Abstract
AIM: To explore the role of phenotypic changes as possible limiting factors in the immunological detection of minimal residual disease in patients with acute myeloid leukaemia (AML). METHODS: 20 relapses were evaluated, with special attention to changes in the criteria used for the definition of a phenotype as "aberrant". In all cases the same monoclonal antibody and fluorochrome were used at diagnosis and in relapse. RESULTS: Six out of the 16 patients showed aberrant phenotypes at diagnosis. At relapse, no changes in the aberrant phenotypes were detected in most of the patients; nevertheless, in two of the four patients with asynchronous antigen expression this aberration disappeared at relapse. At diagnosis in both cases there were already small blast cell subpopulations showing the phenotype of leukaemic cells at relapse. Ten out of the 16 cases analysed showed significant changes in the expression of at least one of the markers analysed. CONCLUSIONS: At relapse in AML the "leukaemic phenotypes" usually remained unaltered, while other phenotypic features--not relevant for distinguishing leukaemic blast cells among normal progenitors--changed frequently; however, they were not a major limitation in the immunological detection of minimal residual disease.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adriaansen H. J., Jacobs B. C., Kappers-Klunne M. C., Hählen K., Hooijkaas H., van Dongen J. J. Detection of residual disease in AML patients by use of double immunological marker analysis for terminal deoxynucleotidyl transferase and myeloid markers. Leukemia. 1993 Mar;7(3):472–481. [PubMed] [Google Scholar]
- Bennett J. M., Catovsky D., Daniel M. T., Flandrin G., Galton D. A., Gralnick H. R., Sultan C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976 Aug;33(4):451–458. doi: 10.1111/j.1365-2141.1976.tb03563.x. [DOI] [PubMed] [Google Scholar]
- Borella L., Casper J. T., Lauer S. J. Shifts in expression of cell membrane phenotypes in childhood lymphoid malignancies at relapse. Blood. 1979 Jul;54(1):64–71. [PubMed] [Google Scholar]
- Campana D., Coustan-Smith E., Janossy G. The immunologic detection of minimal residual disease in acute leukemia. Blood. 1990 Jul 1;76(1):163–171. [PubMed] [Google Scholar]
- Cheson B. D., Cassileth P. A., Head D. R., Schiffer C. A., Bennett J. M., Bloomfield C. D., Brunning R., Gale R. P., Grever M. R., Keating M. J. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol. 1990 May;8(5):813–819. doi: 10.1200/JCO.1990.8.5.813. [DOI] [PubMed] [Google Scholar]
- Coustan-Smith E., Behm F. G., Hurwitz C. A., Rivera G. K., Campana D. N-CAM (CD56) expression by CD34+ malignant myeloblasts has implications for minimal residual disease detection in acute myeloid leukemia. Leukemia. 1993 Jun;7(6):853–858. [PubMed] [Google Scholar]
- Drach J., Drach D., Glassl H., Gattringer C., Huber H. Flow cytometric determination of atypical antigen expression in acute leukemia for the study of minimal residual disease. Cytometry. 1992;13(8):893–901. doi: 10.1002/cyto.990130813. [DOI] [PubMed] [Google Scholar]
- Dvilansky A., Yermiahu T., Hatskelzon L. Familial thrombotic thrombocytopenic purpura in a Bedouin family. Sangre (Barc) 1992 Apr;37(2):133–135. [PubMed] [Google Scholar]
- Ellison R. R., Holland J. F., Weil M., Jacquillat C., Boiron M., Bernard J., Sawitsky A., Rosner F., Gussoff B., Silver R. T. Arabinosyl cytosine: a useful agent in the treatment of acute leukemia in adults. Blood. 1968 Oct;32(4):507–523. [PubMed] [Google Scholar]
- Greaves M. F. "Target" cells, cellular phenotypes, and lineage fidelity in human leukaemia. J Cell Physiol Suppl. 1982;1:113–125. doi: 10.1002/jcp.1041130418. [DOI] [PubMed] [Google Scholar]
- Gómez E., San Miguel J. F., González M., Orfao A., Cañizo M. C., Ciudad J., López Borrasca A. Cambios fenotípicos de las leucemias agudas linfoblásticas en recaída y resistentes. Sangre (Barc) 1991 Jun;36(3):201–204. [PubMed] [Google Scholar]
- Pui C. H., Raimondi S. C., Behm F. G., Ochs J., Furman W. L., Bunin N. J., Ribeiro R. C., Tinsley P. A., Mirro J. Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia. Blood. 1986 Dec;68(6):1306–1310. [PubMed] [Google Scholar]
- Reichle A., Volkmann M., Pachmann K., Diddens H., Emmerich B., Rastetter J. Changes in clonal growth, immunophenotype, and morphology during a follow-up study of an acute lymphoblastic leukemia. Haematol Blood Transfus. 1990;33:159–165. doi: 10.1007/978-3-642-74643-7_31. [DOI] [PubMed] [Google Scholar]
- Ruiz-Argüelles G. J., Lobato-Mendizábal E., Marín-López A. The incidence of hybrid acute leukaemias. Leuk Res. 1988;12(9):707–709. doi: 10.1016/0145-2126(88)90002-1. [DOI] [PubMed] [Google Scholar]
- Stass S., Mirro J., Melvin S., Pui C. H., Murphy S. B., Williams D. Lineage switch in acute leukemia. Blood. 1984 Sep;64(3):701–706. [PubMed] [Google Scholar]
- Terstappen L. W., Mickaels R. A., Dost R., Loken M. R. Increased light scattering resolution facilitates multidimensional flow cytometric analysis. Cytometry. 1990;11(4):506–512. doi: 10.1002/cyto.990110409. [DOI] [PubMed] [Google Scholar]
- van Dongen J. J., Breit T. M., Adriaansen H. J., Beishuizen A., Hooijkaas H. Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia. 1992;6 (Suppl 1):47–59. [PubMed] [Google Scholar]