived Ercc1 −/Δ7 mice. Pathobiology of Aging & Age‐related Diseases, 1, 7219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnio, L.‐M. , Miquel, C. , Vermeulen, W. , Giglia‐Mari, G. , & Mari, P.‐O. (2019). Cell‐type specific concentration regulation of the basal transcription factor TFIIH in XPBy/y mice model. Cancer Cell International, 19, 237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Driscoll, I. , Ma, Y. , Gallagher, C. L. , Johnson, S. C. , Asthana, S. , Hermann, B. P. , Sager, M. A. , Blennow, K. , Zetterberg, H. , Carlsson, C. M. , Engelman, C. D. , Dubal, D. B. , & Okonkwo, O. C. (2021). Age‐related tau burden and cognitive deficits are attenuated in KLOTHO KL‐VS heterozygotes. Journal of Alzheimer's Disease, 79, 1297–1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubal, D. B. , Zhu, L. , Sanchez, P. E. , Worden, K. , Broestl, L. , Johnson, E. , Ho, K. , Yu, G. Q. , Kim, D. , Betourne, A. , Kuro‐o, M. , Masliah, E. , Abraham, C. R. , & Mucke, L. (2015). Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. Journal of Neuroscience, 35, 2358–2371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutta, S. , & Sengupta, P. (2016). Men and mice: Relating their ages. Life Sciences, 152, 244–248. [DOI] [PubMed] [Google Scholar]
- Eckermann, K. , Mocanu, M. M. , Khlistunova, I. , Biernat, J. , Nissen, A. , Hofmann, A. , Schönig, K. , Bujard, H. , Haemisch, A. , Mandelkow, E. , Zhou, L. , Rune, G. , & Mandelkow, E. M. (2007). The β‐propensity of tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. Journal of Biological Chemistry, 282, 31755–31765. [DOI] [PubMed] [Google Scholar]
- Edrey, Y. H. , Hanes, M. , Pinto, M. , Mele, J. , & Buffenstein, R. (2011). Successful aging and sustained good health in the naked mole rat: A long‐lived mammalian model for biogerontology and biomedical research. ILAR Journal, 52, 41. https://academic.oup.com/ilarjournal/article/52/1/41/648968 [DOI] [PubMed] [Google Scholar]
- Edrey, Y. H. , Medina, D. X. , Gaczynska, M. , Osmulski, P. A. , Oddo, S. , Caccamo, A. , & Buffenstein, R. (2013). Amyloid beta and the longest‐lived rodent: The naked mole‐rat as a model for natural protection from Alzheimer's disease. Neurobiology of Aging, 34, 2352–2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eskandari‐Sedighi, G. , Daude, N. , Gapeshina, H. , Sanders, D. W. , Kamali‐Jamil, R. , Yang, J. , Shi, B. , Wille, H. , Ghetti, B. , Diamond, M. I. , Janus, C. , & Westaway, D. (2017). The CNS in inbred transgenic models of 4‐repeat Tauopathy develops consistent tau seeding capacity yet focal and diverse patterns of protein deposition. Molecular Neurodegeneration, 12, 1–27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernández, A. , Quintana, E. , Velasco, P. , Moreno‐Jimenez, B. , de Andrés, B. , Gaspar, M. L. , Liste, I. , Vilar, M. , Mira, H. , & Cano, E. (2021). Senescent accelerated prone 8 (SAMP8) mice as a model of age dependent neuroinflammation. Journal of Neuroinflammation, 18, 75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Filipcik, P. , Zilka, N. , Bugos, O. , Kucerak, J. , Koson, P. , Novak, P. , & Novak, M. (2012). First transgenic rat model developing progressive cortical neurofibrillary tangles. Neurobiology of Aging, 33, 1448–1456. [DOI] [PubMed] [Google Scholar]
- Fiock, K. L. , Smalley, M. E. , Crary, J. F. , Pasca, A. M. , & Hefti, M. M. (2020). Increased tau expression correlates with neuronal maturation in the developing human cerebral cortex. eNeuro, 7, 1–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flunkert, S. , Hierzer, M. , Löffler, T. , Rabl, R. , Neddens, J. , Duller, S. , Schofield, E. L. , Ward, M. A. , Posch, M. , Jungwirth, H. , Windisch, M. , & Hutter‐Paier, B. (2013). Elevated levels of soluble total and hyperphosphorylated tau result in early behavioral deficits and distinct changes in brain pathology in a new tau transgenic mouse model. Neurodegenerative Diseases, 11, 194–205. [DOI] [PubMed] [Google Scholar]
- Frost, B. , Bardai, F. H. , & Feany, M. B. (2016). Lamin dysfunction mediates neurodegeneration in tauopathies. Current Biology, 26, 129–136. 10.1016/j.cub.2015.11.039 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaudet, P. , Livstone, M. S. , Lewis, S. E. , & Thomas, P. D. (2011). Phylogenetic‐based propagation of functional annotations within the gene ontology consortium. Briefings in Bioinformatics, 12, 449–462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gil, L. , Niño, S. A. , Capdeville, G. , & Jiménez‐Capdeville, M. E. (2021). Aging and Alzheimer's disease connection: Nuclear tau and lamin A. Neuroscience Letters, 749, 135741. 10.1016/j.neulet.2021.135741 [DOI] [PubMed] [Google Scholar]
- Gil, L. , Niño, S. A. , Chi‐Ahumada, E. , Rodríguez‐Leyva, I. , Guerrero, C. , Rebolledo, A. B. , Arias, J. A. , & Jiménez‐Capdeville, M. E. (2020). Perinuclear lamin a and nucleoplasmic lamin B2 characterize two types of hippocampal neurons through Alzheimer's disease progression. International Journal of Molecular Sciences, 21, 1–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goedert, M. , Spillantini, M. G. , Jakes, R. , Rutherford, D. , & Crowther, R. A. (1989). Multiple isoforms of human microtubule‐associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron, 3, 519–526. [DOI] [PubMed] [Google Scholar]
- Goedert, M. , Wischik, C. M. , Crowther, R. A. , Walker, J. E. , & Klug, A. (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: Identification as the microtubule‐associated protein tau. Proceedings of the National Academy of Sciences of the United States of America, 85, 4051–4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldman, R. D. , Shumaker, D. K. , Erdos, M. R. , Eriksson, M. , Goldman, A. E. , Gordon, L. B. , Gruenbaum, Y. , Khuon, S. , Mendez, M. , Varga, R. , & Collins, F. S. (2004). Accumulation of mutant lamin A progressive changes in nuclear architecture in Hutchinson‐Gilford progeria syndrome. Proceedings of the National Academy of Sciences of the United States of America, 101, 8963–8968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goto, M. (1997). Hierarchical deterioration of body systems in Werner's syndrome: Implications for normal ageing. Mechanisms of Ageing and Development, 98, 239–254. [DOI] [PubMed] [Google Scholar]
- Götz, J. , Halliday, G. , & Nisbet, R. M. (2019). Molecular pathogenesis of the tauopathies. Annual Review of Pathology, 14, 239–261. 10.1146/annurev-pathmechdis-012418-012936 [DOI] [PubMed] [Google Scholar]
- Grøntvedt, G. R. , Sando, S. B. , Lauridsen, C. , Bråthen, G. , White, L. R. , Salvesen, Ø. , Aarsland, D. , Hessen, E. , Fladby, T. , Waterloo, K. , & Scheffler, K. (2022). Association of Klotho protein levels and KL‐VS heterozygosity with Alzheimer disease and amyloid and tau burden. JAMA Network Open, 5, e2243232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gumucio, A. , Lannfelt, L. , & Nilsson, L. N. (2013). Lack of exon 10 in the murine tau gene results in mild sensorimotor defects with aging. BMC Neuroscience, 14, 148. 10.1186/1471-2202-14-148 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hadi, F. , Kulaberoglu, Y. , Lazarus, K. A. , Bach, K. , Ugur, R. , Beattie, P. , Smith, E. S. J. , & Khaled, W. T. (2020). Transformation of naked mole‐rat cells. Nature, 583(7814), E1–E7. 10.1038/s41586-020-2410-x [DOI] [PubMed] [Google Scholar]
- Han, Z. Z. , Kang, S. G. , Arce, L. , & Westaway, D. (2022). Prion‐like strain effects in tauopathies. Cell and Tissue Research, 1–21. 10.1007/s00441-022-03620-1 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haran, J. P. , & McCormick, B. A. (2021). Aging, frailty, and the microbiome‐how dysbiosis influences human aging and disease. Gastroenterology, 160, 507–523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harel, I. , Chen, Y. R. , Ziv, I. , Singh, P. P. , Negredo, P. N. , Goshtchevsky, U. , Wang, W. , Astre, G. , Moses, E. , Mckay, A. , Machado, B. E. , Hebestreit, K. , Yin, S. , Sánchez Alvarado, A. , Jarosz, D. F. , & Brunet, A. (2022). Identification of protein aggregates in the aging vertebrate brain with prion‐like and phase separation properties. bioRxiv . 10.1101/2022.02.26.482115 [DOI] [PMC free article] [PubMed]
- Harel, I. , Valenzano, D. R. , & Brunet, A. (2016). Efficient genome engineering approaches for the short‐lived African turquoise killifish. Nature Protocols, 11, 2010–2028. [DOI] [PubMed] [Google Scholar]
- Hartmann, N. , & Englert, C. (2012). A microinjection protocol for the generation of transgenic killifish (Species: Nothobranchius furzeri). Developmental Dynamics, 241, 1133–1141. [DOI] [PubMed] [Google Scholar]
- Henning, K. A. , Li, L. , Iyer, N. , McDaniel, L. D. , Reagan, M. S. , Legerski, R. , Schultz, R. A. , Stefanini, M. , Lehmann, A. R. , Mayne, L. V. , & Friedberg, E. C. (1995). The Cockayne syndrome group A gene encodes a WD repeat protein that interacts with CSB protein and a subunit of RNA polymerase II TFIIH. Cell, 82, 555–564. [DOI] [PubMed] [Google Scholar]
- Holtze, S. , Gorshkova, E. , Braude, S. , Cellerino, A. , Dammann, P. , Hildebrandt, T. B. , Hoeflich, A. , Hoffmann, S. , Koch, P. , Terzibasi Tozzini, E. , Skulachev, M. , Skulachev, V. P. , & Sahm, A. (2021). Alternative animal models of aging research. Frontiers in Molecular Biosciences, 8, 660959. 10.3389/fmolb.2021.660959 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvath, S. , Zoller, J. A. , Haghani, A. , Jasinska, A. J. , Raj, K. , Breeze, C. E. , Ernst, J. , Vaughan, K. L. , & Mattison, J. A. (2021). Epigenetic clock and methylation studies in the rhesus macaque. GeroScience, 43, 2441–2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou, Y. , Dan, X. , Babbar, M. , Wei, Y. , Hasselbalch, S. G. , Croteau, D. L. , & Bohr, V. A. (2019). Ageing as a risk factor for neurodegenerative disease. Nature Reviews. Neurology, 15, 565–581. [DOI] [PubMed] [Google Scholar]
- Houtkooper, R. H. , Williams, R. W. , & Auwerx, J. (2010). Metabolic networks of longevity. Cell, 142, 9–14. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hu, J. , Lin, S. L. , & Schachner, M. (2022). A fragment of cell adhesion molecule L1 reduces amyloid‐β plaques in a mouse model of Alzheimer's disease. Cell Death & Disease, 13, 48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hui, C. W. , St‐Pierre, M. K. , Detuncq, J. , Aumailley, L. , Dubois, M. J. , Couture, V. , Skuk, D. , Marette, A. , Tremblay, J. P. , Lebel, M. , & Tremblay, M. È. (2018). Nonfunctional mutant Wrn protein leads to neurological deficits, neuronal stress, microglial alteration, and immune imbalance in a mouse model of Werner syndrome. Brain, Behavior, and Immunity, 73, 450–469. [DOI] [PubMed] [Google Scholar]
- Ingham, D. J. , Hillyer, K. M. , McGuire, M. J. , & Gamblin, T. C. (2022). In vitro Tau aggregation inducer molecules influence the effects of MAPT mutations on aggregation dynamics. Biochemistry, 61, 1243–1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaarsma, D. , van der Pluijm, I. , de Waard, M. C. , Haasdijk, E. D. , Brandt, R. , Vermeij, M. , Rijksen, Y. , Maas, A. , van Steeg, H. , Hoeijmakers, J. H. J. , & van der Horst, G. T. J. (2011). Age‐related neuronal degeneration: Complementary roles of nucleotide excision repair and transcription‐coupled repair in preventing neuropathology. PLoS Genetics, 7, e1002405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janssen, A. , Marcelot, A. , Breusegem, S. , Legrand, P. , Zinn‐Justin, S. , & Larrieu, D. (2022). The BAF A12T mutation disrupts lamin A/C interaction, impairing robust repair of nuclear envelope ruptures in Nestor–Guillermo progeria syndrome cells. Nucleic Acids Res, 50, 9260–9278. https://academic.oup.com/nar/advance‐article/doi/10.1093/nar/gkac726/6678871 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung, H. J. , Coffinier, C. , Choe, Y. , Beigneux, A. P. , Davies, B. S. J. , Yang, S. H. , Barnes, R. H. , Hong, J. , Sun, T. , Pleasure, S. J. , Young, S. G. , & Fong, L. G. (2012). Regulation of prelamin A but not lamin C by miR‐9, a brain‐specific microRNA. Proceedings of the National Academy of Sciences of the United States of America, 109, 423–431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jylhävä, J. , Pedersen, N. L. , & Hägg, S. (2017). Biological age predictors. eBioMedicine, 21, 29–36. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kar, A. , Fushimi, K. , Zhou, X. , Ray, P. , Shi, C. , Chen, X. , Liu, Z. , Chen, S. , & Wu, J. Y. (2011). RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem‐loop structure at the 5′ splice site. Molecular and Cellular Biology, 31, 1812–1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katsel, P. , Tan, W. , Fam, P. , Purohit, D. P. , & Haroutunian, V. (2013). Cell cycle checkpoint abnormalities during dementia: A plausible association with the loss of protection against oxidative stress in Alzheimer's disease [corrected]. PLoS One, 8, e68361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawas, C. , Gray, S. , Brookmeyer, R. , Fozard, J. , & Zonderman, A. (2000). Age‐specific incidence rates of Alzheimer's disease the Baltimore longitudinal study of aging. Neurology, 54, 2072–2077. [DOI] [PubMed] [Google Scholar]
- Kelley, J. B. , Datta, S. , Snow, C. J. , Chatterjee, M. , Ni, L. , Spencer, A. , Yang, C.‐S. , Cubenas‐Potts, C. , Matunis, M. J. , & Paschal, B. M. (2011). The defective nuclear lamina in Hutchinson‐Gilford Progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Molecular and Cellular Biology, 31, 3378–3395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khan, M. A. B. , Hashim, M. J. , King, J. K. , Govender, R. D. , Mustafa, H. , & Kaabi, J. A. (2020). Epidemiology of type 2 diabetes – Global burden of disease and forecasted trends. Journal of Epidemiology and Global Health, 10, 107–111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Khurana, V. , Merlo, P. , DuBoff, B. , Fulga, T. A. , Sharp, K. A. , Campbell, S. D. , Götz, J. , & Feany, M. B. (2012). A neuroprotective role for the DNA damage checkpoint in tauopathy. Aging Cell, 11, 360–362. [DOI] [PubMed] [Google Scholar]
- Kim, T. W. , Park, S. S. , Park, J. Y. , & Park, H. S. (2020). Infusion of plasma from exercised mice ameliorates cognitive dysfunction by increasing hippocampal neuroplasticity and mitochondrial functions in 3xTg‐AD mice. International Journal of Molecular Sciences, 21(9), 3291. 10.3390/ijms21093291 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim, Y. D. , Choi, H. , Lee, W. J. , Park, H. , Kam, T. I. , Hong, S. , Hoon, N. J. , Jung, S. , Shin, B. , Lee, H. , Choi, T. Y. , Choo, H. , Kim, K. K. , Choi, S. Y. , Kayed, R. , & Jung, Y. K. (2016). Caspase‐cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model. Neurobiology of Disease, 87, 19–28. [DOI] [PubMed] [Google Scholar]
- Kishi, S. , Slack, B. E. , Uchiyama, J. , & Zhdanova, I. V. (2009). Zebrafish as a genetic model in biological and behavioral gerontology: Where development meets aging in vertebrates–a mini‐review. Gerontology, 55, 430–441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koson, P. , Zilka, N. , Kovac, A. , Kovacech, B. , Korenova, M. , Filipcik, P. , & Novak, M. (2008). Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. European Journal of Neuroscience, 28, 239–246. [DOI] [PubMed] [Google Scholar]
- Koss, M. , Frendewey, D. , Yancopoulos, G. D. , Prissette, M. , Fury, W. , Koss, M. , Racioppi, C. , Fedorova, D. , Dragileva, E. , & Clarke, G. (2022). Disruption of nuclear envelope integrity as a possible initiating event in tauopathies. Cell Reports, 40, 111249. 10.1016/j.celrep.2022.111249 [DOI] [PubMed] [Google Scholar]
- Kovacs, G. G. (2015). Invited review: Neuropathology of tauopathies: Principles and practice. Neuropathology and Applied Neurobiology, 41, 3–23. [DOI] [PubMed] [Google Scholar]
- Kraemer, K. , DiGiovanna, J. , & Tamura, D. (2003). In Adam M., Everman D., & Mirzaa G. (Eds.), Xeroderma pigmentosum. University of Washington. [PubMed] [Google Scholar]
- Kuro‐o, M. (2009). Klotho and aging. Biochimica et Biophysica Acta – General Subjects, 1790, 1049–1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuro‐o, M. , Matsumura, Y. , Arawa, H. , Kawaguchi, H. , Suga, T. , Utsugi, T. , Ohyama, Y. , Kurabayashi, M. , Kaname, T. , Kume, E. , Iwasaki, H. , Iida, A. , Shiraki‐Iida, T. , Nishikawa, S. , Nagai, R. , Nabeshima, Y. I. , Sharma, K. , Kelly, L. , & Dandekar, T. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Chemtracts, 12, 703–707. [DOI] [PubMed] [Google Scholar]
- Laugel, V. (2013). Cockayne syndrome: The expanding clinical and mutational spectrum. Mechanisms of Ageing and Development, 134, 161–170. [DOI] [PubMed] [Google Scholar]
- Lawrence, N. J. , Sacco, J. J. , Brownstein, D. G. , Gillingwater, T. H. , & Melton, D. W. (2008). A neurological phenotype in mice with DNA repair gene Ercc1 deficiency. DNA Repair (Amst), 7, 281–291. [DOI] [PubMed] [Google Scholar]
- Lehmann, A. R. , McGibbon, D. , & Stefanini, M. (2011). Xeroderma pigmentosum. Orphanet Journal of Rare Diseases, 6, 70. 10.1186/1750-1172-6-70 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leon, J. , Moreno, A. J. , Garay, B. I. , Chalkley, R. J. , Burlingame, A. L. , Wang, D. , & Dubal, D. B. (2017). Peripheral elevation of a Klotho fragment enhances brain function and resilience in young, aging, and α‐synuclein transgenic mice. Cell Reports, 20, 1360–1371. 10.1016/j.celrep.2017.07.024 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine, M. , McDevitt, R. A. , Meer, M. , Perdue, K. , Di Francesco, A. , Meade, T. , Farrell, C. , Thrush, K. , Wang, M. , Dunn, C. , Pellegrini, M. , de Cabo, R. , & Ferrucci, L. (2020). A rat epigenetic clock recapitulates phenotypic aging and co‐localizes with heterochromatin. Elife, 9, e59201. 10.7554/eLife.59201 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine, M. E. , Lu, A. T. , Bennett, D. A. , & Horvath, S. (2015). Epigenetic age of the pre‐frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer's disease related cognitive functioning. Aging, 7, 1198–1211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis, J. , Mcgowan, E. , Rockwood, J. , Melrose, H. , Nacharaju, P. , van Slegtenhorst, M. , Gwinn‐Hardy, K. , Murphy, M. P. , Baker, M. , Yu, X. , Duff, K. , Hardy, J. , Corral, A. , Lin, W.‐L. , Yen, S.‐H. , Dickson, D. W. , Davies, P. , & Hutton, M. (2000). Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genetics, 25, 402–405. http://genetics.nature.com [DOI] [PubMed] [Google Scholar]
- Li, X. C. , Hu, Y. , Wang, Z. H. , Luo, Y. , Zhang, Y. , Liu, X. P. , Feng, Q. , Wang, Q. , Ye, K. , Liu, G. P. , & Wang, J. Z. (2016). Human wild‐type full‐length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins. Scientific Reports, 6, 1–10. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liang, S. , Mele, J. , Wu, Y. , Buffenstein, R. , & Hornsby, P. J. (2010). Resistance to experimental tumorigenesis in cells of a long‐lived mammal, the naked mole‐rat (Heterocephalus glaber). Aging Cell, 9, 626–635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin, X. , Kapoor, A. , Gu, Y. , Chow, M. J. , Peng, J. , Zhao, K. , & Tang, D. (2020). Contributions of DNA damage to Alzheimer's disease. International Journal of Molecular Sciences, 21(5), 1666. 10.3390/ijms21051666 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lopes, A. F. C. , Bozek, K. , Herholz, M. , Trifunovic, A. , Rieckher, M. , & Schumacher, B. (2020). A C. elegans model for neurodegeneration in Cockayne syndrome. Nucleic Acids Research, 48, 10973–10985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- López‐Cerdán, A. , Andreu, Z. , Hidalgo, M. R. , Grillo‐Risco, R. , Català‐Senent, J. F. , Soler‐Sáez, I. , Neva‐Alejo, A. , Gordillo, F. , de la Iglesia‐Vayá, M. , & García‐García, F. (2022). Unveiling sex‐based differences in Parkinson's disease: A comprehensive meta‐analysis of transcriptomic studies. Biology of Sex Differences, 13(1), 68. 10.1186/s13293-022-00477-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- López‐Otín, C. , Blasco, M. A. , Partridge, L. , Serrano, M. , & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278. 10.1016/j.cell.2022.11.001 [DOI] [PubMed] [Google Scholar]
- Lövestam, S. , Koh, F. A. , van Knippenberg, B. , Kotecha, A. , Murzin, A. G. , Goedert, M. , & Scheres, S. H. W. (2022). Assembly of recombinant tau into filaments identical to those of Alzheimer's disease and chronic traumatic encephalopathy. Elife, 11, e76494. 10.7554/eLife.76494 [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacRae, C. A. , & Peterson, R. T. (2015). Zebrafish as tools for drug discovery. Nature Reviews. Drug Discovery, 14, 721–731. [DOI] [PubMed] [Google Scholar]
- Maeda, S. , Djukic, B. , Taneja, P. , Yu, G. , Lo, I. , Davis, A. , Craft, R. , Guo, W. , Wang, X. , Kim, D. , Ponnusamy, R. , Gill, T. M. , Masliah, E. , & Mucke, L. (2016). Expression of A152T human tau causes age‐dependent neuronal dysfunction and loss in transgenic mice. EMBO Reports, 17, 530–551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manich, G. , Mercader, C. , del Valle, J. , Duran‐Vilaregut, J. , Camins, A. , Pallàs, M. , Vilaplana, J. , & Pelegrí, C. (2011). Characterization of amyloid‐β granules in the hippocampus of SAMP8 mice. Journal of Alzheimer's Disease, 25, 535–546. [DOI] [PubMed] [Google Scholar]
- Maroni, M. J. , Wolk, D. A. , Das, S. R. , De Flores, R. , Wisse, L. , Xie, L. , Yushkevich, P. A. , Lee, E. B. , & McMillan, C. T. (2020). Epigenetic measurement of biological age associates with tau load in normal brain aging. Alzheimer's & Dementia, 16, e042068. 10.1002/alz.042068 [DOI] [Google Scholar]
- Martomo, S. A. , Yang, W. W. , Wersto, R. P. , Ohkumo, T. , Kondo, Y. , Yokoi, M. , Masutani, C. , Hanaoka, F. , & Gearhart, P. J. (2005). Different mutation signatures in DNA polymerase eta‐ and MSH6‐deficient mice suggest separate roles in antibody diversification. Proceedings of the National Academy of Sciences of the United States of America, 102, 8656–8661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melis, J. P. M. , Kuiper, R. V. , Zwart, E. , Robinson, J. , Pennings, J. L. A. , Van Oostrom, C. T. M. , Luijten, M. , & Van Steeg, H. (2013). Slow accumulation of mutations in Xpc‐/‐ mice upon induction of oxidative stress. DNA Repair (Amst), 12, 1081–1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Méndez‐López, I. , Blanco‐Luquin, I. , Sánchez‐Ruiz de Gordoa, J. , Urdánoz‐Casado, A. , Roldán, M. , Acha, B. , Echavarri, C. , Zelaya, V. , Jericó, I. , & Mendioroz, M. (2019). Hippocampal LMNA gene expression is increased in late‐stage Alzheimer's disease. International Journal of Molecular Sciences, 20(4), 878. 10.3390/ijms20040878 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller, J. D. , Ganat, Y. M. , Kishinevsky, S. , Bowman, R. L. , Liu, B. , Tu, E. Y. , Mandal, P. K. , Vera, E. , Shim, J. W. , Kriks, S. , Taldone, T. , Fusaki, N. , Tomishima, M. J. , Krainc, D. , Milner, T. A. , Rossi, D. J. , & Studer, L. (2013). Human iPSC‐based modeling of late‐onset disease via progerin‐induced aging. Cell Stem Cell, 13, 691–705. 10.1016/j.stem.2013.11.006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyamoto, M. (1997). Characteristics of age‐related behavioral changes in senescence‐accelerated mouse SAMP8 and SAMP10. Experimental Gerontology, 32, 139–148. [DOI] [PubMed] [Google Scholar]
- Miyamoto, M. , Kiyota, Y. , Nishiyama, M. , & Nagaoka, A. (1992). Senescence‐accelerated mouse (SAM): Age‐related reduced anxiety‐like behavior in the SAM‐P/8 strain. Physiology & Behavior, 51, 979–985. [DOI] [PubMed] [Google Scholar]
- Miyamoto, M. , Kiyota, Y. , Yamazaki, N. , Nagaoka, A. , Matsuo, T. , Nagawa, Y. , & Takeda, T. (1986). Age‐related changes in learning and memory in the senescence‐accelerated mouse (SAM). Physiology & Behavior, 38, 399–406. [DOI] [PubMed] [Google Scholar]
- Mocanu, M. M. , Nissen, A. , Eckermann, K. , Khlistunova, I. , Biernat, J. , Drexler, D. , Petrova, O. , Schönig, K. , Bujard, H. , Mandelkow, E. , Zhou, L. , Rune, G. , & Mandelkow, E. M. (2008). The potential for β‐structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. Journal of Neuroscience, 28, 737–748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore, K. M. , Nicholas, J. , Grossman, M. , McMillan, C. T. , Irwin, D. J. , Massimo, L. , van Deerlin, V. M. , Warren, J. D. , Fox, N. C. , Rossor, M. N. , Mead, S. , Bocchetta, M. , Boeve, B. F. , Knopman, D. S. , Graff‐Radford, N. R. , Forsberg, L. K. , Rademakers, R. , Wszolek, Z. K. , van Swieten, J. C. , … Geschwind, D. (2020). Age at symptom onset and death and disease duration in genetic frontotemporal dementia: An international retrospective cohort study. Lancet Neurology, 19, 145–156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris, S. L. , Tsai, M. Y. , Aloe, S. , Bechberger, K. , König, S. , Morfini, G. , & Brady, S. T. (2021). Defined tau phosphospecies differentially inhibit fast axonal transport through activation of two independent signaling pathways. Frontiers in Molecular Neuroscience, 13, 1–13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muftuoglu, M. , Oshima, J. , Kobbe, C. , Cheng, W. H. , Leistritz, D. F. , & Bohr, V. A. (2008). The clinical characteristics of Werner syndrome: Molecular and biochemical diagnosis. Human Genetics, 124, 369–377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Müller, L. , Power Guerra, N. , Stenzel, J. , Rühlmann, C. , Lindner, T. , Krause, B. J. , Vollmar, B. , Teipel, S. , & Kuhla, A. (2021). Long‐term caloric restriction attenuates β‐amyloid neuropathology and is accompanied by autophagy in APPswe/PS1delta9 mice. Nutrients., 13(3), 985. 10.3390/nu13030985 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai, T. , Yamada, K. , Kim, H. C. , Kim, Y. S. , Noda, Y. , Imura, A. , Nabeshima, Y. , & Nabeshima, T. (2003). Cognition impairment in the genetic model of aging klotho gene mutant mice: A role of oxidative stress. The FASEB Journal, 17, 50–52. [DOI] [PubMed] [Google Scholar]
- Nakane, H. , Takeuchi, S. , Yuba, S. , Saijo, M. , Nakatsu, Y. , Murai, H. , Nakatsuru, Y. , Ishikawa, T. , Hirota, S. , & Kitamura, Y. (1995). High incidence of ultraviolet‐B‐or chemical‐carcinogen‐induced skin tumours in mice lacking the xeroderma pigmentosum group A gene. Nature, 377, 165–168. [DOI] [PubMed] [Google Scholar]
- Neitzel, J. , Franzmeier, N. , Rubinski, A. , Dichgans, M. , Brendel, M. , Alzheimer's Disease Neuroimaging Initiative (ADNI) , Malik, R. , & Ewers, M. (2021). KL‐VS heterozygosity is associated with lower amyloid‐dependent tau accumulation and memory impairment in Alzheimer's disease. Nature Communications, 12, 3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nirmalan, P. K. , Robin, A. L. , Katz, J. , Tielsch, J. M. , Thulasiraj, R. D. , Krishnadas, R. , & Ramakrishnan, R. (2004). Risk factors for age related cataract in a rural population of southern India: The Aravind comprehensive eye study. British Journal of Ophthalmology, 88, 989–994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nissan, X. , Blondel, S. , Navarro, C. , Maury, Y. , Denis, C. , Girard, M. , Martinat, C. , de Sandre‐Giovannoli, A. , Levy, N. , & Peschanski, M. (2012). Unique preservation of neural cells in Hutchinson‐Gilford progeria syndrome is due to the expression of the neural‐specific miR‐9 microRNA. Cell Reports, 2, 1–9. [DOI] [PubMed] [Google Scholar]
- Oh, J. , Lee, Y. D. , & Wagers, A. J. (2014). Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nature Medicine, 20, 870–880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orr, M. E. , Garbarino, V. R. , Salinas, A. , & Buffenstein, R. (2015). Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest‐lived rodent. Neurobiology of Aging, 36, 1496–1504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oshima, J. , Sidorova, J. M. , & Monnat, R. J. (2017). Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Research Reviews, 33, 105–114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Osorio, F. G. , Navarro, C. L. , Cadiñanos, J. , López‐Mejía, I. C. , Quirós, P. M. , Bartoli, C. , Rivera, J. , Tazi, J. , Guzmán, G. , Varela, I. , Depetris, D. , de Carlos, F. , Cobo, J. , Andrés, V. , De Sandre‐Giovannoli, A. , Freije, J. M. P. , Lévy, N. , & López‐Otín, C. (2011). Splicing‐directed therapy in a new mouse model of human accelerated aging. Science Translational Medicine, 3, 106ra107. [DOI] [PubMed] [Google Scholar]
- Paonessa, F. , Evans, L. D. , Solanki, R. , Larrieu, D. , Wray, S. , Hardy, J. , Jackson, S. P. , & Livesey, F. J. (2019). Microtubules deform the nuclear membrane and disrupt nucleocytoplasmic transport in Tau‐mediated frontotemporal dementia. Cell Reports, 26, 582–593.e5. 10.1016/j.celrep.2018.12.085 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park, T. J. , Reznick, J. , Peterson, B. L. , Blass, G. , Omerbašić, D. , Bennett, N. C. , Kuich, P. H. J. L. , Zasada, C. , Browe, B. M. , Hamann, W. , Applegate, D. T. , Radke, M. H. , Kosten, T. , Lutermann, H. , Gavaghan, V. , Eigenbrod, O. , Bégay, V. , Amoroso, V. G. , Govind, V. , … Lewin, G. R. (2017). Fructose‐driven glycolysis supports anoxia resistance in the naked mole‐rat. Science, 356(6335), 307–311. 10.1126/science.aab3896 [DOI] [PubMed] [Google Scholar]
- Perez, H. , Abdallah, M. F. , Chavira, J. I. , Norris, A. S. , Egeland, M. T. , Vo, K. L. , Buechsenschuetz, C. L. , Sanghez, V. , Kim, J. L. , Pind, M. , Nakamura, K. , Hicks, G. G. , Gatti, R. A. , Madrenas, J. , Iacovino, M. , McKinnon, P. J. , & Mathews, P. J. (2021). A novel, ataxic mouse model of ataxia telangiectasia caused by a clinically relevant nonsense mutation. Elife, 10, e64695. 10.7554/eLife.64695 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polanco, J. C. , Akimov, Y. , Fernandes, A. , Briner, A. , Hand, G. R. , van Roijen, M. , Balistreri, G. , & Götz, J. (2022). CRISPRi screening reveals regulators of tau pathology shared between exosomal and vesicle‐free tau. Life Science Alliance, 6(1), e202201689. 10.26508/lsa.202201689 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollex, R. L. , & Hegele, R. A. (2004). Hutchinson‐Gilford progeria syndrome. Clinical Genetics, 66, 375–381. [DOI] [PubMed] [Google Scholar]
- Porquet, D. , Andrés‐Benito, P. , Griñán‐Ferré, C. , Camins, A. , Ferrer, I. , Canudas, A. M. , del Valle, J. , & Pallàs, M. (2015). Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordrecht, Netherlands), 37, 9747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pradeep, I. , Gowrishankar, K. , & Shanmugasundaram, L. (2022). Lethal restrictive dermopathy with ZMPSTE24 mutation. Pediatric and Developmental Pathology, 25, 327–329. [DOI] [PubMed] [Google Scholar]
- Prince, M. , Knapp, M. , Guerchet, M. , McCrone, P. , Prina, M. , Comas‐Herrera, A. , Wittenberg, R. , Adelaja, B. , Hu, B. , King, D. , Rehill, A. , & Salimkumar, D. (2014). Dementia UK: Update .
- Pyo, J.‐O. , Yoo, S.‐M. , Ahn, H.‐H. , Nah, J. , Hong, S.‐H. , Kam, T.‐I. , Jung, S. , & Jung, Y.‐K. (2013). Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nature Communications, 4, 2300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qiang, M. , Khalid, F. , Phan, T. , Ludwig, C. , Scharffetter‐Kochanek, K. , & Iben, S. (2021). Cockayne syndrome‐associated CSA and CSB mutations impair ribosome biogenesis, ribosomal protein stability, and global protein folding. Cells, 10(7), 1616. 10.3390/cells10071616 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quigley, A. , Dong, Y. Y. , Pike, A. C. W. , Dong, L. , Shrestha, L. , Berridge, G. , Stansfeld, P. J. , Sansom, M. S. P. , Edwards, A. M. , Bountra, C. , von Delft, F. , Bullock, A. N. , Burgess‐Brown, N. A. , & Carpenter, E. P. (2013). The structural basis of ZMPSTE24‐dependent laminopathies. Science, 339, 1604–1607. [DOI] [PubMed] [Google Scholar]
- Quinn, R. (2005). Comparing rat's to human's age: How old is my rat in people years? Nutrition, 21, 775–777. [DOI] [PubMed] [Google Scholar]
- Rabinovici, G. D. (2019). Late‐onset Alzheimer disease. Continuum (Minneap Minn)., 25, 14–33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajsombath, M. M. , Nam, A. Y. , Ericsson, M. , & Nuber, S. (2019). Female sex and brain‐selective estrogen benefit α‐synuclein tetramerization and the PD‐like motor syndrome in 3k transgenic mice. Journal of Neuroscience, 39, 7628–7640. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rockenstein, E. , Overk, C. R. , Ubhi, K. , Mante, M. , Patrick, C. , Adame, A. , Bisquert, A. , Trejo‐Morales, M. , Spencer, B. , & Masliah, E. (2015). A novel triple repeat mutant tau transgenic model that mimics aspects of pick's disease and fronto‐temporal tauopathies. PLoS ONE, 10(3), e0121570. 10.1371/journal.pone.0121570 [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- Rodgers, J. L. , Jones, J. , Bolleddu, S. I. , Vanthenapalli, S. , Rodgers, L. E. , Shah, K. , Karia, K. , & Panguluri, S. K. (2019). Cardiovascular risks associated with gender and aging. Journal of Cardiovascular Development and Disease, 6(2), 19. 10.3390/jcdd6020019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothblum‐Oviatt, C. , Wright, J. , Lefton‐Greif, M. A. , McGrath‐Morrow, S. A. , Crawford, T. O. , & Lederman, H. M. (2016). Ataxia telangiectasia: A review. Orphanet Journal of Rare Diseases, 11, 159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruby, J. G. , Smith, M. , & Buffenstein, R. (2018). Naked Mole‐Rat mortality rates defy gompertzian laws by not increasing with age. Elife, 7, e31157. 10.7554/eLife.31157 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahu, A. , Mamiya, H. , Shinde, S. N. , Cheikhi, A. , Winter, L. L. , Vo, N. V. , Stolz, D. , Roginskaya, V. , Tang, W. Y. , St Croix, C. , Sanders, L. H. , Franti, M. , Van Houten, B. , Rando, T. A. , Barchowsky, A. , & Ambrosio, F. (2018). Age‐related declines in α‐Klotho drive progenitor cell mitochondrial dysfunction and impaired muscle regeneration. Nature Communications, 9(1), 4859. 10.1038/s41467-018-07253-3 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saito, T. , Mihira, N. , Matsuba, Y. , Sasaguri, H. , Hashimoto, S. , Narasimhan, S. , Zhang, B. , Murayama, S. , Higuchi, M. , Lee, V. M. Y. , Trojanowski, J. Q. , & Saido, T. C. (2019). Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. Journal of Biological Chemistry, 294, 12754–12765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saldanha, S. N. , & Watanabe, L. P. (2015). Epigenetics and aging. Epigenetics and Dermatology, 4, 379–406. [Google Scholar]
- Salminen, A. , Kaarniranta, K. , & Kauppinen, A. (2012). Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging (Albany NY), 4(3), 166–175. 10.18632/aging.100444 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders, D. W. , Kaufman, S. K. , DeVos, S. L. , Sharma, A. M. , Mirbaha, H. , Li, A. , Barker, S. J. , Foley, A. C. , Thorpe, J. R. , Serpell, L. C. , Miller, T. M. , Grinberg, L. T. , Seeley, W. W. , & Diamond, M. I. (2014). Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron, 82, 1271–1288. 10.1016/j.neuron.2014.04.047 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santacruz, K. , Lewis, J. , Spires, T. , Paulson, J. , Kotilinek, L. , Ingelsson, M. , Guimaraes, A. , DeTure, M. , Ramsden, M. , McGowan, E. , Forster, C. , Yue, M. , Orne, J. , Janus, C. , Mariash, A. , Kuskowski, M. , Hyman, B. , Hutton, M. , & Ashe, K. (2005). Tau suppression in a neurodegenerative mouse model improves memory function. Science, 309, 473–476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santra, M. , Dill, K. A. , & de Graff, A. M. R. (2019). Proteostasis collapse is a driver of cell aging and death. Proceedings of the National Academy of Sciences of the United States of America, 116, 22173–22178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savica, R. , Grossardt, B. R. , Bower, J. H. , Ahlskog, J. E. , & Rocca, W. A. (2013). Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurology, 70, 859–866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schindowski, K. , Bretteville, A. , Leroy, K. , Bégard, S. , Brion, J. P. , Hamdane, M. , & Buée, L. (2006). Alzheimer's disease‐like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. American Journal of Pathology, 169, 599–616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumacher, B. , Pothof, J. , Vijg, J. , & Hoeijmakers, J. H. J. (2021). The central role of DNA damage in the ageing process. Nature, 592, 695–703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sengupta, P. (2013). The Laboratory Rat: Relating Its Age with Human's . www.ijpm.ir [PMC free article] [PubMed]
- Shanbhag, N. M. , Evans, M. D. , Mao, W. , Nana, A. L. , Seeley, W. W. , Adame, A. , Rissman, R. A. , Masliah, E. , & Mucke, L. (2019). Early neuronal accumulation of DNA double strand breaks in Alzheimer's disease. Acta Neuropathologica Communications, 7(1), 77. 10.1186/s40478-019-0723-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shevelyov, Y. Y. , & Ulianov, S. v. (2019). The nuclear lamina as an organizer of chromosome architecture. Cell, 8, 136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shin, J.‐Y. , & Worman, H. J. (2021). Molecular Pathology of Laminopathies. Annual Review of Pathology: Mechanisms of Disease, 17, 159–180. 10.1146/annurev-pathol-042220- [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shokouhi, S. , Taylor, W. D. , Albert, K. , Kang, H. , & Newhouse, P. A. (2020). In vivo network models identify sex differences in the spread of tau pathology across the brain. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 12, e12016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith, P. , Willemsen, D. , Popkes, M. , Metge, F. , Gandiwa, E. , Reichard, M. , & Valenzano, D. R. (2017). Regulation of life span by the gut microbiota in the short‐lived African turquoise killifish. eLife, 6, e27014. 10.7554/eLife.27014 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snow, C. J. , Dar, A. , Dutta, A. , Kehlenbach, R. H. , & Paschal, B. M. (2013). Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. Journal of Cell Biology, 201, 541–557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spitz, M. A. , Severac, F. , Obringer, C. , Baer, S. , le May, N. , Calmels, N. , & Laugel, V. (2021). Diagnostic and severity scores for Cockayne syndrome. Orphanet Journal of Rare Diseases, 16, 63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stubbs, T. M. , Bonder, M. J. , Stark, A.‐K. , Krueger, F. , Team, B. I. A. C. , von Meyenn, F. , Stegle, O. , & Reik, W. (2017). Multi‐tissue DNA methylation age predictor in mouse. Genome Biology, 18, 68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sultan, A. , Nesslany, F. , Violet, M. , Bégard, S. , Loyens, A. , Talahari, S. , Mansuroglu, Z. , Marzin, D. , Sergeant, N. , Humez, S. , Colin, M. , Bonnefoy, E. , Buée, L. , & Galas, M. C. (2011). Nuclear Tau, a key player in neuronal DNA protection. Journal of Biological Chemistry, 286, 4566–4575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundermann, E. E. , Panizzon, M. S. , Chen, X. , Andrews, M. , Galasko, D. , Banks, S. J. , & Alzheimer's Disease Neuroimaging Initiative . (2020). Sex differences in Alzheimer's‐related Tau biomarkers and a mediating effect of testosterone. Biology of Sex Differences, 11(1), 33. 10.1186/s13293-020-00310-x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takuma, H. , Arawaka, S. , & Mori, H. (2003). Isoforms changes of tau protein during development in various species. Developmental Brain Research, 142, 121–127. [DOI] [PubMed] [Google Scholar]
- Tanemura, K. , Murayama, M. , Akagi, T. , Hashikawa, T. , Tominaga, T. , Ichikawa, M. , Yamaguchi, H. , & Takashima, A. (2001). Neurodegeneration with Tau accumulation in a transgenic mouse expressing V337M human Tau. The Journal of Neuroscience, 22, 133–141. http://rsb.info.nih.gov/nih‐image [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tatebayashi, Y. , Miyasaka, T. , Chui, D.‐H. , Akagi, T. , Mishima, K.‐I. , Iwasaki, K. , Fujiwara, M. , Tanemura, K. , Murayama, M. , Koichi, I. , Planel, E. , Sato, S. , Hashikawa, T. , & Takashima, A. (2002). Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. PNAS, 99, 13896–13901. http://www.pnas.orgcgidoi10.1073pnas.202205599 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terwel, D. , Lasrado, R. , Snauwaert, J. , Vandeweert, E. , van Haesendonck, C. , Borghgraef, P. , & van Leuven, F. (2005). Changed conformation of mutant tau‐P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of tau‐4R/2N transgenic mice. Journal of Biological Chemistry, 280, 3963–3973. [DOI] [PubMed] [Google Scholar]
- Terzibasi, E. , Valenzano, D. R. , Benedetti, M. , Roncaglia, P. , Cattaneo, A. , Domenici, L. , & Cellerino, A. (2008). Large differences in aging phenotype between strains of the short‐lived annual fish Nothobranchius furzeri . PLoS One, 3, e3866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tian, X. , Azpurua, J. , Hine, C. , Vaidya, A. , Myakishev‐Rempel, M. , Ablaeva, J. , Mao, Z. , Nevo, E. , Gorbunova, V. , & Seluanov, A. (2013). High‐molecular‐mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature, 499, 346–349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasevic, G. , Laurer, H. L. , Mattiasson, G. , van Steeg, H. , Wieloch, T. , & McIntosh, T. K. (2012). Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA. Journal of Neurosurgery, 116, 1368–1378. [DOI] [PubMed] [Google Scholar]
- Trifunovic, A. , & Larsson, N. G. (2008). Mitochondrial dysfunction as a cause of ageing. Journal of Internal Medicine, 263, 167–178. [DOI] [PubMed] [Google Scholar]
- Troelstra, C. , van Gool, A. , de Wit, J. , Vermeulen, W. , Bootsma, D. , & Hoeijmakers, J. H. (1992). ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne's syndrome and preferential repair of active genes. Cell, 71, 939–953. [DOI] [PubMed] [Google Scholar]
- Ullrich, N. J. , & Gordon, L. B. (2015). Hutchinson‐Gilford progeria syndrome (1st ed.). Elsevier B.V. 10.1016/B978-0-444-62702-5.00018-4 [DOI] [PubMed] [Google Scholar]
- Umeda, T. , Yamashita, T. , Kimura, T. , Ohnishi, K. , Takuma, H. , Ozeki, T. , Takashima, A. , Tomiyama, T. , & Mori, H. (2013). Neurodegenerative disorder FTDP‐17‐related tau intron 10 +16C→T mutation increases tau exon 10 splicing and causes tauopathy in transgenic mice. American Journal of Pathology, 183, 211–225. [DOI] [PubMed] [Google Scholar]
- United Nations – Department of Economic and Social Affairs . (2019). World Population Ageing 2019 . http://link.springer.com/chapter/10.1007/978‐94‐007‐5204‐7_6
- Valenzano, D. R. , Benayoun, B. A. , Singh, P. P. , Zhang, E. , Etter, P. D. , Hu, C.‐K. , Clément‐Ziza, M. , Willemsen, D. , Cui, R. , Harel, I. , Machado, B. E. , Yee, M.‐C. , Sharp, S. C. , Bustamante, C. D. , Beyer, A. , Johnson, E. A. , & Brunet, A. (2015). The African turquoise killifish genome provides insights into evolution and genetic architecture of lifespan. Cell, 163, 1539–1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varela, I. , Cadiñanos, J. , Pendás, A. M. , Gutiérrez‐Fernández, A. , Folgueras, A. R. , Sánchez, L. M. , Zhou, Z. , Rodríguez, F. J. , Stewart, C. L. , Vega, J. A. , Tryggvason, K. , Freije, J. M. P. , & López‐Otín, C. (2005). Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature, 437, 564–568. [DOI] [PubMed] [Google Scholar]
- Vijg, J. , & Suh, Y. (2013). Genome instability and aging. Annual Review of Physiology, 75, 645–668. [DOI] [PubMed] [Google Scholar]
- Violet, M. , Delattre, L. , Tardivel, M. , Sultan, A. , Chauderlier, A. , Caillierez, R. , Talahari, S. , Nesslany, F. , Lefebvre, B. , Bonnefoy, E. , Buée, L. , & Galas, M. C. (2014). A major role for Tau in neuronal DNA and RNA protection in vivo under physiological and hyperthermic conditions. Frontiers in Cellular Neuroscience, 8, 1–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viscidi, E. , Litvan, I. , Dam, T. , Juneja, M. , Li, L. , Krzywy, H. , Eaton, S. , Hall, S. , Kupferman, J. , & Höglinger, G. U. (2021). Clinical features of patients with progressive supranuclear palsy in an US Insurance Claims Database. Frontiers in Neurology, 12, 571800. 10.3389/fneur.2021.571800 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang, J. , Jin, W.‐S. , Bu, X.‐L. , Zeng, F. , Huang, Z.‐L. , Li, W.‐W. , Shen, L.‐L. , Zhuang, Z.‐Q. , Fang, Y. , Sun, B.‐L. , Zhu, J. , Yao, X.‐Q. , Zeng, G.‐H. , Dong, Z.‐F. , Yu, J.‐T. , Hu, Z. , Song, W. , Zhou, H.‐D. , Jiang, J.‐X. , … Wang, Y.‐J. (2018). Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta Neuropathologica, 136, 525–536. [DOI] [PubMed] [Google Scholar]
- Wang, Y. , Khandelwal, N. , Liu, S. , Zhou, M. , Bao, L. , Wang, J. E. , Kumar, A. , Xing, C. , Gibson, J. R. , & Wang, Y. (2022). KDM6B cooperates with Tau and regulates synaptic plasticity and cognition via inducing VGLUT1/2. Molecular Psychiatry, 27(12), 5213–5226. 10.1038/s41380-022-01750-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang, Y. , Loomis, P. A. , Zinkowski, R. P. , & Binder, L. I. (1993). A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. Journal of Cell Biology, 121, 257–267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang, Y. , Shilagardi, K. , Hsu, T. , Odinammadu, K. O. , Maruyama, T. , Wu, W. , Lin, C. S. , Damoci, C. B. , Spear, E. D. , Shin, J. Y. , Hsu, W. , Michaelis, S. , & Worman, H. J. (2022). Abolishing the prelamin A ZMPSTE24 cleavage site leads to progeroid phenotypes with near‐normal longevity in mice. Proceedings of the National Academy of Sciences of the United States of America., 119(9), e2118695119. 10.1073/pnas.2118695119 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weingarten, M. D. , Lockwood, A. H. , Hwo, S. , & Kirschner, M. W. (1975). A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America, 72, 1858–1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler, J. M. , McMillan, P. J. , Hawk, M. , Iba, M. , Robinson, L. , Xu, G. J. , Dombroski, B. A. , Jeong, D. , Dichter, M. A. , Juul, H. , Loomis, E. , Raskind, M. , Leverenz, J. B. , Trojanowski, J. Q. , Lee, V. M. Y. , Schellenberg, G. D. , & Kraemer, B. C. (2015). High copy wildtype human 1N4R tau expression promotes early pathological tauopathy accompanied by cognitive deficits without progressive neurofibrillary degeneration. Acta Neuropathologica Communications, 3, 33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White, M. C. , Holman, D. M. , Boehm, J. E. , Peipins, L. A. , Grossman, M. , & Henley, S. J. (2014). Age and cancer risk: A potentially modifiable relationship. American Journal of Preventive Medicine, 46(3 Suppl 1), S7–S15. 10.1016/j.amepre.2013.10.029 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu, J. W. , Yaqub, A. , Ma, Y. , Koudstaal, W. , Hofman, A. , Ikram, M. A. , Ghanbari, M. , & Goudsmit, J. (2021). Biological age in healthy elderly predicts aging‐related diseases including dementia. Scientific Reports, 11, 15929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiao, B. , Wang, S. , Yang, G. , Sun, X. , Zhao, S. , Lin, L. , Cheng, J. , Yang, W. , Cong, W. , Sun, W. , Kan, G. , & Cui, S. (2017). HIF‐1α contributes to hypoxia adaptation of the naked mole rat . http://www.impactjournals.com/oncotarget [DOI] [PMC free article] [PubMed]
- Xu, Y. , Wu, Z. , Liu, L. , Liu, J. , & Wang, Y. (2019). Rat model of Cockayne syndrome neurological disease. Cell Reports, 29, 800–809.e5. [DOI] [PubMed] [Google Scholar]
- Yang, H. , Oh, C.‐K. , Amal, H. , Wishnok, J. S. , Lewis, S. , Schahrer, E. , Trudler, D. , Nakamura, T. , Tannenbaum, S. R. , & Lipton, S. A. (2022). Mechanistic insight into female predominance in Alzheimer's disease based on aberrant protein S‐nitrosylation of C3. Science Advances, 8, eade0764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang, S. H. , Procaccia, S. , Jung, H.‐J. , Nobumori, C. , Tatar, A. , Tu, Y. , Bayguinov, Y. R. , Hwang, S. J. , Tran, D. , Ward, S. M. , Fong, L. G. , & Young, S. G. (2015). Mice that express farnesylated versions of prelamin A in neurons develop achalasia. Human Molecular Genetics, 24, 2826–2840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoon, T. , Chakrabortty, A. , Franks, R. , Valli, T. , Kiyokawa, H. , & Raychaudhuri, P. (2005). Tumor‐prone phenotype of the DDB2‐deficient mice. Oncogene, 24, 469–478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshiyama, Y. , Higuchi, M. , Zhang, B. , Huang, S. M. , Iwata, N. , Saido, T. C. C. , Maeda, J. , Suhara, T. , Trojanowski, J. Q. , & Lee, V. M. Y. (2007). Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron, 53, 337–351. [DOI] [PubMed] [Google Scholar]
- Zhang, B. , Higuchi, M. , Yoshiyama, Y. , Ishihara, T. , Forman, M. S. , Martinez, D. , Joyce, S. , Trojanowski, J. Q. , & Lee, V. M. Y. (2004). Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. Journal of Neuroscience, 24, 4657–4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang, H. , Sun, L. , Wang, K. , Wu, D. , Trappio, M. , Witting, C. , & Cao, K. (2016). Loss of H3K9me3 correlates with ATM activation and histone H2AX phosphorylation deficiencies in Hutchinson‐Gilford progeria syndrome. PLoS One, 11, 1–25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhao, Y. , Qian, R. , Zhang, J. , Liu, F. , Iqbal, K. , Dai, C.‐L. , & Gong, C.‐X. (2020). Young blood plasma reduces Alzheimer's disease‐like brain pathologies and ameliorates cognitive impairment in 3×Tg‐AD mice. Alzheimer's Research & Therapy, 12, 70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou, A. , Wu, Z. , Zaw Phyo, A. Z. , Torres, D. , Vishwanath, S. , & Ryan, J. (2022). Epigenetic aging as a biomarker of dementia and related outcomes: A systematic review. Epigenomics, 14, 1125–1138. [DOI] [PubMed] [Google Scholar]
- Zilka, N. , Filipcik, P. , Koson, P. , Fialova, L. , Skrabana, R. , Zilkova, M. , Rolkova, G. , Kontsekova, E. , & Novak, M. (2006). Truncated tau from sporadic Alzheimer's disease suffices to drive neurofibrillary degeneration in vivo. FEBS Letters, 580, 3582–3588. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
Not applicable.