Skip to main content
PLOS One logoLink to PLOS One
. 2023 May 22;18(5):e0285974. doi: 10.1371/journal.pone.0285974

Association between low internal health locus of control, psychological distress and insulin resistance. An exploratory study

Maria C M Eriksson 1,*, Jesper Lundgren 2, Margareta Hellgren 1,3, Ying Li 4, Cecilia Björkelund 1, Ulf Lindblad 1, Bledar Daka 1
Editor: Victor Manuel Mendoza-Nuñez5
PMCID: PMC10202295  PMID: 37216359

Abstract

Aim

To assess the hypothesis that low internal health locus of control (IHLC) and psychological distress (PD) are associated with insulin resistance.

Materials and methods

In 2002–2005, a random population sample of 2,816 men and women aged 30–74 years participated (76%) in two municipalities in southwestern Sweden. This study included 2,439 participants without previously known diabetes or cardiovascular disease. IHLC was measured by a global scale and PD was measured by the 12-item General Health Questionnaire. Insulin resistance was estimated using HOMA-ir. General linear models were used to estimate differences in HOMA-ir between groups with low IHLC, PD, and both low IHLC and PD, respectively.

Results

Five per cent (n = 138) had both PD and low IHLC, 62 per cent of participants (n = 1509) had neither low IHLC nor PD, 18 per cent (n = 432) had PD, and 15 per cent (n = 360) low IHLC. Participants with both low IHLC and PD had significantly higher HOMA-ir than participants with neither low IHLC nor PD (Δ = 24.8%, 95%CI: 12.0–38.9), also in the fully adjusted model (Δ = 11.8%, 95%CI: 1.5–23.0). Participants with PD had significantly higher HOMA-ir (Δ = 12%, 95%CI: 5.7–18.7), but the significance was lost when BMI was included in the model (Δ = 5.3%, 95%CI:0.0–10.8). Similarly, participants with low IHLC had significantly higher HOMA-ir (Δ = 10.1%, 95%CI: 3.5–17.0) but the significance was lost in the fully adjusted model (Δ = 3.5%, 95%CI: -1.9–9.3).

Conclusions

Internal health locus of control (IHLC) and psychological distress (PD) were associated with insulin resistance. Especially individuals with both PD and low IHLC may need special attention.

Introduction

Complex links between depression and diabetes have been increasingly revealed [1], but a greater understanding is needed both about the mechanisms in the development towards type 2 diabetes (T2D) and its prevention. T2D is a metabolic disorder, caused by insulin resistance, the inability of cells to respond adequately to insulin, together with a progressive loss of insulin secretion from the beta cells in the pancreas. Insulin resistance is strongly associated with obesity and its increase is associated with development from healthy metabolism to prediabetes to T2D. Lifestyle interventions in subjects with prediabetes can prevent or delay the onset of T2D through physical activity and healthy weight [2].

Physical activity and other health behaviours have been studied in relation to psychological constructs about outcome expectancy [3]. Locus of control is such a construct, and concerns whether outcomes are perceived as results of behaviour or personal characteristics, or else a function of chance, luck, fate, or control by others [4]. Locus of control is described as internal or external, with external in turn divided into chance and powerful others [4]. The construct of locus of control is related to social learning theory and is connected to the theory of learned helplessness and attributional style theory. Locus of control has been shown to be associated with anxiety and depression [5]. Internal locus of control has been shown to be associated with better health [6]. Low internal locus of control has been shown to be associated with later overweight and obesity [7] as well as metabolic impairment measured by HbA1c [8]. Overweight and obesity have also been linked to low internal health locus of control IHLC) [9], which is a measurement of expectancy about health outcomes specifically [10].

Comorbidity of T2D and depression is common. A bidirectional association between the two has been suggested [11], with physiological mechanisms including deregulation of the HPA-axis, low-grade inflammation and lifestyle behaviour [1]. Wider measurements of mental illness such as psychological distress (PD) have also been linked to development of T2D [12], although less studied. Moreover, stress responses have been linked to both T2D and depression, through mechanisms in the hypothalamic-pituitary-adrenalin-axis [13, 14]. To our knowledge, no studies on the association between IHLC and insulin resistance in adults have been published. Moreover, no studies have investigated whether the presence of both PD and low IHLC are associated with a higher incidence of T2D or insulin resistance.

The aim of this study was to assess the associations between low internal health locus of control (IHLC), psychological distress (PD), and insulin resistance. We also aimed to investigate the association of the presence of both low IHLC and PD with insulin resistance.

Materials and methods

Subjects

In 2002–2005, 2,816 men and women in the municipalities of Vara (n = 1,811) and Skövde (n = 1,005) in southwestern Sweden participated in a health survey. The participants, aged 30–75 years, were randomly sampled, with an oversampling of persons younger than 50 years of age. The participation rate was 76%. The participants had anthropometric measurements taken, answered questionnaires and performed an oral glucose tolerance test. To avoid effects of medication in insulin resistance participants with diabetes mellitus and/or cardiovascular disease (atrial fibrillation, myocardial infarction, angina pectoris, stroke and heart failure, n = 249) were excluded. Moreover, participants with missing information for the questionnaires IHLC or GHQ-12, or for insulin resistance (n = 128) were excluded, and a total of 2,439 participants remained for the present study (see flowchart in Fig 1).

Fig 1. Flowchart.

Fig 1

In all, 2,439 participants were included, after exclusion of 249 persons with Diabetes Mellitus or cardiovascular disease, and 128 persons with missing data for insulin resistance, psychological distress, or internal health locus of control.

Ethics

The Regional Ethics Committee at the University of Gothenburg, Sweden, approved the study: Dnr 199–01, and Dnr 036–12. All participants signed written informed consent.

Measurements

Specially trained nurses collected blood samples, made anthropometric measurements, and administered questionnaires to collect data on medical history, socio-demographics and lifestyle, as previously described in detail [15]. Insulin resistance was estimated by the homeostasis model assessment of insulin resistance, HOMA-ir, calculated by (fasting glucose x fasting insulin)/22.5) [16]. Psychological distress (PD) was measured by the validated 12-item General Health Questionnaire (GHQ-12) and dichotomized with the cut-off at 12 points or more [17]. Internal health locus of control (IHLC) was measured by a global scale, previously used by Lindström and colleagues [9], and recently validated [18]. The question is phrased: “Do you believe you can do something yourself to maintain a good health”, with the three response alternatives “Yes, I believe that one’s own effort is very important”; “Yes, I believe that one’s own effort has some importance”; and “No, I do not believe that one’s own effort has any importance”. IHLC was dichotomized according to the response pattern by merging the latter two and labelled high/low IHLC. PD and IHLC were then combined to indicate whether the participants had neither of the factors IHLC or PD, or both, Fig 2.

Fig 2. Internal health locus of control and psychological distress combined into four groups.

Fig 2

Educational level was assessed by a question with ten response alternatives, presented as the three groups primary school, high school, and higher education. Current smoking was defined as daily smoking (yes/no). Alcohol consumption was assessed by questions concerning the quantities of beer, wine, or spirits, respectively, consumed during the past 30 days, and presented in total grams per week. Leisure-time physical activity (LTPA) was measured by a validated questionnaire [19], and has four levels named sedentary, low, moderate, and high LTPA. Body weight was measured with participants in light clothes to the nearest 0.1 kg, standing height to the nearest centimetre, and body mass index (BMI) was calculated (weight in kg/height in metres squared).

Statistical analysis

Standard methods were used for descriptive statistics. HOMA-ir was log-transformed with base 10 in the analyses due to skewness in the distribution. General linear models were used to estimate differences in means in HOMA-ir between groups, adjusted for age, sex, education, alcohol consumption, daily smoking, BMI and physical activity. Due to no significant interaction between sex and the conditions (PD vs no PD, IHLC vs none) we analysed men and women together. The possible effect of physical activity on the associations between low IHLC and HOMA-ir was investigated, first with an interaction term (low IHLC * physical activity), and then in physical activity-stratified analysis. The mean differences between groups were converted into per cent of HOMA-ir with 95% confidence intervals (CI). We also considered physical activity as a mediator in the causal pathway between internal health locus of control and HOMA-ir. A mediation analysis was included to identify possible direct association of internal health locus of control on HOMA-ir, and the indirect association mediated by physical activity. All tests were two-sided and statistical significance was assumed at p<0.05. The statistical analyses were carried out using R version 4.2.0.

Results

In this Swedish sample of men and women five per cent (n = 138) had both PD and low IHLC, 18 per cent (n = 432) had PD, and 15 per cent (n = 360) low IHLC, and 62 per cent (n = 1,509) reported having neither low IHLC nor PD. Median value for HOMA-ir was 1.16 (q1-q3: 0.80–1.76). Table 1 presents characteristics of the cohort. There was a moderate correlation between IHLC and PD (rs = 0.48, p = 0.017).

Table 1. Characteristics of study participants in the Vara-Skövde cohort, Sweden, 2002–2005.

Characteristics All Groups based on PD and IHLC
None High PD Low IHLC Both
n = 2439 n = 1509 n = 432 n = 360 n = 138
Age, years, mean (SD) 46.3 (10) 45.8 (11) 45.3 (10) 48.1 (12) 50.0 (11)
Sex, men, n (%) 1205 (49) 762 (51) 186 (43) 198 (55) 59 (43)
Educational level n (%)
Primary school 584 (24) 307 (20) 98 (23) 129 (36) 50 (36)
High school 1007 (41) 623 (41) 182 (42) 144 (40) 58 (42)
Higher education 807 (33) 557 (37) 146 (34) 79 (22) 25 (18)
Occupation n (%)
Employed 1912 (78) 1233 (82) 318 (74) 274 (76) 87 (63)
Retired 312 (13) 143 (10) 65 (15) 62 (17) 42 (30)
Othera 136 (6) 82 (5) 38 (9) 11 (3) 5 (4)
BMI mean (SD) 26.8 (5) 26.3 (4) 26.9 (5) 26.7 (4) 27.5 (5)
HOMA-ir, b 1.2 (0.8–1.8) 1.1 (0.8–1.7) 1.2 (0.8–1.9) 1.2 (0.8–1.8) 1.5 (0.9–2.2)
IHLC n (%)
Yes, to a very high extent 1941 (80) 1509 (100) 432 (100) - -
Yes, to some extent 493 (20) - - 357 (99) 136 (99)
No, not possible 5 (0.2) 3 (0.8) 2 (1.4)
GHQ-12, mean (SD) 9.6 (4) 7.9 (2) 15.1 (4) 8.1 (2) 14.5 (4)
 ≥12, n (%) 570 (23) - 432 (100) - 138 (100)
LTPA n (%)
Sedentary 163 (7) 80 (5) 37 (9) 32 (9) 14 (10)
Low 1363 (56) 788 (52) 254 (59) 227 (63) 94 (68)
Moderate 765 (31) 542 (36) 113 (26) 86 (24) 24 (17)
High 78 (3) 60 (4) 12 (3) 6 (1.7) -
Alcohol consumption c 26 (8–62) 29 (9–63) 25 (8–61) 22(6–59) 20 (0–50)
Daily smoking n (%) 432 (18) 209 (14) 96 (22) 83 (23) 44 (32)

a includes students, unemployed

b mIU/L (median, q1-q3),

c g/week, (median, q1-q3),

12 g alcohol is equivalent to approximately 1 glass of wine (12–15 cl) or 1 small beer (33 cl). PD: Psychological Distress, IHLC: Internal Health Locus of Control, Both: low IHLC and high PD, SD: Standard deviation, BMI: Body mass index, kg m -2, HOMA-ir: the homeostatis model assessment of insulin resistance, LTPA: leisure time physical activity.

We investigated differences in HOMA-ir in four groups described in Fig 2. The group with neither low IHLC nor PD had lower levels of HOMA-ir than the other three groups; low IHLC; PD; and both low IHLC and PD, even when adjusting for age, sex, education, smoking and alcohol consumption, presented in Table 2. The association between HOMA-ir and the combination of both low IHLC and PD remained statistically significant also in the final model, adjusting for age, sex, education, smoking, alcohol consumption, BMI and physical activity (Δ = 11.8%, 95% CI: 1.5–23.0, p = 0.02) (Table 2). Further analyses with the group with both low IHLC and PD as reference showed that the group with both low IHLC and PD had higher insulin resistance than the group with only low IHLC and the group with only PD. However, these differences were not statistically significant after adjustments in the final model (both vs IHLC Δ = 9.6% p = 0.14; both vs PD Δ = 7.58% p = 0.26).

Table 2. Associations between low internal health locus of control (IHLC), Psychological distress and insulin resistance (HOMA-ir).

N Mean ref mIU/L Mean difference CI p
Crude.
None (ref.) 1509 1.12
PD 432 10.3% (PD vs. none) 0.7–16.1 <0.01
Low IHLC 360 8.10% (IHLC vs. None) 3.28–17.9 0.03
Both 138 24.8% (both vs. none) 12.0–38.9 <0.01
Adjusted for age and sex.
None (ref.) 1509
PD 432 11.6% (PD vs. none) 4.5–19.2 <0.01
Low IHLC 360 6.6% (IHLC vs. None) -0.7–14.5 0.08
Both 138 24.4% (both vs. none) 11.7–38.5 <0.01
Adjusted for age, sex and education.
None (ref.) 1487
PD 426 10.7 (PD vs. none) 3.6–18.3 <0.01
Low IHLC 352 4.6% (IHLC vs. None) -2.6–12.4 0.22
Both 133 22.5% (both vs. none) 9.8–36.7 <0.01
Adjusted for age, sex, education, smoking, alcohol and BMI.
None (ref.) 1414
PD 405 5.1% (PD vs. none) -0.8–11.33 0.09
Low IHLC 341 4.2 (IHLC vs. None) -2.1–10.8 0.20
Both 129 15.2% (both vs. none) 4.8–26.6 <0.01
Adjusted for age, sex, education, smoking, alcohol, BMI and physical activity.
None (ref.) 1396
PD 396 3.9% (PD vs. none) -2.0–10.1 0.20
Low IHLC 337 1.9% (IHLC vs. None) -4.3–8.5 0.55
Both 125 11.8% (both vs. none) 1.54–23.0 0.02

All estimates are based on the general linear model, presented with 95% confidence interval (CI) and p-value (p).

There was an association between PD and HOMA-ir in all models before adjusting for BMI. However, after adjusting for BMI the association was no longer significant (Table 3). Participants with low IHLC had significantly higher HOMA-ir (Δ = 10.1%, 95%CI:3.5–17.0, p<0.005). The association remained significant after adjusting for age, sex, education, smoking, alcohol consumption, and BMI (Δ = 5.8%, 95% CI: 0.3–11.7, p = 0.04). However, the association between low IHLC and HOMA-ir attenuated and was not significant when physical activity was included in the model (Table 3). Mediation analysis showed that 35.3% of the total association of internal health locus of control on HOMA-ir was mediated by physical activity. The interaction term of IHLC and physical activity was significant (p = 0.017). Stratified analyses showed that the association between IHLC and HOMA-ir was insignificant in individuals with high LTPA (Δ = -5.6%, 95% CI: -15.4–5.4, p = 0.31) but statistically significant in individuals with low LTPA even after adjusting for age, sex, education, smoking, alcohol consumption and BMI (Δ = 7.3%, 95% CI: 0.9–14.1, p = 0.03).

Table 3. Associations of psychological distress (PD) and low internal health locus of control (IHLC) with insulin resistance (HOMA-ir).

N Mean ref MD CI p
Psychological Distress
Crude
2439 1.12 12% 5.7–18.7 <0.01
Adjusted for age and sex
2439 13.2% 6.8–19.9 <0.01
Adjusted for age, sex and education
2398 12.4% 6.0–19.1 <0.01
Adjusted for age, sex, education, smoking, alcohol, and physical activity.
2256 6.5% 1.3–12.1 0.01
Adjusted for age, sex, education, smoking, alcohol, physical activity and BMI.
2254 5.3% 0.0–10.8 0.05
Low internal health locus of control
Crude
2439 1.12 10.1% 3.5–17.0 <0.01
Adjusted for age and sex
2439 8.6% 2.2–15.4 0.01
Adjusted for age, sex and education
2398 6.8% 0.3–13.6 0.04
Adjusted for age, sex, education, smoking, alcohol and BMI.
2289 5.8% 0.3–11.7 0.04
Adjusted for age, sex, education, smoking, alcohol, BMI and physical activity.
2254 3.5% -1.9–9.3 0.21

All estimates are based on the general linear model with log10HOMA-ir as the response, PD or IHLC as the variable of interest, adjusted for covariates as specified. Means and mean differences (MD) in HOMA-ir between persons with and without (reference group) psychological distress, respectively, and between persons with high (reference group) and low internal health locus of control respectively, presented with 95% confidence interval (CI) and p-value (p).

Discussion

In this study, the presence of both low IHLC and PD was strongly and independently associated with high levels of insulin resistance, and the association remained statistically significant in the fully adjusted model. Psychological distress (PD) was strongly associated with insulin resistance and the association was almost significant in the final model. There was a strong and significant association between low internal health locus of control (IHLC) and insulin resistance. The association attenuated after adjustments for physical activity. Interestingly, differences in the association between IHLC and insulin resistance were observed based on the level of physical activity. Low IHLC was associated with higher insulin resistance only in subjects with low level of leisure time physical activity suggesting a central role of LTPA in the association between IHLC and insulin resistance.

No previous study investigating the association between IHLC and insulin resistance in adults has been conducted to our knowledge. We know of only one previous study in which an association between higher HbA1c and low internal locus of control was shown [8]. In that study, internal locus of control and socioeconomic status covaried, and the authors suggested that socioeconomic status explained the association. In our study however, the statistically significant association between low IHLC and HOMA-ir remained after adjustment for socioeconomic status, using educational level as a proxy for socioeconomic status. Another study has found that 10-year-olds with high internal locus of control had a reduced risk of overweight and obesity 20 years later [7], which would be in line with the results in the current study considering the strong link between obesity and insulin resistance.

Ravaja et al. investigated the effects of interactions between locus of control and life events on serum insulin and found that the effects of the interaction were generally in the opposite direction compared with the effect of locus of control, and that the interaction effects were dependent on which type of life event had occurred [20]. In young women with internal locus of control, changes in educational/working activities, change of residence, or setting up a family was associated with high levels of serum insulin and high BMI while no association was found in young women with external locus of control [20]. The differences seem contrasting compared with our cohort. However, the discussion about the age-appropriateness of some of the life events measured in this young cohort is relevant. The adolescents in the study were between 15 and 21 years old at the first examination [20]. The extent to which 15-year-olds can choose occupation, where to live, when to move etc. is often small, which would imply low controllability of such life events. Experiments have found that adults with high internal locus of control had increased stress responses in low controllability conditions [21] and a reduced stress response when they believed in controllability in a high controllability condition [22]. Furthermore, the ability to distinguish between realistically controllable and uncontrollable events and knowing when to let go of things is beneficial [6]. Changes in coping strategies towards flexible adjustments of goals and shifting focus from trying to change the environment to changing oneself have been shown in older ages [6] and may also be relevant in younger ages. Previous findings about locus of control and age indicate that internal locus of control generally increases in young adulthood [6].

Ravaja et al. [20] did not assess perceived controllability or positive and negative emotional responses to life events, which may explain some of the variation. In our study of adults aged 30–75 years, we measured psychological distress including strain, worry and depressive symptoms that may be associated with a spectrum of stress responses of different intensity. Reactions to life events may be positive or negative, while psychological distress (GHQ-12≥12p) perhaps in most cases would be labelled as negative but potentially sub-clinical.

In our study, physical activity attenuated the association between IHLC and HOMA-ir and the associations varied depending on level of physical activity suggesting a central role of physical activity in mediating the possible effect of IHLC on HOMA-ir. This is consistent with previous studies that have shown that men and women with high internal locus of control were more physically active [23] and that higher sense of control was related to higher likelihood of frequent physical activity [24]. Physical activity has in turn been observed to have a dose-response relationship with insulin resistance [25]. Furthermore, the association between psychological distress and HOMA-ir found in this study is in line with the findings of increased risk of prediabetes and T2D 8–10 years later in patients with PD [12].

To our knowledge, no other studies have investigated the presence of both PD and low IHLC in insulin resistance. Our hypothesis about an association between the presence of both low IHLC and PD and higher HOMA-ir was confirmed. The moderate correlation between IHLC and PD in our study was expected and in line with previous studies on the association between locus of control and PD [7] and depression and anxiety symptoms [5]. A recent study on the relationships between locus of control, positive and negative life events, depression, and anxiety over a nine-year period showed that externality (measured by a 5-item mastery scale) predicted depressive symptoms and anxiety, and that depressive symptoms and negative life events predicted externality [26]. The GHQ-12 questionnaire used in the current study has items about depressive symptoms, like feelings of worthlessness, feeling unhappy and depressed, and items about worry and feeling under strain. A Swedish study has validated the GHQ-12 against clinical assessment of depressive disorders (including minor depression) suggesting that the GHQ-12 captures depressive disorders well [17].

In addition to previously suggested physiological mechanisms [1], there is also the lifestyle factor of behaviours common in mental illness, such as poor diet and low level of physical activity, simultaneously being risk factors for metabolic impairment and T2D. A conceptual model of reciprocal, cyclic associations based on cognitive behavioural theory has been suggested [27]. In the model, modified to the variables in our study, health outcomes like psychological distress influence IHLC, which in turn influences mediating behaviours like physical activity, the stress response and insulin resistance, and possible future health outcomes, such as T2D and depression.

Strengths and limitations

Firstly, there may be minor selection bias concerning non-participating subjects in the Vara-Skövde Cohort (VSC). VSC is a randomly sampled cohort from two municipalities with high participation rate. However, participation has been found to be greater among healthier individuals and persons interested in the topic [28], suggesting that the present study may have fewer participants with low IHLC, thus increasing the risk for type 2 error. Secondly, due to the cross-sectional design, the present study cannot determine possible causality between IHLC, PD and insulin resistance. Thirdly, while euglycemic glucose clamp technique is gold standard for measurement of insulin resistance, HOMA-ir was used in this study. HOMA-ir is a validated and common method in epidemiological studies. Likewise, we used validated, but self-rated and subjective measurements for leisure time physical activity and PD, which may have lower precision compared with objective measurements of physical activities and professional diagnostic interviews. Not having information on diet in this study may be a limitation since diet is strongly linked to body weight management and diabetes prevention. Finally, we used a global scale to measure IHLC. Many different scales have been used in the literature, self-efficacy perhaps being the most closely related construct. Studies on health locus of control and health behaviour have shown some contradictory findings [29], and Wallston who introduced the Multidimensional Health Locus of Control Scale (MHLC) later shifted focus from health locus of control to health self-efficacy and placed IHLC as moderator between health self-efficacy and health behaviour [30]. The global scale used in this study was recently validated and correlated with both the MHLC, and the General Self-Efficacy scale [18].

Conclusions

The presence of both low internal health locus of control and psychological distress in combination was strongly and independently associated with insulin resistance, also when adjusting for BMI and physical activity. Individuals with both low internal health locus of control and psychological distress may need special attention from primary care. In individuals with low levels of leisure time physical activities, interventions to improve internal health locus of control might decrease insulin resistance and consequently the risk for type 2 diabetes.

Acknowledgments

The authors would like to thank all participants from Vara and Skövde who made this study possible and the team of nurses that worked hard to collect the data.

Data Availability

Complete data cannot be made publicly available for ethical and legal reasons according to the Swedish regulations of the “Act concerning the Ethical Review of Research Involving Humans (2006:460)” and the Swedish Ethical Reviews Authority. Public availability would compromise participant confidentiality or privacy. Upon request, a list of codes or meaning units can be made available after removal of details that may risk the confidentiality of the participants. To access such data, please contact the University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Box 453, 40530 Gothenburg, Sweden, (generalpractice@allmed.gu.se) or Bledar Daka (bledar.daka@allmed.gu.se).

Funding Statement

This work was supported by a research grant from The Local Research and Development Council Gothenburg and Södra Bohuslän; The Healthcare Committee, Region Västra Götaland; and by grants from the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-938433 to U.L.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Pouwer F, Schram MT, Iversen MM, Nouwen A, Holt RIG. How 25 years of psychosocial research has contributed to a better understanding of the links between depression and diabetes. Diabet Med. 2020;37:383–92. doi: 10.1111/dme.14227 [DOI] [PubMed] [Google Scholar]
  • 2.Dunkley AJ, Bodicoat DH, Greaves CJ, Russell C, Yates T, Davies MJ, et al. Diabetes prevention in the real world: effectiveness of pragmatic lifestyle interventions for the prevention of type 2 diabetes and of the impact of adherence to guideline recommendations: a systematic review and meta-analysis. Diabetes care. 2014;37:922–33. doi: 10.2337/dc13-2195 [DOI] [PubMed] [Google Scholar]
  • 3.Reich J, Infurna F. 2016. Perceived Control: Theory, Research, and Practice in the First 50 Years: Oxford Scholarship Online. [Google Scholar]
  • 4.Rotter JB. Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied. 1966;80:1–28. [PubMed] [Google Scholar]
  • 5.Cheng C, Cheung SF, Chio JH, Chan MP. Cultural meaning of perceived control: a meta-analysis of locus of control and psychological symptoms across 18 cultural regions. Psychol Bull. 2013;139:152–88. doi: 10.1037/a0028596 [DOI] [PubMed] [Google Scholar]
  • 6.Robinson S, Lachman M. Perceived Control and Behavior Change: A Personalized Approach.. In: Reich J, Infurna F, editors. Perceived Control: Theory, Research, and Practice in the First 50 Years: Oxford Scholarship Online.; 2016. [Google Scholar]
  • 7.Gale CR, Batty GD, Deary IJ. Locus of control at age 10 years and health outcomes and behaviors at age 30 years: the 1970 British Cohort Study. Psychosom Med. 2008;70:397–403. doi: 10.1097/PSY.0b013e31816a719e [DOI] [PubMed] [Google Scholar]
  • 8.Feldman PJ, Steptoe A. Psychosocial and socioeconomic factors associated with glycated hemoglobin in nondiabetic middle-aged men and women. Health Psychol. 2003;22:398–405. doi: 10.1037/0278-6133.22.4.398 [DOI] [PubMed] [Google Scholar]
  • 9.Ali SM, Lindstrom M. Socioeconomic, psychosocial, behavioural, and psychological determinants of BMI among young women: differing patterns for underweight and overweight/obesity. Eur J of public health. 2006;16:325–31. doi: 10.1093/eurpub/cki187 [DOI] [PubMed] [Google Scholar]
  • 10.Strickland B. Internal-external expectancies and health-related behaviors. Journal of consulting and clinical psychology. 1978;46:1192–211. doi: 10.1037//0022-006x.46.6.1192 [DOI] [PubMed] [Google Scholar]
  • 11.Pan A, Lucas M, Sun Q, van Dam RM, Franco OH, Manson JE, et al. Bidirectional association between depression and type 2 diabetes mellitus in women. Arch Intern Med. 2010;170:1884–91. doi: 10.1001/archinternmed.2010.356 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Eriksson AK, Ekbom A, Granath F, Hilding A, Efendic S, Ostenson CG. Psychological distress and risk of pre-diabetes and Type 2 diabetes in a prospective study of Swedish middle-aged men and women. Diabet Med. 2008;25:834–42. doi: 10.1111/j.1464-5491.2008.02463.x [DOI] [PubMed] [Google Scholar]
  • 13.Rosmond R, Björntorp P. The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. J of Intern Med. 2000;247:188–97. doi: 10.1046/j.1365-2796.2000.00603.x [DOI] [PubMed] [Google Scholar]
  • 14.Nemeroff CB, Vale WW. The neurobiology of depression: Inroads to treatment and new drug discovery. J Clin Psychiatry. 2005;66:5–13. [PubMed] [Google Scholar]
  • 15.Larsson CA, Daka B, Gullberg B, Rastam L, Lindblad U. Clusters of AMI risk factors and their association with left ventricular hypertrophy: a population-based study within the Skaraborg Project, Sweden. Int J Cardiol. 2013;168:5416–21. doi: 10.1016/j.ijcard.2013.08.047 [DOI] [PubMed] [Google Scholar]
  • 16.Matthews DR HJ, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. doi: 10.1007/BF00280883 [DOI] [PubMed] [Google Scholar]
  • 17.Lundin A, Hallgren M, Theobald H, Hellgren C, Torgen M. Validity of the 12-item version of the General Health Questionnaire in detecting depression in the general population. Public Health. 2016;136:66–74. doi: 10.1016/j.puhe.2016.03.005 [DOI] [PubMed] [Google Scholar]
  • 18.Eriksson M, Lindblad U, Daka B, Lundgren J. Validation of a single question to measure internal health locus of control in Swedish primary care. Accepted for publication in Scandinavian Journal of Psychology. doi: 10.1111/sjop.12923 [DOI] [PubMed] [Google Scholar]
  • 19.Løchen ML RK. The Tromsø study: physical fitness, self reported physical activity, and their relationship to other coronary risk factors. J Epidemiol Community Health. 1992;46:103–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ravaja N, Keltikangas-Jarvinen L, Viikari J. Life changes, locus of control and metabolic syndrome precursors in adolescents and young adults: A three-year follow-up. Social Science and Medicine. 1996;43:51–61. doi: 10.1016/0277-9536(95)00333-9 [DOI] [PubMed] [Google Scholar]
  • 21.Agrigoroaei S, Polito M, Lee A, Kranz-Graham E, Seeman T, Lachman ME. Cortisol response to challenge involving low controllability: the role of control beliefs and age. Biol Psychol. 2013;93:138–42. doi: 10.1016/j.biopsycho.2013.01.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Bollini AM, Walker EF, Hamann S, Kestler L. The influence of perceived control and locus of control on the cortisol and subjective responses to stress. Biol Psychol. 2004;67:245–60. doi: 10.1016/j.biopsycho.2003.11.002 [DOI] [PubMed] [Google Scholar]
  • 23.Gregg E, Narayan K, Kriska A, Knowler W. Relationship of locus of control to physical activity among people with and without diabetes. Diabetes Care 1996;19:1118–21. doi: 10.2337/diacare.19.10.1118 [DOI] [PubMed] [Google Scholar]
  • 24.Hong JH, Lachman ME, Charles ST, Chen Y, Wilson CL, Nakamura JS, et al. The positive influence of sense of control on physical, behavioral, and psychosocial health in older adults: An outcome-wide approach. Prev Med. 2021;149:106612. doi: 10.1016/j.ypmed.2021.106612 [DOI] [PubMed] [Google Scholar]
  • 25.Dube JJ, Allison KF, Rousson V, Goodpaster BH, Amati F. Exercise dose and insulin sensitivity: relevance for diabetes prevention. Med Sci Sports Exerc. 2012;44:793–9. doi: 10.1249/MSS.0b013e31823f679f [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Hovenkamp-Hermelink JHM, Jeronimus BF, van der Veen DC, Spinhoven P, Penninx B, Schoevers RA, et al. Differential associations of locus of control with anxiety, depression and life-events: A five-wave, nine-year study to test stability and change. Journal of affective disorders. 2019;253:26–34. doi: 10.1016/j.jad.2019.04.005 [DOI] [PubMed] [Google Scholar]
  • 27.Robinson SA, Lachman ME. Perceived Control and Aging: A Mini-Review and Directions for Future Research. Gerontology. 2017;63:435–42. doi: 10.1159/000468540 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Groves RM, Peytcheva E. The Impact of Nonresponse Rates on Nonresponse Bias: A Meta-Analysis. Public Opinion Quarterly. 2008;72:167–89. [Google Scholar]
  • 29.Norman P. Health locis of control and health behavior: An investigation into the role of health value and behavior-specific efficacy beliefs. Person individ Diff. 1995;18:213–8. [Google Scholar]
  • 30.Wallston KA. 2016. An Autobiography of Rotter’s Social Learning Theory Modified for Health. In: Reich J, Perceived Control: Theory, Research, and Practice in the First 50 Years: Oxford Scholarship Online. [Google Scholar]

Decision Letter 0

Victor Manuel Mendoza-Nuñez

1 Mar 2023

PONE-D-23-01333Association between low internal health locus of control, psychological distress and insulin resistance, a cross-sectional study

PLOS ONE

Dear Dr. Eriksson,

Thank you for submitting your manuscript to PLOS ONE. After careful consideration, we feel that it has merit but does not fully meet PLOS ONE’s publication criteria as it currently stands. Therefore, we invite you to submit a revised version of the manuscript that addresses the points raised during the review process.

Please submit your revised manuscript by Apr 15 2023 11:59PM, If you will need more time than this to complete your revisions, please reply to this message or contact the journal office at plosone@plos.org. When you're ready to submit your revision, log on to https://www.editorialmanager.com/pone/ and select the 'Submissions Needing Revision' folder to locate your manuscript file.

Please include the following items when submitting your revised manuscript:

  • A rebuttal letter that responds to each point raised by the academic editor and reviewer(s). You should upload this letter as a separate file labeled 'Response to Reviewers'.

  • A marked-up copy of your manuscript that highlights changes made to the original version. You should upload this as a separate file labeled 'Revised Manuscript with Track Changes'.

  • An unmarked version of your revised paper without tracked changes. You should upload this as a separate file labeled 'Manuscript'.

If you would like to make changes to your financial disclosure, please include your updated statement in your cover letter. Guidelines for resubmitting your figure files are available below the reviewer comments at the end of this letter.

If applicable, we recommend that you deposit your laboratory protocols in protocols.io to enhance the reproducibility of your results. Protocols.io assigns your protocol its own identifier (DOI) so that it can be cited independently in the future. For instructions see: https://journals.plos.org/plosone/s/submission-guidelines#loc-laboratory-protocols. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols.

We look forward to receiving your revised manuscript.

Kind regards,

Victor Manuel Mendoza-Nuñez, PhD

Academic Editor

PLOS ONE

Journal requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at 

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and 

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

2. Please provide additional details regarding participant consent. In the ethics statement in the Methods and online submission information, please ensure that you have specified (1) whether consent was informed and (2) what type you obtained (for instance, written or verbal, and if verbal, how it was documented and witnessed). If your study included minors, state whether you obtained consent from parents or guardians. If the need for consent was waived by the ethics committee, please include this information.

If you are reporting a retrospective study of medical records or archived samples, please ensure that you have discussed whether all data were fully anonymized before you accessed them and/or whether the IRB or ethics committee waived the requirement for informed consent. If patients provided informed written consent to have data from their medical records used in research, please include this information.

3. In your Data Availability statement, you have not specified where the minimal data set underlying the results described in your manuscript can be found. PLOS defines a study's minimal data set as the underlying data used to reach the conclusions drawn in the manuscript and any additional data required to replicate the reported study findings in their entirety. All PLOS journals require that the minimal data set be made fully available. For more information about our data policy, please see http://journals.plos.org/plosone/s/data-availability.

"Upon re-submitting your revised manuscript, please upload your study’s minimal underlying data set as either Supporting Information files or to a stable, public repository and include the relevant URLs, DOIs, or accession numbers within your revised cover letter. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories. Any potentially identifying patient information must be fully anonymized.

Important: If there are ethical or legal restrictions to sharing your data publicly, please explain these restrictions in detail. Please see our guidelines for more information on what we consider unacceptable restrictions to publicly sharing data: http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions. Note that it is not acceptable for the authors to be the sole named individuals responsible for ensuring data access.

We will update your Data Availability statement to reflect the information you provide in your cover letter.

Additional Editor comments:

Please, in addition to the corrections in your manuscript, you must respond point by point to the comments of the reviewers.

Another additional comment to that of the reviewers is the need to specify in the title that it is an exproratory study, the following title is suggested: "Association between low internal health locus of control, psychological distress and insulin resistance. An exploratory study"

Reviewer 1

This cross-sectional study examines the relationship between insulin resistance, internal locus of control, and psychological stress in a random sample of individuals from southwestern Sweden. The method and results sections are adequately presented.

Every table should be self-explanatory. Tables 2 and 3 have imprecise titles (to the extent that the footnotes of the two tables indicate which is the outcome variable and which are the adjustment variables, which is unnecessary). A suggestion would be:  Table 2. Association of insulin resistance (HOMA-ir) with psychological distress (PD) and low internal locus of control (IHLC). Similarly, the description of the transformation of estimates to percentages is unnecessary because it has already been covered in the section on data analysis.

Even though the study is exploratory, it would be helpful to provide more evidence for the hypotheses about the physiological mechanisms behind the links found in the study.

Reviewer 2

The results presented are interesting, however, the authors report that only 5% of the population they studied met the criteria that decided to associate low internal health locus of control and phychological distress with insulin resistance (HOMA-ir).

Therefore, they decided to add other variables to the mathematical model that they proposed, such as physical activity in a stratified manner, which was not contemplated at the beginning.

The authors decided to add variable by variable to the mathematical model until it stopped giving statistically significant results, so they stopped focusing their article on the initial proposal, to assess the hypothesis that low internal health locus of control (IHLC) and psychological Distress (PD) are associated with insulin resistance.

I believe that the results must be ordered and focus on the initial proposal.

[Note: HTML markup is below. Please do not edit.]

Reviewers' comments:

Reviewer's Responses to Questions

Comments to the Author

1. Is the manuscript technically sound, and do the data support the conclusions?

The manuscript must describe a technically sound piece of scientific research with data that supports the conclusions. Experiments must have been conducted rigorously, with appropriate controls, replication, and sample sizes. The conclusions must be drawn appropriately based on the data presented.

Reviewer #1: Yes

Reviewer #2: Partly

**********

2. Has the statistical analysis been performed appropriately and rigorously?

Reviewer #1: Yes

Reviewer #2: Yes

**********

3. Have the authors made all data underlying the findings in their manuscript fully available?

The PLOS Data policy requires authors to make all data underlying the findings described in their manuscript fully available without restriction, with rare exception (please refer to the Data Availability Statement in the manuscript PDF file). The data should be provided as part of the manuscript or its supporting information, or deposited to a public repository. For example, in addition to summary statistics, the data points behind means, medians and variance measures should be available. If there are restrictions on publicly sharing data—e.g. participant privacy or use of data from a third party—those must be specified.

Reviewer #1: No

Reviewer #2: Yes

**********

4. Is the manuscript presented in an intelligible fashion and written in standard English?

PLOS ONE does not copyedit accepted manuscripts, so the language in submitted articles must be clear, correct, and unambiguous. Any typographical or grammatical errors should be corrected at revision, so please note any specific errors here.

Reviewer #1: Yes

Reviewer #2: Yes

**********

5. Review Comments to the Author

Please use the space provided to explain your answers to the questions above. You may also include additional comments for the author, including concerns about dual publication, research ethics, or publication ethics. (Please upload your review as an attachment if it exceeds 20,000 characters)

Reviewer #1: This cross-sectional study examines the relationship between insulin resistance, internal locus of control, and psychological stress in a random sample of individuals from southwestern Sweden. The method and results sections are adequately presented.

Every table should be self-explanatory. Tables 2 and 3 have imprecise titles (to the extent that the footnotes of the two tables indicate which is the outcome variable and which are the adjustment variables, which is unnecessary). Una sugerencia sería: Table 2. Association of insulin resistance (HOMA-ir) with psychological distress (PD) and low internal locus of control (IHLC). Similarly, the description of the transformation of estimates to percentages is unnecessary because it has already been covered in the section on data analysis.

Even though the study is exploratory, it would be helpful to provide more evidence for the hypotheses about the physiological mechanisms behind the links found in the study.

Reviewer #2: The results presented are interesting, however, the authors report that only 5% of the population they studied met the criteria that decided to associate low internal health locus of control and phychological distress with insulin resistance (HOMA-ir).

Therefore, they decided to add other variables to the mathematical model that they proposed, such as physical activity in a stratified manner, which was not contemplated at the beginning.

The authors decided to add variable by variable to the mathematical model until it stopped giving statistically significant results, so they stopped focusing their article on the initial proposal, to assess the hypothesis that low internal health locus of control (IHLC) and psychological Distress (PD) are associated with insulin resistance.

I believe that the results must be ordered and focus on the initial proposal.

**********

6. PLOS authors have the option to publish the peer review history of their article (what does this mean?). If published, this will include your full peer review and any attached files.

If you choose “no”, your identity will remain anonymous but your review may still be made public.

Do you want your identity to be public for this peer review? For information about this choice, including consent withdrawal, please see our Privacy Policy.

Reviewer #1: No

Reviewer #2: No

**********

[NOTE: If reviewer comments were submitted as an attachment file, they will be attached to this email and accessible via the submission site. Please log into your account, locate the manuscript record, and check for the action link "View Attachments". If this link does not appear, there are no attachment files.]

While revising your submission, please upload your figure files to the Preflight Analysis and Conversion Engine (PACE) digital diagnostic tool, https://pacev2.apexcovantage.com/. PACE helps ensure that figures meet PLOS requirements. To use PACE, you must first register as a user. Registration is free. Then, login and navigate to the UPLOAD tab, where you will find detailed instructions on how to use the tool. If you encounter any issues or have any questions when using PACE, please email PLOS at figures@plos.org. Please note that Supporting Information files do not need this step.

PLoS One. 2023 May 22;18(5):e0285974. doi: 10.1371/journal.pone.0285974.r002

Author response to Decision Letter 0


15 Apr 2023

Journal requirements:

When submitting your revision, we need you to address these additional requirements.

1. Please ensure that your manuscript meets PLOS ONE's style requirements, including those for file naming. The PLOS ONE style templates can be found at

https://journals.plos.org/plosone/s/file?id=wjVg/PLOSOne_formatting_sample_main_body.pdf and

https://journals.plos.org/plosone/s/file?id=ba62/PLOSOne_formatting_sample_title_authors_affiliations.pdf

Answer: We have made changes to meet the style requirements.

2. Please provide additional details regarding participant consent. In the ethics statement in the Methods and online submission information, please ensure that you have specified (1) whether consent was informed and (2) what type you obtained (for instance, written or verbal, and if verbal, how it was documented and witnessed). If your study included minors, state whether you obtained consent from parents or guardians. If the need for consent was waived by the ethics committee, please include this information.

If you are reporting a retrospective study of medical records or archived samples, please ensure that you have discussed whether all data were fully anonymized before you accessed them and/or whether the IRB or ethics committee waived the requirement for informed consent. If patients provided informed written consent to have data from their medical records used in research, please include this information.

Answer: In Methods, in the ethics statement, row 112, we have written: All participants signed written informed consent.

3. In your Data Availability statement, you have not specified where the minimal data set underlying the results described in your manuscript can be found. PLOS defines a study's minimal data set as the underlying data used to reach the conclusions drawn in the manuscript and any additional data required to replicate the reported study findings in their entirety. All PLOS journals require that the minimal data set be made fully available. For more information about our data policy, please see http://journals.plos.org/plosone/s/data-availability.

"Upon re-submitting your revised manuscript, please upload your study’s minimal underlying data set as either Supporting Information files or to a stable, public repository and include the relevant URLs, DOIs, or accession numbers within your revised cover letter. For a list of acceptable repositories, please see http://journals.plos.org/plosone/s/data-availability#loc-recommended-repositories. Any potentially identifying patient information must be fully anonymized.

Important: If there are ethical or legal restrictions to sharing your data publicly, please explain these restrictions in detail. Please see our guidelines for more information on what we consider unacceptable restrictions to publicly sharing data: http://journals.plos.org/plosone/s/data-availability#loc-unacceptable-data-access-restrictions. Note that it is not acceptable for the authors to be the sole named individuals responsible for ensuring data access.

We will update your Data Availability statement to reflect the information you provide in your cover letter.

Answer: We have added to the Data Avaliablity statement:

Complete data cannot be made publicly available for ethical and legal reasons according to the Swedish regulations of the “Act concerning the Ethical Review of Research Involving Humans (2006:460)” and the Swedish Ethical Reviews Authority. Public availability would compromise participant confidentiality or privacy. Upon request, a list of codes or meaning units can be made available after removal of details that may risk the confidentiality of the participants. To access such data, please contact the University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Box 453, 40530 Gothenburg, Sweden, (generalpractice@allmed.gu.se) or Bledar Daka (bledar.daka@allmed.gu.se).

Additional Editor comments:

Please, in addition to the corrections in your manuscript, you must respond point by point to the comments of the reviewers.

Another additional comment to that of the reviewers is the need to specify in the title that it is an exproratory study, the following title is suggested: "Association between low internal health locus of control, psychological distress and insulin resistance. An exploratory study"

Answer: Thank you, we agree and have changed the title accordingly.

Reviewer 1

This cross-sectional study examines the relationship between insulin resistance, internal locus of control, and psychological stress in a random sample of individuals from southwestern Sweden. The method and results sections are adequately presented.

Every table should be self-explanatory. Tables 2 and 3 have imprecise titles (to the extent that the footnotes of the two tables indicate which is the outcome variable and which are the adjustment variables, which is unnecessary). A suggestion would be: Table 2. Association of insulin resistance (HOMA-ir) with psychological distress (PD) and low internal locus of control (IHLC). Similarly, the description of the transformation of estimates to percentages is unnecessary because it has already been covered in the section on data analysis.

Answer: Thank you, we have changed the titles of the table 2 and 3 and the footnotes. The title of table is now “Associations of psychological distress (PD) and low internal health locus of control (IHLC) with insulin resistance (HOMA-ir)”. We decided to write insulin resistance last in the title since that is the outcome variable. We have also removed the description of the transformation of estimates to percentages.

Even though the study is exploratory, it would be helpful to provide more evidence for the hypotheses about the physiological mechanisms behind the links found in the study.

Answer: We have added some text and a reference on the hypothesis about the physiological mechanisms. Row 79-81, and row 334-337.

Reviewer 2

The results presented are interesting, however, the authors report that only 5% of the population they studied met the criteria that decided to associate low internal health locus of control and phychological distress with insulin resistance (HOMA-ir).

Therefore, they decided to add other variables to the mathematical model that they proposed, such as physical activity in a stratified manner, which was not contemplated at the beginning.

The authors decided to add variable by variable to the mathematical model until it stopped giving statistically significant results, so they stopped focusing their article on the initial proposal, to assess the hypothesis that low internal health locus of control (IHLC) and psychological Distress (PD) are associated with insulin resistance.

I believe that the results must be ordered and focus on the initial proposal.

Answer: Thank you for drawing our intention to our unclear description! We have changed the order of the results, in the results (row 159-162, and row 169-254), discussion (row 257-266) and abstract (row 35-48). We added confounders s based on theoretical models to avoid confounding. Knowledge from previous studies on IHLC and physical activity contributed to our decision to continue with the analyses with physical activity.

Attachment

Submitted filename: Response to Reviewers.docx

Decision Letter 1

Victor Manuel Mendoza-Nuñez

7 May 2023

Association between low internal health locus of control, psychological distress and insulin resistance. An exploratory study.

PONE-D-23-01333R1

Dear Dr. Maria Eriksson

We’re pleased to inform you that your manuscript has been judged scientifically suitable for publication and will be formally accepted for publication once it meets all outstanding technical requirements.

Within one week, you’ll receive an e-mail detailing the required amendments. When these have been addressed, you’ll receive a formal acceptance letter and your manuscript will be scheduled for publication.

An invoice for payment will follow shortly after the formal acceptance. To ensure an efficient process, please log into Editorial Manager at http://www.editorialmanager.com/pone/, click the 'Update My Information' link at the top of the page, and double check that your user information is up-to-date. If you have any billing related questions, please contact our Author Billing department directly at authorbilling@plos.org.

If your institution or institutions have a press office, please notify them about your upcoming paper to help maximize its impact. If they’ll be preparing press materials, please inform our press team as soon as possible -- no later than 48 hours after receiving the formal acceptance. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information, please contact onepress@plos.org.

Kind regards,

Victor Manuel Mendoza-Nuñez, PhD

Academic Editor

PLOS ONE

Acceptance letter

Victor Manuel Mendoza-Nuñez

12 May 2023

PONE-D-23-01333R1

Association between low internal health locus of control, psychological distress and insulin resistance. An exploratory study.

Dear Dr. Eriksson:

I'm pleased to inform you that your manuscript has been deemed suitable for publication in PLOS ONE. Congratulations! Your manuscript is now with our production department.

If your institution or institutions have a press office, please let them know about your upcoming paper now to help maximize its impact. If they'll be preparing press materials, please inform our press team within the next 48 hours. Your manuscript will remain under strict press embargo until 2 pm Eastern Time on the date of publication. For more information please contact onepress@plos.org.

If we can help with anything else, please email us at plosone@plos.org.

Thank you for submitting your work to PLOS ONE and supporting open access.

Kind regards,

PLOS ONE Editorial Office Staff

on behalf of

Dr. Victor Manuel Mendoza-Nuñez

Academic Editor

PLOS ONE

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    Attachment

    Submitted filename: Response to Reviewers.docx

    Data Availability Statement

    Complete data cannot be made publicly available for ethical and legal reasons according to the Swedish regulations of the “Act concerning the Ethical Review of Research Involving Humans (2006:460)” and the Swedish Ethical Reviews Authority. Public availability would compromise participant confidentiality or privacy. Upon request, a list of codes or meaning units can be made available after removal of details that may risk the confidentiality of the participants. To access such data, please contact the University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, Department of Public Health and Community Medicine/Primary Health Care, Box 453, 40530 Gothenburg, Sweden, (generalpractice@allmed.gu.se) or Bledar Daka (bledar.daka@allmed.gu.se).


    Articles from PLOS ONE are provided here courtesy of PLOS

    RESOURCES