Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2023 May 12:2023.05.11.540026. [Version 1] doi: 10.1101/2023.05.11.540026

Near-field potentials index local neural computations more accurately than population spiking

David A Tovar, Jacob A Westerberg, Michele A Cox, Kacie Dougherty, Mark T Wallace, André M Bastos, Alexander Maier
PMCID: PMC10197629  PMID: 37214905

Abstract

Local field potentials (LFP) are low-frequency extracellular voltage fluctuations thought to primarily arise from synaptic activity. However, unlike highly localized neuronal spiking, LFP is spatially less specific. LFP measured at one location is not entirely generated there due to far-field contributions that are passively conducted across volumes of neural tissue. We sought to quantify how much information within the locally generated, near-field low-frequency activity (nfLFP) is masked by volume-conducted far-field signals. To do so, we measured laminar neural activity in primary visual cortex (V1) of monkeys viewing sequences of multifeatured stimuli. We compared information content of regular LFP and nfLFP that was mathematically stripped of volume-conducted far-field contributions. Information content was estimated by decoding stimulus properties from neural responses via spatiotemporal multivariate pattern analysis. Volume-conducted information differed from locally generated information in two important ways: (1) for stimulus features relevant to V1 processing (orientation and eye-of-origin), nfLFP contained more information. (2) in contrast, the volume-conducted signal was more informative regarding temporal context (relative stimulus position in a sequence), a signal likely to be coming from elsewhere. Moreover, LFP and nfLFP differed both spectrally as well as spatially, urging caution regarding the interpretations of individual frequency bands and/or laminar patterns of LFP. Most importantly, we found that population spiking of local neurons was less informative than either the LFP or nfLFP, with nfLFP containing most of the relevant information regarding local stimulus processing. These findings suggest that the optimal way to read out local computational processing from neural activity is to decode the local contributions to LFP, with significant information loss hampering both regular LFP and local spiking.

Author’s Contributions

Conceptualization, D.A.T., J.A.W, and A.M.; Data Collection, J.A.W., M.A.C., K.D.; Formal Analysis, D.A.T. and J.A.W.; Data Visualization, D.A.T. and J.A.W.; Original Draft, D.A.T., J.A.W., and A.M.; Revisions and Final Draft, D.A.T., J.A.W., M.A.C., K.D., M.T.W., A.M.B., and A.M.

Competing Interests

The authors declare no conflicts of interest.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES