Skip to main content
Journal of Southern Medical University logoLink to Journal of Southern Medical University
. 2023 Apr 20;43(4):527–536. [Article in Chinese] doi: 10.12122/j.issn.1673-4254.2023.04.04

高表达MYH9通过激活AKT/c-Myc通路抑制非小细胞肺癌细胞凋亡

High expression of MYH9 inhibits apoptosis of non-small cell lung cancer cells through activating the AKT/c-Myc pathway

刘 芳 1,2, 彭 岚竹 2,2, 席 菁乐 1,*
PMCID: PMC10202792  PMID: 37202187

Abstract

目的

探讨肌球蛋白重链9(MYH9)对非小细胞肺癌(NSCLC)细胞增殖、凋亡和对顺铂敏感性的影响并探讨其作用机制。

方法

常规培养6株NSCLC细胞系(A549、H1299、H1975、SPCA1、H322、H460)和1株正常支气管上皮细胞系(16HBE)采用Western blot法检测MYH9的表达情况;采用免疫组织化学染色法检测NSCLC患者组织MYH9的表达,实验分为癌组织(49例)和癌旁组织(43例);常规培养H1299和H1975细胞系,使用CRISPR/Cas9技术构建MYH9敲除的NSCLC细胞系,实验分为sgNC组,sgMYH9组,采用细胞计数试剂盒-8(CCK-8)、克隆形成实验检测敲除MYH9对肺癌细胞增殖的影响;Western blot实验、细胞凋亡流式细胞术检测MYH9对细胞凋亡的影响;通过IC50法检测敲除MYH9的肺癌细胞对顺铂敏感性的影响,实验分为sgNC组、sgMYH9组;培育小鼠肿瘤异种移植物模型验证MYH9体内生物学功能,实验分为sgNC组、sgMYH9组。

结果

与癌旁组织相比,MYH9在癌组织中上调(P < 0.001),高表达患者具有更短的生存(P=0.023)。敲除MYH9抑制细胞增殖(P < 0.001),促进细胞凋亡(P < 0.05),增加对顺铂的化学敏感性。此外,MYH9的耗竭显著抑制了体内肿瘤生长(P < 0.001)。分子机制表明,敲除MYH9使AKT/c-Myc轴失活(P < 0.05),从而抑制BCL-2样蛋白1的表达(P < 0.05),促进BH3相互作用结构域死亡激动蛋白和凋亡调节剂BAX的表达(P < 0.05),并激活胱天蛋白酶3和胱天蛋白酶9(P < 0.05)。

结论

MYH9通过AKT/c-Myc轴调节细胞凋亡,从而促进NSCLC进展。

Keywords: MYH9, CRISPR-Cas9, 非小细胞肺癌, 细胞凋亡, 顺铂耐药, Akt/c-Myc信号通路


肺癌是全球发病率第2,死亡率排名第1的癌症[1, 2]。非小细胞肺癌(NSCLC)是肺癌中最常见的类型,占全部肺癌的80%~85%[3]。患者生存率与肿瘤分期相关,晚期患者5年生存率不足10%[4]。目前,NSCLC的药物治疗主要包括化疗、分子靶向治疗和免疫治疗,采用药物治疗可以提高患者生存期,降低复发风险。但是耐药的出现严重限制了治疗效果,导致肿瘤复发及远处转移[5]。多项研究显示肿瘤对细胞凋亡的抵抗在耐药过程中发挥关键作用[6-9]。因此,削弱肿瘤对凋亡的抵抗对逆转耐药提高化疗的成功率具有重要意义。

肌凝蛋白,也被称为肌球蛋白,是真核细胞中依赖ATP的分子马达家族。它们在细胞运动和细胞内物质运输中发挥着重要作用,包括细胞分裂、细胞迁移、极化和粘附、细胞形状维持和信号转导[10-12]。MYH家族是肌球蛋白重链的一个组成部分,MYH家族蛋白与肿瘤的发展有着密不可分的关系。如,肌球蛋白重链10可抑制肝癌和鼻咽癌的转移[13, 14],肌球蛋白重链11能抑制胃癌的进展[15],肌球蛋白重链14抑制胰腺癌的转移[16]。如MYH9在许多预后不良的癌症中都是上调的,在胃癌细胞中,核MYH9通过DNA结合结构域与β-连环蛋白(CTNNB1)启动子结合,促进CTNNB1转录,上调CTNNB1表达促进胃癌转移[17]。MYH9通过其头部结构域与相互作用蛋白自噬相关基因9B结合,减少了复合物与E3连接酶STIP1同源性和含U框蛋白质1结合,促进了复合物的稳定性防止被泛素化降解。在MYH9的帮助下自噬相关基因9B被运送到细胞边缘促进结直肠癌进展[18]。另外MYH9可以调节MAPK/AKT信号显著促进肿瘤发生,并与结直肠癌的不良预后明显相关[19]。MYH9与糖原合酶激酶3β(GSK3β)相互作用,通过泛素介导的GSK3β降解,使CTNNB1失调诱导下游肿瘤干性表型、上皮-间充质转化和c-Jun信号传导(c-Jun),c-Jun转录刺激MYH9表达,形成MYH9/GSK3β/CTNNB1/c-Jun反馈回路,并促进肝癌的侵袭、转移和干性[20]。前人报道了MYH9在NSCLC组织中更恶性,是一个预后不良的指标[21];MYH9也可以通过调节mTOR信号通路来调节肺癌细胞的干细胞样特征,过表达MYH9增强了干细胞样特性,促进了其迁移和侵袭[22];在肺腺癌的免疫调节中,MYH9参与到了YY1-FGL1-MYH9轴中,通过调节趋化因子和细胞因子抑制肺腺癌的免疫应答[23]。MYH9在多种肿瘤中被报道过度表达,但其在NSCLC中的表达及对患者预后影响仍未有报道。有报道显示MYH9过表达可以恢复ENKUR对顺铂耐药的抑制作用[24],但MYH9参与顺铂耐药的机制仍不清楚。此外,以往对MYH9的研究集中于肿瘤干性、细胞增殖、侵袭、迁移,而MYH9对细胞凋亡的作用未有报道。

因此,本研究以NSCLC细胞为研究对象,使用CRISPR/Cas9技术敲除MYH9,探究MYH9对NSCLC细胞增殖、凋亡、耐药的影响,并探讨深层的信号通路调控机制,以期明确MYH9在NSCLC发生发展的作用。

1. 材料和方法

1.1. 材料

人肺癌组织和癌旁组织的组织芯片购自上海芯超生物技术公司,并经上海芯超生物技术公司研究伦理委员会批准(YB M-05-02)。16HBE、A549、H1299、H1975、SPC-A1、H322和H460细胞系均由南方医科大学中西医结合医院中心实验室保存。DMEM,RPMI 1640培养基购自VivaCell。胎牛血清购自Cegrogen。

1.2. 方法

1.2.1. 细胞培养

16HBE正常支气管上皮细胞系使用含10%胎牛血清的DMEM培养,A549、H1299、H1975、SPC-A1、H322和H460细胞系在含10%胎牛血清的RPMI 1640中培养,所有的细胞系置于37 ℃、5%的CO2培养箱中培养。

1.2.2. 使用CRISPR/Cas9

构建MYH9敲除细胞系MYH9基因敲除细胞系是由慢病毒介导的Cas9载体构建的。该载体名为lentiCRISPR v2,包含Cas9- Flag、sgRNA和嘌呤霉素抗性基因(艾基生物技术公司)。在病毒感染的实验中,将细胞以3×104/孔播种到24孔培养板中。病毒使用量以MOI为20计算。感染12 h后更换培养基,感染48h后使用4 μg/mL嘌呤霉素(MedChemExpress)对感染的细胞进行筛选。

sgRNA序列sgNC: GTATTACTGATATTGGTGGG;

sgMYH9-1: GCTCAAGGAGCGTTACTACTC;

sgMYH9-2: TCAAAGCCACTCTTGTCGGA.

1.2.3. RT-qPCR检测

总RNA由Solarbio的RNA提取试剂盒提取。使用HiScript II 1st Strand cDNA Synthesis Kit(Vazyme)将RNA逆转录为cDNA。使用ChamQ SYBR Color qPCR Master Mix(Vazyme),用Bio-Rad CFX96检测系统进行qPCR反应。通过比较2-ΔΔCt值来计算基因的倍数变化。以GAPDH为内参。

引物序列如下:

MYH9 Forward: 5'-AGTTTGTCTCGGAGCTGTGG-3';

MYH9 Reverse: 5'-GGTTCGTGTTCCTCAGCGTA-3';

GAPDH Forward: 5'-CAATGACCCCTTCATTGACC-3';

GAPDH Reverse: 5'-GACAAGCTTCCCGTTCTCAG-3'

1.2.4. Western blot实验

使用RIPA裂解细胞(RIPA含蛋白酶抑制剂和磷酸酶抑制剂,Beyotime)。蛋白质样品的浓度由BCA蛋白质测定法确定。将SDS-loading缓冲液加入蛋白样品中,混合物在95 ℃下变性5 min。通过SDS-PAGE电泳,分离变性的蛋白样品,并转移到PVDF膜上(Millipore)。用5%脱脂牛奶(普通蛋白检测)或5%BSA(磷酸化蛋白检测)封闭1 h。一抗在4 ℃下孵育过夜,二抗在室温下孵育1 h。用化学发光试剂(Millipore)激发信号,使用成像系统(Bio-Rad)检测。使用抗体如下: anti-MYH9, anti-Blc-2, anti-BAX, anti-Caspase9, anti-Caspase3, anti-BID, anti-Bcl-xl, anti-AKT, anti-p-AKT(ser473), anti-c-Jun, anti-c-Myc, anti-GAPDH购买于Proteintech。

1.2.5. CCK-8细胞活力实验

收集细胞并将其种植到96孔培养板中,4000/孔。在贴壁后的0、24、48、72、96 h检测细胞活力。将CCK-8试剂(Vazyme)加入到培养基中(10 μL/孔),37 ℃孵育1 h,用Thermo Fisher Multiskan SkyHigh测量吸光度A450。顺铂IC50的测定:使用培养基梯度稀释顺铂,细胞处理24 h和48 h后检测存活率,以未处理的细胞为100%。

1.2.6. 流式细胞术

收集细胞,在流式细胞仪检测前,使用Annexin V-FITC和碘化丙啶(PI)孵育30 min。同时配置Annexin V-FITC和PI的单一染料组以及阴性对照组进行流式细胞仪参数调整。凋亡细胞率由BD FACSCalibur流式细胞仪检测。

1.2.7. 克隆形成实验

收集细胞并将其培养到6孔培养板中,300个/孔。细胞在37 ℃、5%的二氧化碳环境中培养14 d。PBS冲洗细胞群落后用4%多聚甲醇固定,Giemsa染色。对染色结果进行拍照,并对有50个以上细胞的细胞群计数。

1.2.8. 肿瘤异种移植模型

年龄在3~4周的BALB/c-nu小鼠购自广州言诚生物技术有限公司。共5只都被安置在SPF环境中,提供无菌的水和食物。收集、清洗和计数细胞后,每只小鼠皮下注射5×106个细胞(H1975- sgNC和H1975-sgMYH9)。皮下注射21 d后,使用颈椎脱臼处死小鼠。收集皮下肿瘤组织,称重、固定、石蜡包埋和切片。本实验中所有的肿瘤直径都小于1.5 cm。(本实验伦理由南方医科大学中西医结合医院审批,伦理号:L2022-066)。

1.2.9. 免疫组化染色

组织切片经二甲苯和梯度浓度酒精脱蜡,随后在95 ℃下用EDTA缓冲液进行抗原修复30 min。在阻断内源性过氧化物酶后,清洗组织切片并在室温下用5%的山羊血清孵育30 min 4 ℃下分别用MYH9抗体(Proteintech,11128-1-AP,1∶300)、抗Bcl-2抗体(60178-1-Ig,1∶3000)或抗BAX抗体(50599-2-Ig,1∶2000)孵育过夜。清洗3次后,将组织切片与带有HRP结合的第二抗体在室温下孵育30 min,用DAB显影。细胞核用苏木素进行染色。最终得分(最高为12分)是面积得分乘以强度得分。强度得分:阴性(0分),弱阳性(1分),阳性(2分),强阳性(3分);面积分:0%~ 25%(1分),26%~50%(2分),51%~75%(3分),76%~ 100%(4分)。最终得分被定义为低表达(< 6分)和高表达(≥6分)。

1.3. 统计学分析

本研究中使用GraphPad Prism 9和Adobe Photoshop进行图像编辑。采用SPSS 26.0进行统计分析。使用两独立样本T检验(遵循正态分布的数据)或Mann-Whitney U检验(非参数检验)比较两组之间的差异。单因素方差分析用于比较多组数据的差异。生存分析采用COX回归和Log-rank检验。P < 0.05时认为差异具有统计学意义。

2. 结果

2.1. MYH9在非小细胞肺癌中高表达,且与不良预后相关

基于Kmplotter数据库,生存曲线表明,高表达MYH9与预后不良有关(OS,HR=1.2,P=0.0083,图 1Aa;FP,HR=1.41,P < 0.001,图 1Ab)。进一步分析接受化疗患者的总生存时间,结果显示在接受化疗的患者中,MYH9高表达的患者在肺癌总生存时间中没有明显统计学差异(图 1Ba),分别对肺腺癌和鳞癌进行分析则发现,肺鳞癌(HR=4.32,P=0.037,图 1Bb)和肺腺癌(HR= 20.38,P < 0.001,图 1Bc)中高表达MYH9的总生存时间更短。免疫组织化学染色法检测MYH9在临床样本中的表达情况(49例癌症和43例癌旁组织),以及使用Western blot实验检测MYH9在6株NSCLC细胞系和1个正常支气管上皮细胞系中的表达情况。结果显示,与癌旁组织相比,MYH9在癌组织中上调(P < 0.001,图 1C~D)。细胞系中也显示类似的结果,除H460细胞系外,MYH9在其他NSCLC细胞系中普遍高表达,在支气管上皮细胞中低表达(图 1E)。基于临床样本免疫组化染色的生存分析显示MYH9表达水平与患者生存之间的关系,与Kmplotter数据库一致,MYH9高表达与患者的不良预后相关(P=0.023,图 1F)。此外,单变量COX回归分析表明,N分期、临床分期及MYH9表达是NSCLC患者总生存的预后指标(N分期P=0.002,临床分期P=0.011,MYH9表达P=0.030,图 1G)。

图 1.

图 1

MYH9在非小细胞肺癌中高表达且与不良预后相关

MYH9 is highly expressed in non- small cell lung cancer and is associated with poor prognosis of the patients. A: Kaplan-Meier analysis of MYH9 expression and overall survival (OS; a) and first progression (FP; b) of the patients. B: Kaplan-Meier analysis of relationship between MYH9 expression and OS in patients receiving chemotherapy for all types of lung cancer (a), lung squamous cell carcinomas (b), and lung adenocarcinoma (c). C: Immunohistochemistry (ICH) for detecting MYH9 expression in a tissue microarray containing 49 lung cancer and 43 adjacent tissues (scale bar: 100 μm). D: Statistical analysis of tissue IHC scores on a 12-point scale (high expression: scores ≥6; low expression: scores < 6). E: Western blotting for detecting MYH9 expression in one normal bronchial epithelial cell line and 6 lung cancer cell lines with GAPDH as the loading control. F: Kaplan-Meier analysis of MYH9 expression and OS based on tissue microarray analysis. G: Forest plot of the relationship between OS and clinical characteristics. ***P < 0.001.

2.2. 使用CRISPR/Cas9技术构建MYH9敲除的NSCLC细胞系

通过CRISPR/Cas9技术,我们构建了MYH9基因敲除的NSCLC细胞系。瞬时转染包含sgRNA的质粒后,sgNC组的MYH9表达显著高于sgMYH9组(图 2A)。因此采用效率较高的sgMYH9-1构建了慢病毒介导的稳定MYH9基因敲除细胞系。qPCR(图 2B)和Western bolt实验(图 2CD)表明敲除的MYH9肺癌细胞系构建成功。

图 2.

图 2

MYH9敲除效率的验证

Verification of MYH9 knockout efficiency. A: Western blot analysis of the efficiency of sgMYH9 transfection compared with the control group. Lentiviral vector was constructed using sgMYH9-1 sequence due to its better knockout efficiency. B: qPCR analysis of the efficiency of lentivirus- mediated MYH9 knockout in H1299 and H1975 NSCLC cells. C: Western blot analysis of the efficiency of lentivirus-mediated MYH9 knockout in H1299 and H1975 cells. Cas9 was tagged by Flag and tested by anti-flag antibody to show the success of virus infection. D: Gray value statistics of the protein blots normalized to the control group. ***P < 0.001.

2.3. 敲除MYH9促进细胞凋亡并增加顺铂的化疗敏感性

CCK-8实验显示,与sgNC相比,sgMYH9细胞增殖能力明显下降(H1299 P < 0.001,H1975 P < 0.001,图 3A)。流式细胞仪分析发现,与sgNC细胞相比,sgMYH9细胞的凋亡率显著增加(H1299 P=0.019,H1975 P < 0.001,图 3BC)。克隆形成实验显示,与sgNC细胞相比,sgMYH9细胞形成了更少的克隆数(H1299 P=0.007, H1975 P=0.01,图 3DE)。检测两组细胞顺铂的IC50显示,H1299细胞中sgNC组24 h,48 h的IC50分别为11.85 μmol/Lol/L和4.54 μmol/L,而sgMYH9组24 h,48 h的IC50分别为10.76 μmol/L和2.37 μmol/L;H1975细胞中sgNC组24 h,48 h的IC50分别为12.60 μmol/L和4.53 μmol/L,而sgMYH9组24 h,48 h的IC50分别为11.13 μmol/L和2.96 μmol/L(图 3F)。

图 3.

图 3

敲除MYH9促进非小细胞肺癌凋亡并且增加了顺铂的化疗敏感性

MYH9 knockout promotes NSCLC cell apoptosis and increases their sensitivity to cisplatin. A: CCK-8 assay of cell proliferation. B, C: Flow cytometry for analysis cell apoptosis. D, E: Colony formation assay for assessing cell apoptosis and proliferation. F: CCK-8 assay for assessing cisplatin sensitivity of the cells. Two NSCLC cell lines were treated with gradient cisplatin (0.5, 1, 2, 4, 8, 16, and 32 μmol/L) for 48 or 72 h. *P < 0.05, **P < 0.01, ***P < 0.001.

2.4. 敲除MYH9抑制非小细胞肺癌细胞的体内增殖

通过在小鼠背部两侧皮下注射构建体内移植瘤模型(左侧:H1975-sgNC,右侧:H1975-sgMYH9,图 4A)。21 d后,小鼠被处死,收集皮下肿瘤组织(图 4B),HE染色明确皮下移植瘤性质后(图 4C),对移植瘤重量统计分析。经统计,H1975-sgMYH9形成的移植瘤(0.18±0.045 g)较H1975-sgNC小(0.68±0.148 g,P < 0.001,图 4D)。

图 4.

图 4

MYH9敲除抑制非小细胞肺癌的体内增殖

MYH9 knockout inhibits NSCLC cell growth in nude mice. A: Nude mice bearing tumor xenografts. H1975-sgNC cells were subcutaneously injected on the left and H1975-sgMYH9 cells on the right on the back of mice. B: Dissected xenografts when the tumors were about 1 cm in diameter. C: HE staining of the xenografts (scale bar: 100 μm). D: Statistical analysis of tumor weight. ***P < 0.001.

2.5. MYH9激活AKT/c-Myc信号抵抗细胞凋亡

Western blot检测显示,sgMYH9上调BID(H1299,P=0.009;H1975,P=0.022)和BAX(H1299,P=0.026;H1975,P=0.023)的表达,抑制Bcl-xl(H1299,P < 0.001;H1975,P=0.001)表达,同时促进Pro-Caspase3,9转化为Cleaved-Caspase3, 9(H1299,Cleaved- Caspase3,P= 0.035,Cleaved-Caspase9,P=0.017;H1975,CleavedCaspase3,P=0.031;Cleaved-Caspase9,P=0.006,图 5AB)。进一步的信号通路Western blot检测显示,sgMYH9细胞AKT磷酸化水平降低(H1299,P < 0.001;H1975,P < 0.001),c-Myc表达降低(H1299,P=0.011;H1975,P < 0.001,图 5CD)。

图 5.

图 5

MYH9通过ATK/c-Myc信号通路调节凋亡

MYH9 regulates apoptosis through the AKT/c-Myc signaling pathway. A, B: Western blotting for caspase3, caspase9, BID, BAX, and Bcl-XL in H1299 and H1975 cells with MYH9 knockout. C, D: Western blotting for detecting changes in protein expressions in the AKT signaling pathway H1299 and H1975 cells H1299 and H1975 cells with MYH9 knockout. *P < 0.05, **P < 0.01, ***P < 0.001.

2.6. 皮下移植瘤验证MYH9在体内的作用机制

结果显示H1975-sgMYH9形成的皮下移植瘤相较于H1975-sgNC形成的皮下移植瘤Bcl2表达降低,BAX表达升高(图 6AB);同时AKT磷酸化水平下降,c-Myc表达减少(图 6CD)。

图 6.

图 6

体内移植瘤免疫组化染色

Immunohistochemical staining of the tumor xenograft in nude mice. A, B: Apoptosis-related proteins Bcl-2 and BAX detected by immunohistochemical staining. C, D: p-AKT and c-Myc expression detected by immunohistochemical staining.

3. 讨论

肺癌是癌症相关死亡的主要原因,每年有1800万人被诊断患有肺癌,1600万人死于肺癌[4]。靶向药物治疗和免疫治疗有利于延长患者的生存期。然而,在使用靶向药物一段时间后,往往会出现耐药性,导致肿瘤的进展。由于肿瘤发生基因突变和耐药是难以避免的,所以寻找新的治疗靶点仍是肺癌研究急需解决的问题[5]。此外,化疗药物是肺癌最重要的治疗手段之一,特别是对鳞状细胞癌和小细胞肺癌。铂类是化疗方案的基石[25],探索提高铂类的化疗敏感性或延缓耐药性的方法至关重要。

MYH9是肌球蛋白重链的一个组成部分。肌球蛋白是真核细胞中依赖ATP的分子马达,在细胞运动和细胞内物质运输中起着重要作用[26]。据报道,肌球蛋白重链家族参与了多种肿瘤的发展,如,肌球蛋白重链10可抑制肝癌和鼻咽癌的转移[13, 14],肌球蛋白重链11能抑制胃癌的进展[15],肌球蛋白重链14抑制胰腺癌的转移[16]。MYH9已被报道在各种肿瘤中发挥作用。但是其功能似乎是一把双刃剑,它在黑色素瘤、头颈部鳞状细胞癌中被报道为抑癌基因[27, 28],在胃癌、食道癌和肝癌中作为致癌基因[17-20, 29]。然而,MYH9在NSCLC中的作用还没有得到深入的研究,我们旨在揭示MYH9在NSCLC中的潜在功能。

根据KMplotter数据库[30],MYH9高表达患者的总生存期较短。此外,在接受化疗的患者中,MYH9高表达的肺鳞癌和腺癌患者的总生存期也明显短于MYH9低表达患者。实验证明通过检测MYH9在临床样本和细胞系中的表达,MYH9在NSCLC临床样本和细胞系中均较正常组表达升高。表明MYH9的高表达与预后不良相关。上述结果与MYH9在肝癌、宫颈癌中的研究结果一致,即MYH9是一个潜在的癌基因[22, 31, 32]

本研究还揭示了MYH9对细胞凋亡和顺铂敏感性的影响。体内外实验显示,敲除MYH9抑制细胞增殖,促进细胞凋亡,并增加了肿瘤细胞对顺铂的化学敏感性。细胞凋亡的改变影响着肿瘤的发展,并在化疗抗性中起着重要作用。目前临床上使用的大多数药物通过激活肿瘤细胞凋亡信号通路诱导肿瘤细胞死亡。多项研究表明,细胞的凋亡抗性在肿瘤耐药过程中起着重要作用[7, 33-38]。如选择性靶向EGFR、Her2、c-MET、NTRK、BRAF、FLT3和BCR可诱导细胞凋亡,进而提高化疗的敏感性[7]

Bcl-2家族蛋白在调控线粒体介导的细胞凋亡途径中发挥着重要作用[39]。BAX、结构域死亡激动蛋白(BID)和Bcl-xl都是Bcl-2家族的蛋白。BAX和BID通过与Bcl-2形成异二聚体来抑制Bcl-2的抗凋亡功能[40, 41]。Bcl-xl具有多重功能[42],它能与Bcl-2家族中促进细胞凋亡的蛋白形成异二聚体,从而提高Bcl-2的抗凋亡作用;此外,Bcl-xl能调节电压依赖性阴离子通道的开放,进一步减少线粒体中细胞色素C和活性氧的释放[43]。此外,在凋亡过程中,caspase家族也是关键的调节因子[44]。细胞在正常状态下,caspase3, 9是不活跃的,以Pro-caspase3, 9的形式存在。接收到凋亡信号后,cas-pase3, 9被裂解为活化状态的cleaved- caspase3, 9,并进一步诱导细胞凋亡。本实验研究发现,MYH9的敲除促进了BID和BAX的表达,促进了从Pro-caspase3, 9到cleaved-caspase3, 9的活化,并抑制了Bcl-xl的表达。

以往的研究表明,AKT信号通路与癌症有关联[45-47]。致癌转录因子c-Myc是一个著名的人类原癌基因,负责各种癌症表型,如增殖、干性、凋亡和代谢[48]。c-Myc是AKT信号通路的下游。据报道,它被MYH9介导的去泛素化所稳定[24]。为进一步了解MYH9抑制细胞凋亡的分子机制,我们验证MYH9与AKT通路的关系:发现MYH9的敲除抑制了AKT的激活并下调了c-Myc的表达。最后,在动物体内实验中,使用免疫组化验证了MYH9对细胞凋亡及AKT/c-Myc信号通路的影响,进一步证明了MYH9通过激活AKT/c-Myc途径促进NSCLC的凋亡抵抗。

综上所述,本研究表明,MYH9在NSCLC中过度表达,并与不良预后有关。敲除MYH9促进NSCLC的凋亡并增加顺铂的化学敏感性。机制分析表明,MYH9通过激活AKT/c- Myc信号通路,调节Bcl-2家族和caspase家族蛋白的表达和激活。这些结果表明,MYH9是治疗NSCLC的一个潜在靶点。

Biographies

刘芳,硕士,E-mail: 497184203@qq.com

彭岚竹,硕士,E-mail: lanzhu_98@126.com

Funding Statement

广东省自然科学基金(2014A030310450)

Contributor Information

刘 芳 (Fang LIU), Email: 497184203@qq.com.

彭 岚竹 (Lanzhu PENG), Email: lanzhu_98@126.com.

席 菁乐 (Jingle XI), Email: 13560168525@163.com.

References

  • 1.Deng QD, Lei XP, Zhong YH, et al. Triptolide suppresses the growth and metastasis of non-small cell lung cancer by inhibiting β-catenin-mediated epithelial-mesenchymal transition. Acta Pharmacol Sin. 2021;42(9):1486–97. doi: 10.1038/s41401-021-00657-w. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CAA Cancer J Clin. 2021;71(3):209–49. doi: 10.3322/caac.21660. [DOI] [PubMed] [Google Scholar]
  • 3.Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553(7689):446–54. doi: 10.1038/nature25183. [DOI] [PubMed] [Google Scholar]
  • 4.Li MY, Liu LZ, Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer. 2021;20(1):22. doi: 10.1186/s12943-021-01312-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Duma N, Santana-Davila R, Molina JR. Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94(8):1623–40. doi: 10.1016/j.mayocp.2019.01.013. [DOI] [PubMed] [Google Scholar]
  • 6.Wang JJ, Liu RK, Mo HY, et al. Deubiquitinase PSMD7 promotes the proliferation, invasion, and cisplatin resistance of gastric cancer cells by stabilizing RAD23B. Int J Biol Sci. 2021;17(13):3331–42. doi: 10.7150/ijbs.61128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417. doi: 10.1038/s41571-020-0341-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Zhang S, Cao MR, Yan S, et al. TRIM44 promotes BRCA1 functions in HR repair to induce Cisplatin Chemoresistance in Lung Adenocarcinoma by Deubiquitinating FLNA. Int J Biol Sci. 2022;18(7):2962–79. doi: 10.7150/ijbs.71283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Diepstraten ST, Anderson MA, Czabotar PE, et al. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2022;22(1):45–64. doi: 10.1038/s41568-021-00407-4. [DOI] [PubMed] [Google Scholar]
  • 10.Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proc Natl Acad Sci USA. 2006;103(10):3681–6. doi: 10.1073/pnas.0506307103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Odronitz F, Kollmar M. Drawing the tree of eukaryotic life based on the analysis of 2, 269 manually annotated myosins from 328 species. Genome Biol. 2007;8(9):R196. doi: 10.1186/gb-2007-8-9-r196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Sebé- Pedrós A, Grau-Bové X, Richards TA, et al. Evolution and classification of myosins, a paneukaryotic whole-genome approach. Genome Biol Evol. 2014;6(2):290–305. doi: 10.1093/gbe/evu013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jin Q, Cheng M, Xia X, et al. Down-regulation of MYH10 driven by chromosome 17p13.1 deletion promotes hepatocellular carcinoma metastasis through activation of the EGFR pathway. J Cell Mol Med. 2021;25(24):11142–56. doi: 10.1111/jcmm.17036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Wang Y, Yang Q, Cheng YL, et al. Myosin heavy chain 10 (MYH10) gene silencing reduces cell migration and invasion in the glioma cell lines U251, T98G, and SHG44 by inhibiting the Wnt/β-catenin pathway. Med Sci Monit. 2018;24:9110–9. doi: 10.12659/MSM.911523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wang JH, Xu P, Hao YP, et al. Interaction between DNMT3B and MYH11 via hypermethylation regulates gastric cancer progression. BMC Cancer. 2021;21(1):914. doi: 10.1186/s12885-021-08653-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Surcel A, Schiffhauer ES, Thomas DG, et al. Targeting mechano-responsive proteins in pancreatic cancer: 4-hydroxyacetophenone blocks dissemination and invasion by activating MYH14. Cancer Res. 2019;79(18):4665–78. doi: 10.1158/0008-5472.CAN-18-3131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ye GT, Yang QB, Lei XT, et al. Nuclear MYH9-induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics. 2020;10(17):7545–60. doi: 10.7150/thno.46001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Zhong Y, Long T, Gu CS, et al. MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differ. 2021;28(12):3251–69. doi: 10.1038/s41418-021-00813-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wang B, Qi XL, Liu J, et al. MYH9 promotes growth and metastasis via activation of MAPK/AKT signaling in colorectal cancer. J Cancer. 2019;10(4):874–84. doi: 10.7150/jca.27635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lin X, Li AM, Li YH, et al. Silencing MYH9 blocks HBx- induced GSK3β ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. SignalSig Transduct Target Ther. 2020;5(1):13. doi: 10.1038/s41392-020-0111-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Katono K, Sato Y, Jiang SX, et al. Prognostic significance of MYH9 expression in resected non-small cell lung cancer. PLoS One. 2015;10(3):e0121460. doi: 10.1371/journal.pone.0121460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Chen M, Sun LX, Yu L, et al. MYH9 is crucial for stem cell- like properties in non-small cell lung cancer by activating mTOR signaling. Cell Death Discov. 2021;7(1):282. doi: 10.1038/s41420-021-00681-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Tang XY, Xiong YL, Zhao YB, et al. Dual immunological and proliferative regulation of immune checkpoint FGL1 in lung adenocarcinoma: the pivotal role of the YY1-FGL1-MYH9 axis. Front Immunol. 2022;13:1014053. doi: 10.3389/fimmu.2022.1014053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Liu JH, Yang HL, Deng ST, et al. The small molecule chemical compound cinobufotalin attenuates resistance to DDP by inducing ENKUR expression to suppress MYH9-mediated c-Myc deubiquitination in lung adenocarcinoma. Acta Pharmacol Sin. 2022;43(10):2687–95. doi: 10.1038/s41401-022-00890-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2022;20(5):497–530. doi: 10.6004/jnccn.2022.0025. [DOI] [PubMed] [Google Scholar]
  • 26.Trivedi DV, Nag S, Spudich A, et al. The myosin family of mechanoenzymes: from mechanisms to therapeutic approaches. Annu Rev Biochem. 2020;89:667–93. doi: 10.1146/annurev-biochem-011520-105234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Singh SK, Sinha S, Padhan J, et al. MYH9 suppresses melanoma tumorigenesis, metastasis and regulates tumor microenvironment. Med Oncol. 2020;37(10):88. doi: 10.1007/s12032-020-01413-6. [DOI] [PubMed] [Google Scholar]
  • 28.Schramek D, Sendoel A, Segal JP, et al. Direct in vivo RNAi screen unveils myosin Ⅱa as a tumor suppressor of squamous cell carcinomas. Science. 2014;343(6168):309–13. doi: 10.1126/science.1248627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Li YH, Liu X, Lin X, et al. Chemical compound cinobufotalin potently induces FOXO1-stimulated cisplatin sensitivity by antagonizing its binding partner MYH9. Signal Transduct Target Ther. 2019;4:48. doi: 10.1038/s41392-019-0084-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Lánczky A, Győrffy B. Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. J Med Internet Res. 2021;23(7):e27633. doi: 10.2196/27633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Liu LY, Yi JJ, Deng XJ, et al. MYH9 overexpression correlates with clinicopathological parameters and poor prognosis of epithelial ovarian cancer. Oncol Lett. 2019;18(2):1049–56. doi: 10.3892/ol.2019.10406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.You GR, Chang JT, Li YL, et al. MYH9 facilitates cell invasion and radioresistance in head and neck cancer via modulation of cellular ROS levels by activating the MAPK-Nrf2-GCLC pathway. Cells. 2022;11(18):2855. doi: 10.3390/cells11182855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417. doi: 10.1038/s41571-020-0341-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Pham LV, Huang SJ, Zhang H, et al. Strategic therapeutic targeting to overcome venetoclax resistance in aggressive B-cell lymphomas. Clin Cancer Res. 2018;24(16):3967–80. doi: 10.1158/1078-0432.CCR-17-3004. [DOI] [PubMed] [Google Scholar]
  • 35.Dai Y, Grant S. BCL2L11/Bim as a dual-agent regulating autophagy and apoptosis in drug resistance. Autophagy. 2015;11(2):416–8. doi: 10.1080/15548627.2014.998892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Lee JK, Kang S, Wang XD, et al. HAP1 loss confers l-asparaginase resistance in ALL by downregulating the calpain-1-Bid-caspase-3/12 pathway. Blood. 2019;133(20):2222–32. doi: 10.1182/blood-2018-12-890236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79. doi: 10.1038/sj.onc.1206933. [DOI] [PubMed] [Google Scholar]
  • 38.Pistritto G, Trisciuoglio D, Ceci C, et al. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8(4):603–19. doi: 10.18632/aging.100934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63. doi: 10.1038/nrm3722. [DOI] [PubMed] [Google Scholar]
  • 40.Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20(3):175–93. doi: 10.1038/s41580-018-0089-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Spitz AZ, Gavathiotis E. Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci. 2022;43(3):206–20. doi: 10.1016/j.tips.2021.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Li MX, Wang D, He JH, et al. Bcl-XL: a multifunctional antiapoptotic protein. Pharmacol Res. 2020;151:104547. doi: 10.1016/j.phrs.2019.104547. [DOI] [PubMed] [Google Scholar]
  • 43.Huang HY, Hu XX, Eno CO, et al. An interaction between bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitocho-ndrial Ca2+ uptake. J Biol Chem. 2013;288(27):19870–81. doi: 10.1074/jbc.M112.448290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Shi YG. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9(3):459–70. doi: 10.1016/S1097-2765(02)00482-3. [DOI] [PubMed] [Google Scholar]
  • 45.Que TS, Zheng HJ, Zeng Y, et al. HMGA1 stimulates MYH9-dependent ubiquitination of GSK-3β via PI3K/Akt/c-Jun signaling to promote malignant progression and chemoresistance in gliomas. Cell Death Dis. 2021;12(12):1147. doi: 10.1038/s41419-021-04440-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Liu YY, Jiang QP, Liu X, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain ⅡA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386–404. doi: 10.1016/j.ebiom.2019.08.040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Zhai KF, Tang YM, Zhang YY, et al. NMMHC ⅡA inhibition impedes tissue factor expression and venous thrombosis via Akt/GSK3β-NF-κB signalling pathways in the endothelium. Thromb Haemost. 2015;114(1):173–85. doi: 10.1160/TH14-10-0880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. doi: 10.1016/j.cell.2012.03.003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Southern Medical University are provided here courtesy of Editorial Department of Journal of Southern Medical University

RESOURCES