Skip to main content
Europace logoLink to Europace
. 2023 May 24;25(Suppl 1):euad122.257. doi: 10.1093/europace/euad122.257

A novel workflow for advanced mapping of repolarization dispersion from endocardial unipolar electrograms in patients with coved-type brugada syndrome

S Latrofa 1, S Garibaldi 2, S Hartwig 3, L Panchetti 4, M S Morelli 5, N Martini 6, N Zaurino 7, G Mansi 8, G Mirizzi 9, U Startari 10, C Passino 11, M Emdin 12, M Piacenti 13, A Giannoni 14, A Rossi 15
PMCID: PMC10207295

Abstract

Funding Acknowledgements

Type of funding sources: None.

Background

Accentuation of the action potential notch in the epicardium causes the prolongation of the epicardial action potentials in the right ventricular outflow tract (RVOT) and is the basis for arrhythmogenesis in patients affected by Brugada syndrome (BrS). Activation-recovery interval (ARI) approximates the action potential duration and may be used to study repolarization dispersion in BrS.

Purpose

Our aim was to investigate repolarization dispersion within the RVOT in spontaneous coved-type ECG BrS patients and in controls, evaluating also the relation between repolarization dispersion and conduction abnormalities to better define the electro-anatomical substrate of the disease.

Methods

BrS probands (n=13) and control subjects (n=4) underwent endocardial mapping of RV with the CARTO 3 system. BrS patients were also studied with programmed ventricular stimulation (PVS). Data was exported from the CARTO system and converted into MatLab format using OpenEP. A specific region of interest (ROI) including the sub-pulmonary RVOT and entire RV free wall was then selected using Paraview. With an automated algorithm, we measured ARI and ARIc (corrected using the "Bazett formula") for each point of the ROI, which were then interpolated to obtain ARI maps. We also acquired right ventricular activation time (RVAT) and maps for the assessment of slow conduction zones. By dividing RVAT color scale in 5 ms steps (isoSteps), isochronal activation areas were identified in the ROI.

Results

Out of the 13 BrS subjects, 4 had VT or VF inducible during PVS (PVS+) while 9 did not (PVS-). One patient had appropriate ICD shocks during follow-up. BrS patients had higher mean ARI and ARIc compared to controls (288.5±22.2 vs 251.5±8.4 ms, p<0.001; 312.0±30.4 vs 281.8±10.3 ms, p=0.023). ARI was found to be higher in PVS+ than in PVS- patients (294.8±27.1 vs 285.8±20.1 ms, p=0.5), as well as ARIc (327.7±49.9 vs 304.6±16.4 ms, p=0.49) although these differences were not significant. BrS patients showed a longer RVAT (106.0±21.4 vs 74.5±5.5 ms, p=0.003), and increased zones of crowding, as expressed by isochronal steps (13.85±2.94 vs 9.25±1.26, p=0.01). Notably, a strong correlation was found between ARIc and RVAT (Pearson R coefficient = 0.83, p<0.05), independently from the results of PVS (PVS+ R=0.99, p=0.01; PVS- R=0.83, p=0.06).

Conclusions

We introduced a novel workflow for the electrical substrate characterisation of subjects with BrS phenotype. Our preliminary data show the presence of repolarization dispersion along with conduction slowing in the RVOT of BrS patients compared to controls. In our population, repolarization dispersion and impairment of RVOT conduction were strongly related especially in inducible BrS patients.

graphic file with name 30308020221126203739_1.jpg

graphic file with name 30308020221126203739_2.jpg


Articles from Europace are provided here courtesy of Oxford University Press

RESOURCES