ABSTRACT
Bacterial nitrogen (N) fixation in alder nodules is a key process providing nitrogen to nutrient-limited arctic biomes. Here, 45 prokaryotic metagenome-assembled genome (MAG) sequences from root nodules of arctic alder are reported.
ANNOUNCEMENT
Plant roots are home to beneficial microbes where microorganisms help plants to obtain nutrients, tolerate stress, and sustain growth (1). We investigated the nodule microbiome of Alnus viridis subsp. fruticosa, an N-fixing deciduous alder shrub that is an important contributor to N cycling in high-latitude ecosystems (2).
Alder nodules were collected from the Next Generation Ecosystem Experiments Arctic Kougarok site (65°09′50.1″N, 164°49′34.2″W), which is located 103 km from Nome, Alaska. At this location, alder is found in two distinct communities, short and dispersed alder growing in lowland areas (savanna) and tall alder growing as dense shrublands along the hillslope (shrubland) (3). Root nodules were collected from five randomly selected plants for each alder type, stored on blue ice in the field, and frozen at −20°C within 10 hours of collection. Nodule surfaces were cleaned before DNA extraction (4), and surface cleanness was confirmed by plating on LB and R2A agar.
Genomic DNA was extracted from each nodule by Qiagen DNeasy DNA isolation kit (Qiagen, MD, USA) (5). DNA from individual nodules was pooled for each plant type and concentrated with Zymo DNA Clean & Concentrator-5 kit (Zymo Research, CA, USA). Two pools of DNA, one from savannah and another from shrubland, were quantified using the Qubit double-stranded DNA high-sensitivity assay (Invitrogen, CA, USA) and submitted for sequencing. Libraries were prepared according to the manufacturer’s instructions with Kapa HyperPrep kit (Roche, CA, USA) and sequenced with Illumina NovaSeq 6000 S4 at QB3 UC Berkeley, generating sequences of 150 bp in length. Both samples had average GC content of 63% and a similar number of paired-end sequences (shrubland, 2.08 × 108 sequences/sample; savanna, 2.19 × 108 sequences/sample). Sequence processing and metagenome-assembled genome (MAG) generation were performed via metaWRAP v1.1 (6). Default parameters were used for all software unless otherwise specified. Sequencing adapters and low-quality reads were removed with metaWRAP::Read_qc module. Reads from both metagenomes were combined into a single set and then coassembled with MEGAHIT v1.1.3 (7), resulting in 475,302 contigs (maximum, 506,155 bp; average, 2,868 bp; N50, 3,779 bp) of ≥1 kb. Contigs were binned with MaxBin2 v2.2.5 (8), MetaBAT2 v2.12.1 (9), and CONCOCT v1.1.0 (10) and then refined into MAGs using metaWRAP::Bin_refinement module (8). We used CheckM v1.1.10 (11) to determine the completeness and contamination of MAGs. We recovered 6 high-quality and 39 medium-quality draft MAGs (see Table 1 at https://tinyurl.com/4dtt38mt) by minimum information about a metagenome-assembled genome (MIMAG) standards (12). GTDB-Tk v1.5.0, (13) with the reference database GTDB R06-RS202 (14), was used to assign taxonomy where MAGs were distributed across the following phyla: Proteobacteria, 25; Actinobacteria, 4; Bacteroidetes, 8; Acidobacteria, 4; Verrucomicrobia, 4; and Myxococcota, 2. These data provide a rare resource to be analyzed with measurements of plant productivity (3) traits to link N fixation, alder nodule microbiome, and plant health in the changing Arctic ecosystems.
Data availability.
MAGs were deposited in the National Center for Biotechnology Information (NCBI) BioProject database under accession no. PRJNA830531, and nodule metagenomes were deposited under SRA accession no. SRR18933204 for alder savanna and SRR18933205 for alder shrubland. GenBank accession numbers for the MAGs are listed in Table 1, and quality metrics are provided via Table 1 at https://figshare.com/articles/dataset/Quality_metrics_for_metagenome-assembled_genomes_of_Alnus_viridis_spp_Fruticose_nodules/22096520/1.
TABLE 1.
Bin ID | GenBank accession no. | MIMAG bin qualitya | GTDB lineage |
---|---|---|---|
NGEE_A_bin1 | JAMFTE000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_;s_ |
NGEE_A_bin10 | JAMFTD000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Rhodanobacteraceae;g_Rhodanobacter;s_Rhodanobacter sp014207185 |
NGEE_A_bin11 | JAMFTC000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Azospirillales_A;f_BOG-932;g_BOG-932;s_ |
NGEE_A_bin12 | JAMFTB000000000 | MQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Terriglobus;s_ |
NGEE_A_bin13 | JAMFTA000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Caulobacterales;f_Caulobacteraceae;g_CAIOYC01;s_ |
NGEE_A_bin14 | JAMFSZ000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_Bog-1198;s_ |
NGEE_A_bin15 | JAMFSY000000000 | HQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Methylacidiphilales;f_UBA1321;g_JABDGH01;s_ |
NGEE_A_bin16 | JAMFSX000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_CAIVDX01;s_ |
NGEE_A_bin17 | JAMFSW000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_LMUX01;s_ |
NGEE_A_bin18 | JAMFSV000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_LMUX01;s_ |
NGEE_A_bin19 | JAMFSU000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Herbaspirillum;s_ |
NGEE_A_bin2 | JAMFST000000000 | MQ | p_Myxococcota;c_Polyangia;o_Polyangiales;f_Polyangiaceae;g_;s_ |
NGEE_A_bin20 | JAMFSS000000000 | HQ | p_Proteobacteria;c_Alphaproteobacteria;o_Micavibrionales_A;f_UBA9219;g_JABDFY01;s_ |
NGEE_A_bin21 | JAMFSR000000000 | HQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Granulicella_A;s_ |
NGEE_A_bin22 | JAMFSQ000000000 | MQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Granulicella_C;s_ |
NGEE_A_bin23 | JAMFSP000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Spongiibacteraceae;g_;s_ |
NGEE_A_bin24 | JAMFSO000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_;s_ |
NGEE_A_bin25 | JAMFSN000000000 | HQ | p_Actinobacteriota;c_Actinomycetia;o_Mycobacteriales;f_Frankiaceae;g_;s_ |
NGEE_A_bin26 | JAMFSM000000000 | MQ | p_Myxococcota;c_Polyangia;o_Haliangiales;f_Haliangiaceae;g_;s_ |
NGEE_A_bin27 | JAMFSL000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Chitinophagales;f_Chitinophagaceae;g_Puia;s_ |
NGEE_A_bin28 | JAMFSK000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Pararobbsia;s_ |
NGEE_A_bin29 | JAMFSJ000000000 | MQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Pedosphaerales;f_UBA11358;g_UBA11358;s_ |
NGEE_A_bin3 | JAMFSI000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Sphingomonadales;f_Sphingomonadaceae;g_Novosphingobium;s_ |
NGEE_A_bin30 | JAMFSH000000000 | MQ | p_Actinobacteriota;c_Actinomycetia;o_Mycobacteriales;f_Mycobacteriaceae;g_Mycobacterium;s_ |
NGEE_A_bin31 | JAMFSG000000000 | MQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Pedosphaerales;f_UBA11358;g_UBA11358;s_ |
NGEE_A_bin32 | JAMFSF000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Chitinophagales;f_Chitinophagaceae;g_JABDFW01;s_ |
NGEE_A_bin33 | JAMFSE000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_;s_ |
NGEE_A_bin34 | JAMFSD000000000 | MQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Opitutales;f_Opitutaceae;g_CAIOZY01;s_ |
NGEE_A_bin35 | JAMFSC000000000 | MQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Granulicella_C;s_ |
NGEE_A_bin36 | JAMFSB000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Paraburkholderia;s_Paraburkholderia phenazinium_C |
NGEE_A_bin37 | JAMFSA000000000 | HQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_ |
NGEE_A_bin38 | JAMFRZ000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Xanthobacteraceae;g_Bradyrhizobium;s_Bradyrhizobium sp009766005 |
NGEE_A_bin39 | JAMFRY000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_;s_ |
NGEE_A_bin4 | JAMFRX000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Chitinophagales;f_Chitinophagaceae;g_Puia;s_ |
NGEE_A_bin40 | JAMFRW000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Rhizobacter;s_ |
NGEE_A_bin41 | JAMFRV000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_Pseudomonas_E;s_ |
NGEE_A_bin42 | JAMFRU000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Acidocella;s_ |
NGEE_A_bin43 | JAMFRT000000000 | HQ | p_Actinobacteriota;c_Actinomycetia;o_Mycobacteriales;f_Frankiaceae;g_Frankia;s_Frankia sp902806485 |
NGEE_A_bin44 | JAMFRS000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_ |
NGEE_A_bin45 | JAMFRR000000000 | MQ | p_Actinobacteriota;c_Actinomycetia;o_Streptosporangiales;f_Streptosporangiaceae;g_Trebonia;s_ |
NGEE_A_bin5 | JAMFRQ000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_Bog-1198;s_ |
NGEE_A_bin6 | JAMFRP000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_ |
NGEE_A_bin7 | JAMFRO000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Acidocella;s_ |
NGEE_A_bin8 | JAMFRN000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Nevskiales;f_Nevskiaceae;g_Nevskia;s_ |
NGEE_A_bin9 | JAMFRM000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_Mucilaginibacter sp014200495 |
HQ, high quality draft; MQ, medium quality draft by MIMAG standards.
ACKNOWLEDGMENTS
Funding for this work was provided to Neslihan Taş in part through the Office of Biological and Environmental Research in the DOE Office of Science-Early Career Research program. The Next Generation Ecosystem Experiments (NGEE-Arctic) project is supported by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science. This work used the Vincent J. Coates Genomics Sequencing Laboratory at UC Berkeley, supported by an NIH S10 OD018174 instrumentation grant. Oak Ridge National Laboratory is managed by UT-Battelle LLC for DOE under contract DE-AC05-00OR22725.
Contributor Information
Neslihan Taş, Email: ntas@lbl.gov.
Vincent Michael Bruno, University of Maryland School of Medicine.
REFERENCES
- 1.Davies-Barnard T, Friedlingstein P. 2020. The global distribution of biological nitrogen fixation in terrestrial natural ecosystems. Global Biogeochem Cycles 34:e2019GB006387. doi: 10.1029/2019GB006387. [DOI] [Google Scholar]
- 2.Ramm E, Liu C, Ambus P, Butterbach-Bahl K, Hu B, Martikainen PJ, Marushchak ME, Mueller CW, Rennenberg H, Schloter M. 2021. A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils–changing the paradigm. Environ Res Lett 17:e013004. doi: 10.1088/1748-9326/ac417e. [DOI] [Google Scholar]
- 3.Salmon VG, Breen AL, Kumar J, Lara MJ, Thornton PE, Wullschleger SD, Iversen CM. 2019. Alder distribution and expansion across a tundra hillslope: implications for local N cycling. Front Plant Sci 10:1099. doi: 10.3389/fpls.2019.01099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Sharaf H, Rodrigues RR, Moon J, Zhang B, Mills K, Williams MA. 2019. Unprecedented bacterial community richness in soybean nodules vary with cultivar and water status. Microbiome 7:63. doi: 10.1186/s40168-019-0676-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Dove NC, Torn MS, Hart SC, Taş N. 2021. Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nat Comm 12:2089. doi: 10.1038/s41467-021-22408-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Uritskiy GV, DiRuggiero J, Taylor J. 2018. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158. doi: 10.1186/s40168-018-0541-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi: 10.1093/bioinformatics/btv033. [DOI] [PubMed] [Google Scholar]
- 8.Wu Y-W, Simmons BA, Singer SW. 2015. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics: 32:605–607. doi: 10.1093/bioinformatics/btv638. [DOI] [PubMed] [Google Scholar]
- 9.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7:e7359. doi: 10.7717/peerj.7359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. 2014. Binning metagenomic contigs by coverage and composition. Nat Meth 11:1144–1146. doi: 10.1038/nmeth.3103. [DOI] [PubMed] [Google Scholar]
- 11.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. doi: 10.1101/gr.186072.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy T, Schulz F, Jarett J, Rivers AR, Eloe-Fadrosh EA. 2017. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol 35:725–731. doi: 10.1038/nbt.3893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2019. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36:1925–1927. doi: 10.1093/bioinformatics/btz848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. 2020. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol 38:1079–1086. doi: 10.1038/s41587-020-0501-8. [DOI] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Data Availability Statement
MAGs were deposited in the National Center for Biotechnology Information (NCBI) BioProject database under accession no. PRJNA830531, and nodule metagenomes were deposited under SRA accession no. SRR18933204 for alder savanna and SRR18933205 for alder shrubland. GenBank accession numbers for the MAGs are listed in Table 1, and quality metrics are provided via Table 1 at https://figshare.com/articles/dataset/Quality_metrics_for_metagenome-assembled_genomes_of_Alnus_viridis_spp_Fruticose_nodules/22096520/1.
TABLE 1.
Bin ID | GenBank accession no. | MIMAG bin qualitya | GTDB lineage |
---|---|---|---|
NGEE_A_bin1 | JAMFTE000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_;s_ |
NGEE_A_bin10 | JAMFTD000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Rhodanobacteraceae;g_Rhodanobacter;s_Rhodanobacter sp014207185 |
NGEE_A_bin11 | JAMFTC000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Azospirillales_A;f_BOG-932;g_BOG-932;s_ |
NGEE_A_bin12 | JAMFTB000000000 | MQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Terriglobus;s_ |
NGEE_A_bin13 | JAMFTA000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Caulobacterales;f_Caulobacteraceae;g_CAIOYC01;s_ |
NGEE_A_bin14 | JAMFSZ000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_Bog-1198;s_ |
NGEE_A_bin15 | JAMFSY000000000 | HQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Methylacidiphilales;f_UBA1321;g_JABDGH01;s_ |
NGEE_A_bin16 | JAMFSX000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_CAIVDX01;s_ |
NGEE_A_bin17 | JAMFSW000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_LMUX01;s_ |
NGEE_A_bin18 | JAMFSV000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_LMUX01;s_ |
NGEE_A_bin19 | JAMFSU000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Herbaspirillum;s_ |
NGEE_A_bin2 | JAMFST000000000 | MQ | p_Myxococcota;c_Polyangia;o_Polyangiales;f_Polyangiaceae;g_;s_ |
NGEE_A_bin20 | JAMFSS000000000 | HQ | p_Proteobacteria;c_Alphaproteobacteria;o_Micavibrionales_A;f_UBA9219;g_JABDFY01;s_ |
NGEE_A_bin21 | JAMFSR000000000 | HQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Granulicella_A;s_ |
NGEE_A_bin22 | JAMFSQ000000000 | MQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Granulicella_C;s_ |
NGEE_A_bin23 | JAMFSP000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Spongiibacteraceae;g_;s_ |
NGEE_A_bin24 | JAMFSO000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_;s_ |
NGEE_A_bin25 | JAMFSN000000000 | HQ | p_Actinobacteriota;c_Actinomycetia;o_Mycobacteriales;f_Frankiaceae;g_;s_ |
NGEE_A_bin26 | JAMFSM000000000 | MQ | p_Myxococcota;c_Polyangia;o_Haliangiales;f_Haliangiaceae;g_;s_ |
NGEE_A_bin27 | JAMFSL000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Chitinophagales;f_Chitinophagaceae;g_Puia;s_ |
NGEE_A_bin28 | JAMFSK000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Pararobbsia;s_ |
NGEE_A_bin29 | JAMFSJ000000000 | MQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Pedosphaerales;f_UBA11358;g_UBA11358;s_ |
NGEE_A_bin3 | JAMFSI000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Sphingomonadales;f_Sphingomonadaceae;g_Novosphingobium;s_ |
NGEE_A_bin30 | JAMFSH000000000 | MQ | p_Actinobacteriota;c_Actinomycetia;o_Mycobacteriales;f_Mycobacteriaceae;g_Mycobacterium;s_ |
NGEE_A_bin31 | JAMFSG000000000 | MQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Pedosphaerales;f_UBA11358;g_UBA11358;s_ |
NGEE_A_bin32 | JAMFSF000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Chitinophagales;f_Chitinophagaceae;g_JABDFW01;s_ |
NGEE_A_bin33 | JAMFSE000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_;s_ |
NGEE_A_bin34 | JAMFSD000000000 | MQ | p_Verrucomicrobiota;c_Verrucomicrobiae;o_Opitutales;f_Opitutaceae;g_CAIOZY01;s_ |
NGEE_A_bin35 | JAMFSC000000000 | MQ | p_Acidobacteriota;c_Acidobacteriae;o_Acidobacteriales;f_Acidobacteriaceae;g_Granulicella_C;s_ |
NGEE_A_bin36 | JAMFSB000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Paraburkholderia;s_Paraburkholderia phenazinium_C |
NGEE_A_bin37 | JAMFSA000000000 | HQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_ |
NGEE_A_bin38 | JAMFRZ000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Xanthobacteraceae;g_Bradyrhizobium;s_Bradyrhizobium sp009766005 |
NGEE_A_bin39 | JAMFRY000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_;s_ |
NGEE_A_bin4 | JAMFRX000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Chitinophagales;f_Chitinophagaceae;g_Puia;s_ |
NGEE_A_bin40 | JAMFRW000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Burkholderiales;f_Burkholderiaceae;g_Rhizobacter;s_ |
NGEE_A_bin41 | JAMFRV000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Pseudomonadales;f_Pseudomonadaceae;g_Pseudomonas_E;s_ |
NGEE_A_bin42 | JAMFRU000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Acidocella;s_ |
NGEE_A_bin43 | JAMFRT000000000 | HQ | p_Actinobacteriota;c_Actinomycetia;o_Mycobacteriales;f_Frankiaceae;g_Frankia;s_Frankia sp902806485 |
NGEE_A_bin44 | JAMFRS000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_ |
NGEE_A_bin45 | JAMFRR000000000 | MQ | p_Actinobacteriota;c_Actinomycetia;o_Streptosporangiales;f_Streptosporangiaceae;g_Trebonia;s_ |
NGEE_A_bin5 | JAMFRQ000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Steroidobacterales;f_Steroidobacteraceae;g_Bog-1198;s_ |
NGEE_A_bin6 | JAMFRP000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_ |
NGEE_A_bin7 | JAMFRO000000000 | MQ | p_Proteobacteria;c_Alphaproteobacteria;o_Acetobacterales;f_Acetobacteraceae;g_Acidocella;s_ |
NGEE_A_bin8 | JAMFRN000000000 | MQ | p_Proteobacteria;c_Gammaproteobacteria;o_Nevskiales;f_Nevskiaceae;g_Nevskia;s_ |
NGEE_A_bin9 | JAMFRM000000000 | MQ | p_Bacteroidota;c_Bacteroidia;o_Sphingobacteriales;f_Sphingobacteriaceae;g_Mucilaginibacter;s_Mucilaginibacter sp014200495 |
HQ, high quality draft; MQ, medium quality draft by MIMAG standards.