Abstract
The synthesis of aromatic heterocycles has attracted substantial attention due to the abundance of these heterocycles in drug molecules, natural products, and other compounds of biological interest. Accordingly, there is a demand for straightforward synthetic protocols toward such compounds using readily available starting materials. In the past decade, there have been substantial developments in heterocycle synthesis, especially in metal-catalyzed and iodine-assisted approaches. This graphical review focuses on notable reactions from the past decade using aryl and heteroaryl methyl ketones as starting materials, including representative reaction mechanisms.
Keywords: aromatic heterocycles, iodine, ketones, metal-free, fused bicycles, fused tricycles, fused polyheterocycles
Graphical Abstract

Aromatic heterocycles are highly privileged structures in drug discovery and development. Such fragments are found very frequently in biologically active compounds and thus are common building blocks for drugs and natural product derivatives. Beyond their utility in eliciting biological activity, these heterocycles are also useful in modifying ADME (absorption, distribution, metabolism and excretion)/pharmacokinetic properties (introducing lipophilicity or hydrophilicity, improving solubility, fine-tuning hydrogen bonding, etc.) and reducing possible toxicity concerns. The increasing presence of various aromatic heterocycles in drugs is no doubt related to advances in synthetic methodology such as metal-catalyzed cross-couplings,1a hetero-couplings,1b and metal-free conditions,1c,d enabling rapid access to a wide variety of functionalized heterocyclic scaffolds.
Aryl methyl ketones (AMKs) (also including heteroaryl compounds) are attractive precursors that allow for the facile synthesis of aromatic heterocycles. Iodine, in combination with AMKs, can substitute for several transition metals used in previously reported transformations while also maintaining an excellent atom economy.1e,f,j This aspect, along with the commercial abundance and cost-effective nature of AMKs, provides an incentive to the research community to discover and further develop such processes for use in drug discovery. Despite the vast literature that has evolved on this topic, there has yet to be a succinct review of the important developments in this area. The present graphical review provides a comprehensive compilation (focused on 2012–2021) of synthetic approaches for 5- and 6-membered, as well as fused and poly-fused heterocycles. Herein, we detail the role of AMKs in the synthesis of such heterocycles. Brief examples of practical syntheses of AMKs are presented in Scheme 1. The application of AMKs to the synthesis of heterocycles follows in Schemes 2 through 111, with an overall organization focused on heterocycle type. Brief reaction mechanisms are highlighted in instructive examples, with colors to aid understanding. Yields and structural diversity are reported in numerous examples to reflect the substrate scope for these reactions, including the use of electron-donating and -withdrawing groups as well as heterocyclic starting materials.
Figure 1.

Synthesis of aryl methyl ketones1g–j and five-membered heterocycles, part I2a–f
Figure 2.

Figure 3.

Figure 4.

Figure 5.

Synthesis of five-membered heterocycles, part V,2y,z and six-membered heterocycles part I3a–e
Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Synthesis of fused bi-heterocycles, part VII,7o–q and fused tri-heterocycles, part I8a–d
Figure 15.

Figure 16.

Figure 17.

Synthesis of fused tri-heterocycles, part IV,8p–t and fused polyheterocycles, part I9a
Figure 18.

Acknowledgment
We are grateful to Dr. Lee McDermott, University of Pittsburgh, and current members of Dr. Mark Mitton-Fry’s research group who have contributed to the development of this field.
Funding Information
The Dr. Ralph and Marian Falk Medical Research Trust (Transformational Award) and the National Institutes of Health (NIH) (R21 AI148986) provided financial support.
Biographies

Shabber Mohammed was born and raised in Telangana, India. He obtained B.Sc. and M.Sc. degrees from Osmania University (India). He completed his Ph.D. in chemical sciences under the joint supervision of Dr. Ram A. Vishwakarma and Dr. Sandip B. Bharate at the IIIM-Academy of Scientific and Innovative Research, India. After working as a research scientist for 1.3 years at GVK BIO and Piramal Life Sciences, he joined the group of Dr. Thota Ganesh at Emory University as a postdoctoral research scholar. He subsequently worked in the lab of Dr. Lee McDermott at the University of Pittsburgh for two years. His research has mainly focused on the medicinal chemistry of CNS drugs (EP2 receptors and 20-HETE inhibitors) and anticancer drugs (PI3K-mTOR inhibitors). At present, he is a postdoctoral researcher at The Ohio State University in the laboratories of Dr. Mark Mitton-Fry and Dr. Pui-Kai Li.

Jason S. West obtained his B.Sc. in pharmaceutical sciences from The Ohio State University in the spring of 2020. During his undergraduate studies, he conducted research in biomedical informatics, microbial engineering, and synthetic medicinal chemistry. He is presently a second-year graduate student at The Ohio State University, pursuing a Ph.D. in synthetic medicinal chemistry. He is currently researching novel bacterial topoisomerase inhibitors as a new therapeutic option for multidrug-resistant bacterial infections in the lab of Dr. Mark Mitton-Fry.

Mark J. Mitton-Fry graduated summa cum laude from Carleton College with a B.A. in chemistry, which was followed by a year as a fellow of the Deutscher Akademischer Austauschdienst (DAAD) in Würzburg, Germany. He completed his Ph.D. with Professor Tarek Sammakia at the University of Colorado Boulder before spending nine years in the pharmaceutical industry. He is currently an assistant professor in the Division of Medicinal Chemistry and Pharmacognosy at The Ohio State University. His research team is primarily focused on the discovery of bacterial topoisomerase inhibitors, with additional interests in novel anticancer approaches.
Footnotes
Conflict of Interest
The authors declare no conflict of interest.
References
- (1).(a) Buskes MJ; Blanco MJ Molecules 2020, 25, 3493. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Zhang TY The Evolving Landscape of Heterocycles in Drugs and Drug Candidates, In Advances in Heterocyclic Chemistry, Vol. 121; Scriven EFV; Ramsden CA, Ed.; Academic Press: Cambridge, 2017, Chap. 1, 1. [Google Scholar]; (c) Khan I; Zaib S; Ibrar A Org. Chem. Front 2020, 7, 3734. [Google Scholar]; (d) Lasso JD; Castillo-Pazos DJ; Li CJ Chem. Soc. Rev 2021, 50, 10955. [DOI] [PubMed] [Google Scholar]; (e) Yasui O; Ishihara K Science 2010, 328, 1376. [DOI] [PubMed] [Google Scholar]; (f) Yusubov MS; Zhdankin VV Resour.-Effic. Technol 2015, 1, 49. [Google Scholar]; (g) Renault O; Dallemagne P; Rault S Org. Prep. Proced. Int 1999, 31, 324. [Google Scholar]; (h) Garrido F; Raeppel S; Mann A; Lautens M Tetrahedron Lett. 2001, 42, 265. [Google Scholar]; (i) Ramgren SD; Garg NK Org. Lett 2014, 16, 824. [DOI] [PMC free article] [PubMed] [Google Scholar]; (j) Rajai-Daryasarei S; Gohari MH; Mohammadi N New J. Chem 2021, 45, 20486. [Google Scholar]
- (2).(a) Das P; Ray S; Mukhopadhyay C Org. Lett 2013, 15, 5622. [DOI] [PubMed] [Google Scholar]; (b) Wu X; Zhao P; Geng X; Wang C; Wu Y.-d.; Wu A.-x. Org. Lett 2018, 20, 688. [DOI] [PubMed] [Google Scholar]; (c) Xu H; Wang F-J; Xin M; Zhang Z Eur. J. Org. Chem 2016, 925. [Google Scholar]; (d) Wu J; Chen X; Xie Y; Guo Y; Zhang Q; Deng G-J J. Org. Chem 2017, 82, 5743. [DOI] [PubMed] [Google Scholar]; (e) Ghosh M; Mishra S; Hajra A J. Org. Chem 2015, 80, 5364. [DOI] [PubMed] [Google Scholar]; (f) Manna S; Antonchick AP Org. Lett 2015, 17, 4300. [DOI] [PubMed] [Google Scholar]; (g) Wang M; Xiang J-C; Cheng Y; Wu Y-D; Wu A-X Org. Lett 2016, 18, 524. [DOI] [PubMed] [Google Scholar]; (h) Cai Z-J; Wang S-Y; Ji S-J Org. Lett 2012, 14, 6068. [DOI] [PubMed] [Google Scholar]; (i) Liu C-K; Yang Z; Zeng Y; Guo K; Fang Z; Li B Org. Chem. Front 2017, 4, 1508. [Google Scholar]; (j) Zhang J; Gao Q; Wu X; Geng X; Wu Y-D; Wu A Org. Lett 2016, 18, 1686. [DOI] [PubMed] [Google Scholar]; (k) de Toledo I; Grigolo TA; Bennett JM; Elkins JM; Pilli RA J. Org. Chem 2019, 84, 14187. [DOI] [PMC free article] [PubMed] [Google Scholar]; (l) Geng X; Wang C; Huang C; Bao Y; Zhao P; Zhou Y; Wu Y-D; Feng L.-l.; Wu A-X. Org. Lett 2020, 22, 140. [DOI] [PubMed] [Google Scholar]; (m) Aegurla B; Peddinti RK Org. Biomol. Chem 2017, 15, 9643. [DOI] [PubMed] [Google Scholar]; (n) Whitt J; Duke C; Ali MA; Chambers SA; Khan MMK; Gilmore D; Alam MA ACS Omega 2019, 4, 14284. [DOI] [PMC free article] [PubMed] [Google Scholar]; (o) Fang Z; Yin H; Lin L; Wen S; Xie L; Huang Y; Weng Z J. Org. Chem 2020, 85, 8714. [DOI] [PubMed] [Google Scholar]; (p) Gao Q; Liu S; Wu X; Zhang J; Wu A Org. Lett 2015, 17, 2960. [DOI] [PubMed] [Google Scholar]; (q) Wu X; Geng X; Zhao P; Zhang J; Wu Y.-d.; Wu A.-x. Chem. Commun 2017, 53, 3438. [DOI] [PubMed] [Google Scholar]; (r) Xue W-J; Li Q; Zhu Y-P; Wang J-G; Wu A-X Chem. Commun 2012, 48, 3485. [DOI] [PubMed] [Google Scholar]; (s) Dai P; Tan X; Luo Q; Yu X; Zhang S; Liu F; Zhang W-H Org. Lett 2019, 21, 5096. [DOI] [PubMed] [Google Scholar]; (t) Gu J; Fang Z; Yang Z; Li X; Zhu N; Wan L; Wei P; Guo K RSC Adv. 2016, 6, 89073. [Google Scholar]; (u) Verbelen B; Dehaen W Org. Lett 2016, 18, 6412. [DOI] [PubMed] [Google Scholar]; (v) Liu Y; Nie G; Zhou Z; Jia L; Chen Y J. Org. Chem 2017, 82, 9198. [DOI] [PubMed] [Google Scholar]; (w) Bonache MA; Moreno-Fernández S; Miguel M; Sabater-Muñoz B; González-Muñiz R ACS Comb. Sci 2018, 20, 694. [DOI] [PubMed] [Google Scholar]; (x) Gao M; Yang Y; Wu Y-D; Deng C; Shu W-M; Zhang D-X; Cao L-P; She N-F; Wu A-X Org. Lett 2010, 12, 4026. [DOI] [PubMed] [Google Scholar]; (y) Sribalan R; Sangili A; Banuppriya G; Padmini V New J. Chem 2017, 41, 3414. [Google Scholar]; (z) Sadeghi M; Safari J; Zarnegar Z RSC Adv. 2016, 6, 64749. [Google Scholar]
- (3).(a) Yin G; Liu Q; Ma J; She N Green Chem. 2012, 14, 1796. [Google Scholar]; (b) Shabalin DA; Dvorko MY; Schmidt EY; Trofimov BA Org. Biomol. Chem 2021, 19, 2703. [DOI] [PubMed] [Google Scholar]; (c) Huang H; Ji X; Wu W; Huang L; Jiang H J. Org. Chem 2013, 78, 3774. [DOI] [PubMed] [Google Scholar]; (d) Xi L-Y; Zhang R-Y; Liang S; Chen S-Y; Yu X-Q Org. Lett 2014, 16, 5269. [DOI] [PubMed] [Google Scholar]; (e) Sharma R; Patel N; Vishwakarma RA; Bharatam PV; Bharate SB Chem. Commun 2016, 52, 1009. [DOI] [PubMed] [Google Scholar]; (f) Xiang J-C; Wang M; Cheng Y; Wu A-X Org. Lett 2016, 18, 24. [DOI] [PubMed] [Google Scholar]; (g) Wu X; Zhang J; Liu S; Gao Q; Wu A Adv. Synth. Catal 2016, 358, 218. [Google Scholar]; (h) Su L; Sun K; Pan N; Liu L; Sun M; Dong J; Zhou Y; Yin S-F Org. Lett 2018, 20, 3399. [DOI] [PubMed] [Google Scholar]; (i) Jadhav SD; Singh A Org. Lett 2017, 19, 5673. [DOI] [PubMed] [Google Scholar]; (j) Tiwari AR; Nath SR; Joshi KA; Bhanage BM J. Org. Chem 2017, 82, 13239. [DOI] [PubMed] [Google Scholar]; (k) Zhao P; Zhou Y; Yu X-X; Huang C; Wu Y-D; Yin G; Wu A-X Org. Lett 2020, 22, 8528. [DOI] [PubMed] [Google Scholar]; (l) Viswanadham KKDR; Prathap Reddy M; Sathyanarayana P; Ravi O; Kant R; Bathula SR Chem. Commun 2014, 50, 13517. [DOI] [PubMed] [Google Scholar]; (m) Lim S-G; Lee JH; Moon CW; Hong J-B; Jun C-H Org. Lett 2003, 5, 2759. [DOI] [PubMed] [Google Scholar]; (n) Pilgrim BS; Gatland AE; McTernan CT; Procopiou PA; Donohoe TJ Org. Lett 2013, 15, 6190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- (4).(a) Gutiérrez RU; Correa HC; Bautista R; Vargas JL; Jerezano AV; Delgado F; Tamariz J J. Org. Chem 2013, 78, 9614. [DOI] [PubMed] [Google Scholar]; (b) Gao Q; Liu S; Wu X; Wu A Org. Lett 2014, 16, 4582. [DOI] [PubMed] [Google Scholar]; (c) Gao Q; Liu S; Wu X; Zhang J; Wu A J. Org. Chem 2015, 80, 5984. [DOI] [PubMed] [Google Scholar]; (d) Wang R; Fan H; Zhao W; Li F Org. Lett 2016, 18, 3558. [DOI] [PubMed] [Google Scholar]; (e) Chakraborty G; Sikari R; Das S; Mondal R; Sinha S; Banerjee S; Paul ND J. Org. Chem 2019, 84, 2626. [DOI] [PubMed] [Google Scholar]; (f) Das S; Sinha S; Samanta D; Mondal R; Chakraborty G; Brandaõ P; Paul ND J. Org. Chem 2019, 84, 10160. [DOI] [PubMed] [Google Scholar]; (g) Wu X; Geng X; Zhao P; Zhang J; Gong X; Wu Y.-d.; Wu A.-x. Org. Lett 2017, 19, 1550. [DOI] [PubMed] [Google Scholar]; (h) Wakade SB; Tiwari DK; Ganesh PSKP; Phanindrudu M; Likhar PR; Tiwari DK Org. Lett 2017, 19, 4948. [DOI] [PubMed] [Google Scholar]; (i) Geng X; Wu X; Zhao P; Zhang J; Wu Y-D; Wu A-X Org. Lett 2017, 19, 4179. [DOI] [PubMed] [Google Scholar]; (j) Zhao P; Wu X; Zhou Y; Geng X; Wang C; Wu Y.-d.; Wu A-X. Org. Lett 2019, 21, 2708. [DOI] [PubMed] [Google Scholar]; (k) Aksenov AV; Smirnov AN; Aksenov NA; Aksenova IV; Matheny JP; Rubin M RSC Adv. 2015, 5, 8647. [Google Scholar]; (l) Wu J; Zhou Y; Wu T; Zhou Y; Chiang C-W; Lei A Org. Lett 2017, 19, 6432. [DOI] [PubMed] [Google Scholar]; (m) Liao Y; Qi H; Chen S; Jiang P; Zhou W; Deng G-J Org. Lett 2012, 14, 6004. [DOI] [PubMed] [Google Scholar]; (n) Xue W-J; Guo Y-Q; Gao F-F; Li H-Z; Wu A-X Org. Lett 2013, 15, 890. [DOI] [PubMed] [Google Scholar]; (o) Gao Q; Wu X; Jia F; Liu M; Zhu Y; Cai Q; Wu A J. Org. Chem 2013, 78, 2792. [DOI] [PubMed] [Google Scholar]; (p) Nguyen TB; Pasturaud K; Ermolenko L; Al-Mourabit A Org. Lett 2015, 17, 2562. [DOI] [PubMed] [Google Scholar]; (q) Huynh TV; Doan KV; Luong NTK; Nguyen DTP; Doan SH; Nguyen TT; Phan NTS RSC Adv. 2020, 10, 18423. [DOI] [PMC free article] [PubMed] [Google Scholar] [Retracted]
- (5).(a) Le Z-G; Xie Z-B; Xu J-P Molecules 2012, 17, 13368. [DOI] [PMC free article] [PubMed] [Google Scholar]; (b) Bagdi AK; Rahman M; Santra S; Majee A; Hajra A Adv. Synth. Catal 2013, 355, 1741. [Google Scholar]; (c) Stasyuk AJ; Banasiewicz M; Cyrański MK; Gryko DT J. Org. Chem 2012, 77, 5552. [DOI] [PubMed] [Google Scholar]; (d) Mohan DC; Donthiri RR; Rao SN; Adimurthy S Adv. Synth. Catal 2013, 355, 2217. [Google Scholar]; (e) Zhang Y; Chen Z; Wu W; Zhang Y; Su W J. Org. Chem 2013, 78, 12494. [DOI] [PubMed] [Google Scholar]; (f) Cai Z-J; Wang S-Y; Ji S-J Adv. Synth. Catal 2013, 355, 2686. [Google Scholar]; (g) Wang F-J; Xu H; Xin M; Zhang Z Mol. Diversity 2016, 20, 659. [DOI] [PubMed] [Google Scholar]; (h) Kumar GS; Ragini SP; Kumar AS; Meshram HM RSC Adv. 2015, 5, 51576. [Google Scholar]; (i) Ge W; Zhu X; Wei Y Eur. J. Org. Chem 2013, 6015. [Google Scholar]; (j) Meng X; Yu C; Chen G; Zhao P Catal. Sci. Technol 2015, 5, 372. [Google Scholar]; (k) Liu S; Xi H; Zhang J; Wu X; Gao Q; Wu A Org. Biomol. Chem 2015, 13, 8807. [DOI] [PubMed] [Google Scholar]; (l) Wu Y-D; Geng X; Gao Q; Zhang J; Wu X; Wu A-X Org. Chem. Front 2016, 3, 1430. [Google Scholar]; (m) Mukhopadhyay S; Dighe SU; Kolle S; Shukla PK; Batra S Eur. J. Org. Chem 2016, 3836. [Google Scholar]; (n) Udavant RN; Yadav AR; Shinde SS Eur. J. Org. Chem 2018, 3432. [Google Scholar]; (o) Okai H; Tanimoto K; Ohkado R; Iida H Org. Lett 2020, 22, 8002. [DOI] [PubMed] [Google Scholar]; (p) Zhu Y.-p.; Fei Z; Liu M.-c.; Jia F.-c.; Wu A.-x. Org. Lett 2013, 15, 378. [DOI] [PubMed] [Google Scholar]; (q) Mohammed S; Vishwakarma RA; Bharate SB J. Org. Chem 2015, 80, 6915. [DOI] [PubMed] [Google Scholar]
- (6).(a) Ravi O; Shaikh A; Upare A; Singarapu KK; Bathula SR J. Org. Chem 2017, 82, 4422. [DOI] [PubMed] [Google Scholar]; (b) Xu C; Yin G; Jia F-C; Wu Y-D; Wu A-X Org. Lett 2021, 23, 2559. [DOI] [PubMed] [Google Scholar]; (c) Mamedov VA; Zhukova NA; Beschastnova TN; Syakaev VV; Krivolapov DB; Mironova EV; Zamaletdinova AI; Rizvanov IK; Latypov SK J. Org. Chem 2015, 80, 1375. [DOI] [PubMed] [Google Scholar]; (d) Nguyen TB; Retailleau P Org. Lett 2017, 19, 3887. [DOI] [PubMed] [Google Scholar]; (e) Nguyen LA; Nguyen TTT; Ngo QA; Nguyen TB Org. Biomol. Chem 2021, 19, 6015. [DOI] [PubMed] [Google Scholar]; (f) Ilangovan A; Satish G Org. Lett 2013, 15, 5726. [DOI] [PubMed] [Google Scholar]; (g) Ilangovan A; Satish G J. Org. Chem 2014, 79, 4984. [DOI] [PubMed] [Google Scholar]; (h) Gao F-F; Xue W-J; Wang J-G; Wu A-X Tetrahedron 2014, 70, 4331. [Google Scholar]; (i) Huo J; Yang Y; Wang C Org. Lett 2021, 23, 3384. [DOI] [PubMed] [Google Scholar]; (j) Verma A; Kumar S Org. Lett 2016, 18, 4388. [DOI] [PubMed] [Google Scholar]; (k) Wang M; Tang B-C; Ma J-T; Wang Z-X; Xiang J-C; Wu Y-D; Wang J-G; Wu A-X Org. Biomol. Chem 2019, 17, 1535. [DOI] [PubMed] [Google Scholar]; (l) Mohan DC; Ravi C; Pappula V; Adimurthy S J. Org. Chem 2015, 80, 6846. [DOI] [PubMed] [Google Scholar]; (m) Wang W; Han J; Sun J; Liu Y J. Org. Chem 2017, 82, 2835. [DOI] [PubMed] [Google Scholar]; (n) Wu X; Zhao P; Geng X; Zhang J; Gong X; Wu Y.-d.; Wu A.-x. Org. Lett 2017, 19, 3319. [DOI] [PubMed] [Google Scholar]; (o) Rossler MD; Hartgerink CT; Zerull EE; Boss BL; Frndak AK; Mason MM; Nickerson LA; Romero EO; Van de Burg JE; Staples RJ; Anderson CE Org. Lett 2019, 21, 5591. [DOI] [PubMed] [Google Scholar]
- (7).(a) Zhang Y; Wang D; Cui S Org. Lett 2015, 17, 2494. [DOI] [PubMed] [Google Scholar]; (b) Fischer E; Jourdan F Ber. Dtsch. Chem. Ges 1883, 16, 2241. [Google Scholar]; (c) Kissman HM; Farnsworth DW; Witkop B J. Am. Chem. Soc 1952, 74, 3948. [Google Scholar]; (d) Lu X-M; Cai Z-J; Li J; Wang S-Y; Ji S-J RSC Adv 2015, 5, 51501. [Google Scholar]; (e) Geng X; Wu X; Wang C; Zhao P; Zhou Y; Sun X; Wang L-J; Guan W-J; Wu Y-D; Wu A-X Chem. Commun 2018, 54, 12730. [DOI] [PubMed] [Google Scholar]; (f) Guo T; Han L; Wang T; Lei L; Zhang J; Xu D J. Org. Chem 2020, 85, 9117. [DOI] [PubMed] [Google Scholar]; (g) Schmidt EY; Semenova NV; Tatarinova IV; Ushakov IA; Vashchenko AV; Trofimov BA Org. Lett 2019, 21, 4275. [DOI] [PubMed] [Google Scholar]; (h) Chung H; Kim J; González-Montiel GA; Ha-Yeon Cheong P; Lee HG Org. Lett 2021, 23, 1096. [DOI] [PubMed] [Google Scholar]; (i) Neochoritis CG; Tsoleridis CA; Stephanidou-Stephanatou J; Kontogiorgis CA; Hadjipavlou-Litina DJ J. Med. Chem 2010, 53, 8409. [DOI] [PubMed] [Google Scholar]; (j) Geng X; Wang C; Huang C; Zhao P; Zhou Y; Wu Y-D; Wu A-X Org. Lett 2019, 21, 7504. [DOI] [PubMed] [Google Scholar]; (k) Lin Y.-m.; Lu G.-p.; Wang R.-k.; Yi W.-b. Org. Lett 2016, 18, 6424. [DOI] [PubMed] [Google Scholar]; (l) Huang X; Rong N; Li P; Shen G; Li Q; Xin N; Cui C; Cui J; Yang B; Li D; Zhao C; Dou J; Wang B Org. Lett 2018, 20, 3332. [DOI] [PubMed] [Google Scholar]; (m) Jiang J; Tuo X; Fu Z; Huang H; Deng G-J Org. Biomol. Chem 2020, 18, 3234. [DOI] [PubMed] [Google Scholar]; (n) Marpna ID; Shangpliang OR; Wanniang K; Kshiar B; Lipon TM; Laloo BM; Myrboh B ACS Omega 2021, 6, 14518. [DOI] [PMC free article] [PubMed] [Google Scholar]; (o) Balaguez RA; Betin ES; Barcellos T; Lenardão EJ; Alves D; Schumacher RF New J. Chem 2017, 41, 1483. [Google Scholar]; (p) Ni P; Tan J; Zhao W; Huang H; Xiao F; Deng G-J Org. Lett 2019, 21, 3518. [DOI] [PubMed] [Google Scholar]; (q) Mukhopadhyay C; Das P; Butcher RJ Org. Lett 2011, 13, 4664. [DOI] [PubMed] [Google Scholar]
- (8).(a) Yao X; Shao Y; Hu M; Xia Y; Cheng T; Chen J Org. Lett 2019, 21, 7697. [DOI] [PubMed] [Google Scholar]; (b) Ramig K; Alli S; Cheng M; Leung R; Razi R; Washington M; Kudzma LV Synlett 2007, 2868. [Google Scholar]; (c) Manjappa KB; Peng Y-T; Liou T-J; Yang D-Y RSC Adv 2017, 7, 45269. [Google Scholar]; (d) Zheng K; Zhuang S; Shu W; Wu Y; Yang C; Wu A Chem. Commun 2018, 54, 11897. [DOI] [PubMed] [Google Scholar]; (e) Rogness DC; Larock RC J. Org. Chem 2010, 75, 2289. [DOI] [PMC free article] [PubMed] [Google Scholar]; (f) Chen S; Li Y; Ni P; Huang H; Deng G-J Org. Lett 2016, 18, 5384. [DOI] [PubMed] [Google Scholar]; (g) Chen S; Li Y; Ni P; Yang B; Huang H; Deng G-J J. Org. Chem 2017, 82, 2935. [DOI] [PubMed] [Google Scholar]; (h) Chen S; Jiang P; Wang P; Pei Y; Huang H; Xiao F; Deng G-J J. Org. Chem 2019, 84, 3121. [DOI] [PubMed] [Google Scholar]; (i) Gu Y; Huang W; Chen S; Wang X Org. Lett 2018, 20, 4285. [DOI] [PubMed] [Google Scholar]; (j) Battini N; Padala AK; Mupparapu N; Vishwakarma RA; Ahmed QN RSC Adv 2014, 4, 26258. [Google Scholar]; (k) Geng X; Wang C; Zhao P; Zhou Y; Wu Y-D; Wu A-X Org. Lett 2019, 21, 4939. [DOI] [PubMed] [Google Scholar]; (l) Gao Q; Wu X; Liu S; Wu A Org. Lett 2014, 16, 1732. [DOI] [PubMed] [Google Scholar]; (m) Wu X; Geng X; Zhao P; Wu Y.-d.; Wu A.-x. Org. Lett 2017, 19, 4584. [DOI] [PubMed] [Google Scholar]; (n) Pham PH; Nguyen QTD; Tran NKQ; Nguyen VHH; Doan SH; Ha HQ; Truong T; Phan NTS Eur. J. Org. Chem 2018, 4431. [Google Scholar]; (o) Mishra S; Monir K; Mitra S; Hajra A Org. Lett 2014, 16, 6084. [DOI] [PubMed] [Google Scholar]; (p) Zhang Q; Wang B; Ma H; Ablajan K New J. Chem 2019, 43, 17000. [Google Scholar]; (q) Zhou P; Huang Y; Wu W; Zhou J; Yu W; Jiang H Org. Lett 2019, 21, 9976. [DOI] [PubMed] [Google Scholar]; (r) Pham PH; Nguyen KX; Pham HTB; Nguyen TT; Phan NTS Org. Lett 2019, 21, 8795. [DOI] [PubMed] [Google Scholar]; (s) Brendel M; Sakhare PR; Dahiya G; Subramanian P; Kaliappan KP J. Org. Chem 2020, 85, 8102. [DOI] [PubMed] [Google Scholar]; (t) Zhang S; Li L; Xin L; Liu W; Xu K J. Org. Chem 2017, 82, 2399. [DOI] [PubMed] [Google Scholar]
- (9).(a) Okuma K; Koga T; Ozaki S; Suzuki Y; Horigami K; Nagahora N; Shioji K; Fukuda M; Deshimaru M Chem. Commun 2014, 50, 15525. [DOI] [PubMed] [Google Scholar]; (b) Min L; Pan B; Gu Y Org. Lett 2016, 18, 364. [DOI] [PubMed] [Google Scholar]; (c) Aksenov AV; Aksenov DA; Orazova NA; Aksenov NA; Griaznov GD; De Carvalho A; Kiss R; Mathieu V; Kornienko A; Rubin M J. Org. Chem 2017, 82, 3011. [DOI] [PubMed] [Google Scholar]; (d) Zhang J; Wu X; Gao Q; Geng X; Zhao P; Wu Y-D; Wu A Org. Lett 2017, 19, 408. [DOI] [PubMed] [Google Scholar]; (e) Yuan S; Yue Y-L; Zhang D-Q; Zhang J-Y; Yu B; Liu H-M Chem. Commun 2020, 56, 11461. [DOI] [PubMed] [Google Scholar]; (f) Kale A; Bingi C; Ragi NC; Sripadi P; Tadikamalla PR; Atmakur K Synthesis 2017, 49, 1603. [Google Scholar]; (g) Mani GS; Rao AVS; Tangella Y; Sunkari S; Sultana F; Namballa HK; Shankaraiah N; Kamal A New. J. Chem 2018, 42, 15820. [Google Scholar]; (h) Ni P; Tan J; Zhao W; Huang H; Xiao F; Deng G-J Org. Lett 2019, 21, 3687. [DOI] [PubMed] [Google Scholar]; (i) Yang R-Y; Sun J; Tao Y; Sun Q; Yan C-G J. Org. Chem 2017, 82, 13277. [DOI] [PubMed] [Google Scholar]
