Skip to main content
PLOS Biology logoLink to PLOS Biology
. 2023 May 18;21(5):e3002127. doi: 10.1371/journal.pbio.3002127

A glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia in the legume Lotus japonicus

Simon Kelly 1,#, Simon B Hansen 1,#, Henriette Rübsam 1, Pia Saake 2, Emil B Pedersen 1, Kira Gysel 1, Eva Madland 1, Shunliang Wu 3, Stephan Wawra 2, Dugald Reid 1, John T Sullivan 4, Zuzana Blahovska 1, Maria Vinther 1, Artur Muszynski 5, Parastoo Azadi 5, Mikkel B Thygesen 3, Finn L Aachmann 6, Clive W Ronson 4, Alga Zuccaro 2, Kasper R Andersen 1, Simona Radutoiu 1, Jens Stougaard 1,*
Editor: Cara Helene Haney7
PMCID: PMC10231839  PMID: 37200394

Abstract

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined β-1,3/β-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


A newly identified EPR3-type LysM receptor kinase recognize fungal β-glucans and rhizobial exopolysaccharides and regulates infection by arbuscular mycorrhiza and rhizobia in the model legume Lotus japonicus.

Introduction

Plant symbiosis with arbuscular mycorrhizal (AM) fungi of the Glomeromycota is found in 80% to 90% of all land plants. Fossil records from early land plants and the presence of AM symbiosis in liverworts, hornworts, lycophytes, and ferns suggest that AM symbiosis may have evolved in the earliest land-colonising plants [1,2]. Conservation of symbiosis genes in algae further suggests that a common genetic programme governing AM symbiosis predated and has been maintained in land plants [3]. Mutant studies in legumes and non-legumes have identified part of this genetic program. The “common symbiosis pathway” shared with plant–rhizobial symbiosis is required for normal mycorrhizal invasion and root colonisation [4,5]. Prior to AM colonisation of roots, pre-symbiotic signalling establishes the communication process to distinguish AM fungi from pathogens and other soil fungi. Germination of AM spores is induced by strigolactones secreted by plant roots [6,7]. The exact nature of the reciprocal fungal signal(s) found in germinating spore extracts is less well defined. Both chitin from the fungal cell wall and lipochito-oligosaccharides (MYC-factors) have been implicated [8,9]. Recent results in Medicago truncatula (Medicago) nfp cerk1 double receptor mutants impaired in both lipochito-oligosaccharide and chitin perception show that a combination of fungal chitin and lipochito-oligosaccharides triggers the plant signal transduction through the common symbiosis pathway [10]. Other compounds may also contribute. In rice, a butanolide signal perceived by the D14L α/β-fold hydrolase receptor is essential for AM infection, but at this point, the origin of the butanolide signal is unknown [11].

Following activation of the plant cellular program(s) AM hyphae penetrate the root epidermal and outer cortical cells via a pre-penetration apparatus resulting from cellular rearrangements in a process involving symbiotic genes [12]. Arbuscules are formed by intracellular invasion of the inner cortical cells at a position where the plasma membrane invaginates and a subtending pre-penetration apparatus is established. Following entry at a single position, forming a trunk, the fungal hyphae branch out into a finely branched structure surrounded by a peri-arbuscular membrane derived from the plant plasma membrane. In the legume plants analysed so far, formation of these feeding and nutrient-exchange arbuscule structures occurs mainly in the inner cortical cells [13,14]. Mutant studies have shown that a CCaMK-CYCLOPS-DELLA complex together with the RAM1 transcription factor are required for arbuscule formation [1518]. However, the molecular mechanism controlling cell preference and the signal exchange that directs infecting AM towards the inner cortical cells forming intracellular arbuscules remain unidentified.

In Lotus, nitrogen-fixing symbiosis with Mesorhizobium loti (M. loti) involves a two-step recognition process for intracellular infection that operates both at the epidermis and in the cortical tissue. In this compatibility surveillance mechanism, bacterial exopolysaccharides (EPS) are perceived by the EPR3 exopolysaccharide receptor [19]. This perception is downstream of primary lipochito-oligosaccharide (Nod factor) signalling. M. loti exoU mutants that produce truncated forms of EPS are severely impaired in intracellular infection thread (IT) formation and consequently in the formation of nitrogen-fixing nodules [20]. Characterisation of Lotus mutants that restore formation of nitrogen-fixing nodules following inoculation with the exoU mutant and in vitro binding assays identified EPR3 as a receptor for EPS [19,21]. The structure of the EPR3 ectodomain was recently resolved, revealing EPR3 to be the founding representative of a unique class of plant RLKs with a distinctive modular ectodomain arrangement [22]. In vitro, the EPR3 ectodomain binds EPS of several rhizobial species, including micro-symbionts unable to nodulate Lotus, suggesting that the receptor may have a broader role in monitoring glycans from various root-associated microbes [22].

In this study, we report on the identification and characterisation of a novel glycan receptor kinase in Lotus that we have designated EPR3a. We have characterised the symbiotic phenotypes of epr3a, epr3, and epr3a epr3 mutants inoculated with AM, wild-type M. loti and M. loti exoU EPS mutants. Mutant phenotypes and biochemical characterisation suggest that the EPR3a and EPR3 receptors most likely signal independently with overlapping downstream pathways during rhizobial infection. Distinct differences in AM symbiosis were observed where expression of Epr3a and an associated mutant phenotype were found.

Results

Epr3a induction in arbusculated cells

The Epr3a gene was identified as (LotjaGi4g1v0157000) and located on chromosome 4 of a recently released de novo genome assembly covering 554 Mb of the Lotus japonicus Gifu accession [23]. Protein alignment against the previously identified members of the LysM-RLK family in Lotus revealed that EPR3a is most closely related to the EPS receptor EPR3 with an overall 64% amino acid identity (Fig 1A and S1 Fig) [19]. A tertiary structure similar to EPR3, with three putative ligand-binding modules in the extracellular domain, a transmembrane domain, and a kinase domain, is predicted for EPR3a. The recently resolved crystal structure of the EPR3 ectodomain revealed characteristic M1, M2, and M3 ligand-binding modules in the extracellular domain [22]. Prediction modelling of the EPR3a ectodomain using Alphafold2 [24,25], indicates that EPR3a and EPR3 ectodomains resemble each other (Fig 1B). Importantly, the distinctive ectodomain structure of a βαββ M1 conformation, a βαβ M2 conformation, and a classical LysM βααβ secondary structure of M3 is conserved between these two receptors (Fig 1B and S2 Fig). A wider search in the genome databases shows that this class of LysM-RLKs is widely conserved in the plant kingdom [22], with most plants able to form mycorrhizal and/or bacterial endosymbiosis encoding at least one EPR3-type receptor (S3 Fig) [26]. Interestingly, functional Epr3 and Epr3a genes were not found in genomes of Parasponia and Aeschynomene evenia plants [26,27], both of which have endosymbiosis with mycorrhiza and rhizobia.

Fig 1. L. japonicus LysM-RLK family and EPR3a ectodomain structure.

Fig 1

(A) Phylogenetic tree of the L. japonicus Gifu LysM-RLK protein family. EPR3-type (green), NFR1-type (blue), and NFR5-type (yellow) members are highlighted. Bootstrap values are indicated, and branches with values >80 are in bold. (B) EPR3a ectodomain Alphafold2 prediction model [24,25]. EPR3a structurally resembles the EPR3 ectodomain crystal structure with a Cα superposition RMSD of 0.4 Å [22]. Like EPR3, EPR3a contains two non-canonical M1 (βαββ) and M2 (βαβ) domains in addition to a conventional LysM3 (βααβ). See S1 Data and S1 Information for underlying data.

To explore and compare the functional role of EPR3a and EPR3, we investigated whether EPR3a could be involved in AM symbiosis. The expression of Epr3a and Epr3 was examined through qRT-PCR analysis in a time series following inoculation of Lotus roots with AM spores. Epr3a is induced only in roots during AM symbiosis, with an expression pattern mirroring that of the Pt4 phosphate transporter, an AM symbiotic marker associated with arbuscule formation [28] (Fig 2A and S4A Fig). In contrast, Epr3 expression did not differ between mock and AM treatments except for a minor transient induction at 2 dpi. To determine the cellular expression, promoter activity during AM symbiosis was examined in transgenic Lotus roots using pEpr3a:GUS or pEpr3:GUS reporter constructs. Complementary to the qRT-PCR result, Epr3a promoter activity was observed in response to AM spore inoculation, while no Epr3 promoter activity was detected (S4B Fig). In order to determine the spatiotemporal regulation of Epr3a promoter activity in AM-colonised roots, histochemical staining and microscopy were performed on transgenic roots expressing the promoter-GUS reporter constructs. Epr3a expression was found to be specifically induced in inner cortical cells associated with intracellular arbuscule formation (Fig 2B).

Fig 2. Epr3 and Epr3a expression in response to AM.

Fig 2

(A) qRT-PCR analysis of Pt4, Epr3a, and Epr3 expression in Gifu during the establishment of AM symbiosis. Results are from 3 biological replicates. (B) Transgenic roots expressing pEpr3a:GUS or pEpr3:GUS were inoculated with AM spores. Concomitant visualisation of GUS activity (blue staining) and fungal structures (green fluorescence) 6 wpi demonstrates Epr3a promoter activity is localised to cortical cells harbouring intracellular mycorrhiza. Examples of AM arbuscules (arb) and hyphae (hyp) are indicated; scale bars = 200 μM. See S2 Information for underlying data. AM, arbuscular mycorrhiza.

Mycorrhization phenotype of epr3a mutants

The Epr3a expression pattern suggested that EPR3a might be involved in arbuscule formation during AM symbiosis. To examine the potential functional roles of Epr3a, two independent LORE1 mutant alleles, epr3a-1 and epr3a-2, were isolated from the Lotus LORE1 mutant resource established in the L. japonicus Gifu accession [29] (S5 Fig and S1 Table). An epr3a epr3 double mutant was isolated from crosses of epr3-11 [19] and epr3a-2 mutants. After spore inoculation, epr3a single mutants and the epr3a epr3 double mutants showed a comparable significant reduction in arbuscule formation, together with an increase in the presence of AM vesicles (Fig 3). No difference in AM symbiosis phenotype was observed for the epr3 mutant compared to Gifu (Fig 3). Arbuscule structure in epr3a mutants appears indistinguishable from those in wild-type plants, suggesting a role for EPR3a in fungal entry into cortical cells rather than in arbuscule development.

Fig 3. Arbuscular mycorrhiza phenotyping of the indicated genotypes 6 wpi with AM.

Fig 3

The colonisation rates of (A) fungal infection, (B) arbuscule formation, and (C) vesicle occurrence were scored. Statistical comparisons between genotypes for each of the infection events are shown using ANOVA and Tukey post hoc testing with p values (<0.05), as indicated by different letters. See S1 Data for underlying data. AM, arbuscular mycorrhizal.

EPR3a binds branched glycans

Localisation of Epr3a expression in arbusculated cells and the reduced frequency of arbuscule development in epr3a-1 and epr3a-2 mutants suggest that EPR3a could be involved in communication, perceiving a secreted signal or a surface exposed molecular pattern. To examine the ability of EPR3a to perceive ligands the ectodomain of EPR3a was expressed in insect cells and purified (S6A Fig). Independent purifications of EPR3a ectodomain showing similar thermostability were used in biochemical assays (S6B Fig).

Fungal cell walls consist primarily of chitin polymers, β-1,3 glucan and β-1,6 branched β-1,3 glucan polymers. β-1,3 glucan was previously localised to the AM cell wall by immunogold labelling [30]. Here, we show the presence of β-1,6 glucan in the extracellular matrix (EPS) and cell wall of AM using the fluorescently labelled β-glucan-binding SiFGB1 lectin specific for β-1,6 glucan (Fig 4) [31]. Purified glucans from AM fungal cell walls or EPS are not available; therefore, the binding capacity of EPR3a ectodomains was tested in native affinity gel electrophoresis using laminarin, which contains a mix of β-1,6 branched β-1,3 glucans also found in fungal cell walls (see NMR characterisation below). Homogenised unbranched polymeric shrimp shell chitin was used as chitin polymer. A clear concentration-dependent retention of the EPR3a ectodomain was detected using affinity gel electrophoresis with laminarin from Eisenia bicyclis, while no retention was observed with laminarin from Laminaria digitata, scleroglucan, pustulan, or chitin (Fig 5A and S7A Fig). The opposite behaviour was found for the ectodomain of the Arabidopsis thaliana chitin receptor CERK1, which was retained by chitin but not by laminarin. Migration of the EPR3 ectodomain was not influenced by β-glucan or chitin (Fig 5A and S7A Fig).

Fig 4. AM fungi produce an extracellular matrix rich in β-glucans.

Fig 4

(A) Chitin was visualised using fluorescently labelled WGA. Chitin was found in the inner fungal wall of spores and large hyphae. (B) β-1,6 glucan was visualised using fluorescently labelled fungal glucan-binding 1 (FGB1). β-1,6 glucan was found as part of the outer cell wall or in loosely associated extracellular matrix (EPS) surrounding spores, large hyphae as well as thin hyphae. (C) Overlay of chitin and β-glucan visualisation, confirming that β-glucan is abundant relative to chitin in the EPS of AM fungi. AM, arbuscular mycorrhiza; EPS, exopolysaccharide; WGA, wheat germ agglutinin.

Fig 5. EPR3a binds fungal-like and fungal-derived β-glucan.

Fig 5

(A) An affinity gel electrophoresis assay showed neither EPR3a nor EPR3 ectodomains were retained in gels containing chitin, in contrast to the positive control AtCERK1 (red arrowheads). The EPR3a ectodomain, but not the EPR3 or the AtCERK1 ectodomains, was retained in gels containing the β-1,3/β-1,6-glucan laminarin from E. bicyclis (green arrowheads). M indicates PageRuler Prestained Protein Ladder, 10 to 180 kDa (Thermo Fisher), and BSA indicates bovine serum albumin, both of which were included as markers to gauge retention of LysM ectodomains. (B) Quantitative MST binding analysis showed that EPR3a binds the E. bicyclis laminarin with an affinity ≈ 250 μM, which is comparably higher affinity than the laminarin from L. digitata (>3 mM, see S7B Fig). (C) EPR3a binds a well-defined β-1,3/β-1,6 decasaccharide derived from S. indica with an even higher affinity of 51±23 μM. Two binding events were observed, with the high affinity event fitted. (D) EPR3a binds the linear β-1,3 laminarihexaose, lacking the β-1,6 branches of the S. indica decashaccharide with a low affinity of ≈ 670 μM. (B–D) Fnorm(%) is the measured normalised fluorescence of ectodomains assayed over a ligand concentration series, n denotes the number of biological replicates, Kd is the calculated dissociation constant, and the goodness of fit is given by R2. (E) Chemical structure of laminarihexaose and the S. indica β-1,3/β-1,6-glucan decasaccharide [34]. See S1 Data and S1 Raw Images for underlying data. MST, microscale thermophoresis.

Retention by E. bicyclis laminarin suggests that the β-1,6 branches are likely recognised in the context of β-1,3 polymer cores. Glucosidic linkage analysis of the L. digitata and E. bicyclis laminarins confirmed the higher degree of β-1,6 branches as well as extended β-1,6 motifs of E. bicyclis laminarin (S8A and S8B Fig). In addition, the molecular size of the two laminarins differed substantially. Analytical size exclusion chromatography (SEC) analysis estimates the L. digitata laminarin size to be ≈ 5 kDa, while E. bicyclis was around 9-fold larger, with an average size of 44 kDa (S8C Fig). Molecular weights and β-1,3/β-1,6 ratios determined for both laminarins are consistent with previous reports [32,33]. Estimates of oligomerisation degrees translate respectively to 30-repeat and 270-repeat oligomers, likely not insignificant considering EPR3a retention capabilities. Estimating molar concentrations of laminarins in the assays based on laminarin molecular weights gives a concentration of 1 mM for L. digitata gels, while E. bicyclis gels contained down to 60 μM of the β-glucan. This further illustrates the selectivity of EPR3a in recognising a specific β-1,3/β-1,6 branched glucan structure of the E. bicyclis laminarin.

Microscale thermophoresis (MST) binding assays were performed to further characterise EPR3a β-glucan binding. EPR3a showed higher affinity for binding E. bicyclis laminarin compared to laminarin from L. digitata, with a Kd ≈ 250 μM for E. bicyclis and >3 mM for L. digitata (Fig 5B and S7B Fig). NMR assignment of E. bicyclis and L. digitata laminarin showed that both samples contain a mixture of several β-1,3/β-1,6 branched carbohydrate species, making it challenging to establish the exact molecular pattern that EPR3a binds. The structures differ in the 1,6 branches, where L. digitata laminarin has terminal glucosyl units in low abundance, while E. bicyclis laminarin has more complex patterns in higher abundance (S9 Fig). A well-defined β-1,3/β-1,6 decasaccharide, derived from the EPS of the endophytic fungus Serendipita indica or the pathogenic fungus Bipolaris sorokiniana, was recently shown to scavenge reactive oxygen species (ROS) and to positively regulate fungal colonisation in barley [34]. EPR3a binds the S. indica β-1,3/β-1,6 decasaccharide in two events, with the first binding event having an estimated Kd = 51±23 μM, indicating binding specificity for a defined β-1,3/β-1,6 repeating pattern (Fig 5C and 5E). The low-affinity binding of L. digitata laminarin and the secondary binding event for the S. indica decasaccharide (Kd in mM range) are possibly artificial due to changes in solution viscosity (gelation), which is a well-known property of β-glucans at high concentrations. To assess the binding specificity for β-1,3-glucans in the absence of β-1,6 branches, the affinity for two linear β-1,3 oligosaccharides, laminarihexaose and laminaripentaose, was assayed. EPR3a bind both β-1,3 oligosaccharides with low affinity (in the range of 600 to 800 μM), corresponding to at least a 10-fold lower affinity compared to the S. indica β-1,3/β-1,6 decasaccharide (Fig 5D and 5E and S7C Fig), suggesting enhanced binding affinity is gained from β-1,6 branching of a β-1,3 backbone polymer. In comparative MST assays, the EPR3 ectodomain binds tested ligands with similar affinities as observed for EPR3a with the exception of a 2-fold lower affinity for E. bicyclis laminarin (S10 Fig). β-glucan-induced ROS production has been reported in several plant species [3537]. We tested whether EPR3a and EPR3 regulate laminarin elicited ROS in Lotus. ROS was produced in Gifu by application of laminarin from L. digitata and E. bicyclis and ROS elicitation was not significantly affected in mutant plants (S11 Fig). The S. indica β-1,3/β-1,6 decasaccharide did not elicit ROS in Gifu or mutant plants, which is consistent with previous reports [34].

EPR3a perceives rhizobial exopolysaccharide

The EPR3a receptor is closely related to EPR3, which perceives rhizobial EPS from M. loti, R. leguminosarum, and S. meliloti. Rhizobial EPS, like fungal cell wall glucans, are β-1,6 branched glycans [19,21]. Taking advantage of purified EPS octasaccharides from rhizobia, we investigated if EPR3a ectodomains can also bind rhizobial EPS using quantitative in vitro binding assays. MST assays revealed EPR3a binds EPS from M. loti, S. meliloti, and R. leguminosarum with μM affinity, and the affinity for M. loti EPS is comparable to that of S. indica decasaccharide β-glucan (Fig 6). The observed affinities for rhizobial EPS are comparable to that of EPR3 [22] (S10 Fig) except for a lower affinity for S. meliloti EPS. These EPS binding assays indicate that both EPR3a and EPR3 survey EPS present either as a secreted signal or on the surface of rhizobia.

Fig 6. EPR3a binds EPS from different rhizobia.

Fig 6

MST assays reveal the EPR3a ectodomain binds the repeating EPS octasaccharide unit from symbiotically compatible and incompatible rhizobia. The EPR3a ectodomain bind the EPS from (A) M. loti and (B) R. leguminosarum with affinities similar to that of EPR3, as previously reported [22]. EPR3a, however, was observed to bind (C) S. meliloti EPS with at least 2-fold lower affinity compared to EPR3 [22]. (D) No binding was observed for the negative control Maltodextrin. See S1 Data for underlying data. EPS, exopolysaccharide; MST, microscale thermophoresis.

To investigate if EPR3a is also involved in rhizobial EPS perception in vivo, symbiotic phenotyping of the M. loti exoU EPS mutant strain was carried out. exoU produces a truncated form of low molecular weight EPS and is severely impaired in symbiosis with Gifu, being unable to develop fully extended ITs and as a result forming small uninfected nodule primordia [19,20]. epr3 mutants have been shown to suppress the severe exoU phenotype, allowing for the development of mature nitrogen-fixing nodules [19]. Following inoculation with exoU, epr3a mutants developed mature nitrogen-fixing nodules at a comparable rate to the epr3-11 mutant (Fig 7A and 7B). No enhancement in the rate of nitrogen-fixing nodule formation is observed in the epr3a epr3 double mutants compared to the single mutant alleles (Fig 7A). These observed phenotypes following inoculation with exoU EPS mutants suggest that EPR3a, like EPR3, is involved in the perception of wild-type and truncated EPS of M. loti.

Fig 7. Nodulation phenotypes following inoculation with M. loti R7AexoU.

Fig 7

(A) Nitrogen-fixing nodule formation 5 wpi with M. loti exoU. Statistical comparisons between genotypes are shown using ANOVA and Tukey post hoc testing with p values (<0.05), as indicated by different letters. (B) Representative images of nodules formed on the indicated genotypes following inoculation with M. loti exoU. Scale bars are 1 mm. See S1 Data for underlying data.

epr3a mutants are impaired in nodule and IT formation

Epr3a expression remains at a constitutive low level in Lotus root tissues after rhizobial inoculation and during development of nitrogen-fixing root nodules (Fig 8A). In contrast, Epr3 expression is strongly induced during rhizobial infection of root hairs and cortical tissues/nodule primordia in a Nod factor-dependent manner (Fig 8A) [19,21]. Considering this divergent expression pattern and the similar affinity for rhizobial EPS, we investigated the symbiotic phenotypes of epr3a, epr3, and epr3a epr3 double mutants following inoculation with wild-type M. loti R7A (R7A).

Fig 8. Epr3a expression and symbiotic phenotypes of mutants following R7A inoculation.

Fig 8

(A) Expression of Epr3 and Epr3a in Lotus tissues mock-treated or inoculated with M. loti R7A. M. loti nodC does not produce Nod factor and does not induce symbiosis signalling (control). The normalised expression values presented are from previously obtained RNA-seq data [39,40]. (B) IT formation on the indicated genotypes 8 dpi with R7A. (C) Nitrogen-fixing nodule formation on the indicated genotypes grown in pots 5 wpi with R7A. Statistical comparisons between genotypes are shown using ANOVA and Tukey post hoc testing with p values (<0.05), as indicated by different letters. See S1 Data and S3 Information, NCBI BioProject accession: PRJNA953045 for underlying data. IT, infection thread.

Quantification of IT formation in the mutants inoculated with R7A revealed a more severe reduction in epr3a-1 and epr3a-2 mutants compared to epr3-11. epr3a-1 and epr3a-2 mutants formed approximately 25% the number of wild-type ITs, while approximately 75% of the wild-type number were observed in epr3-11 mutants (Fig 8B). Surprisingly, epr3a epr3 double mutants were less severely impaired than epr3a single mutants, forming IT numbers comparable to epr3-11 (Fig 8B). This result suggests direct interaction between the EPR3a and EPR3 receptors or convergence of downstream signal transduction pathways. We infer that EPR3 promotes IT formation in root hairs and inactivation therefore leads to a reduction of ITs in epr3 mutants. In the absence of EPR3a, the EPR3 acts negatively, reducing IT formation in epr3a mutants. Inactivation of this negative regulation in double mutants returns IT formation to epr3 levels.

epr3a mutants show a significant reduction in the number of mature nitrogen-fixing (pink) nodules formed, to a level comparable to the epr3-11 mutant (Fig 8C). Despite both epr3a and epr3 single mutants exhibiting a significant reduction in nodule formation, an additive effect was not observed in the epr3a epr3 double mutants. An opposite effect was in fact observed; nodulation was improved in the double mutant compared to single mutants, forming nodules at a level more comparable to wild-type Gifu (Fig 8C). We conclude that autoregulation controlling the number of nodules has been triggered in both epr3 and epr3a mutants and correlation between ITs and nodule numbers illustrates the high level of synchronisation between rhizobial infection and nodule organogenesis [38].

EPR3a has an active kinase

LysM receptors are known to harbour either functional catalytically active kinases or pseudokinases [41]. In a first step to explore the receptor mechanism, the kinase activities of EPR3a and EPR3 were measured in vitro. The intracellular kinases of each were expressed in E. coli, purified, and assayed for auto-phosphorylation activity. Kinase assays indicate that both EPR3a and EPR3 contain catalytically active kinases (S12 Fig).

Working model for EPR3a and EPR3 signalling and interaction in Lotus

The current model for LysM receptor function based on chitin receptors and lipochito-oligosaccharide receptors indicates that signalling is accomplished by receptor complexes, consisting of a receptor with an active kinase and a pseudokinase receptor without kinase activity. Measurable kinase activity of both EPR3a and EPR3 may therefore support a model where they each have a co-receptor rather than working together as a complex. This view is supported by the observed IT formation in the single and double mutants. Inactivation of Epr3 results in a modest reduction implying that EPR3a can function alone. Inactivation of EPR3a leads to a severe reduction that is reverted in epr3a epr3 double mutants by inactivation of Epr3. This result suggests that EPR3 in the absence of EPR3a is a negative regulator and EPR3a normally acts to counter this negative regulation. Based on our phenotypic characterisation and biochemical assays, we cannot determine whether this interaction is the result of a complex formation or if the effect is due to convergence of signalling pathways downstream of the individual receptor complexes (Fig 9). In an attempt to elucidate the downstream signal transduction and gene regulation, we assayed root transcriptional responses in wild-type and mutant plants by RNA-seq. Principal component analysis showed clear separation of samples based on treatment (mock, M. loti R7A 3dpi and M. loti R7A 7dpi), but no clear separation due to genotype within each treatment cluster (S13A Fig). We analysed the expression of symbiotic genes and found no significant difference between the expression profiles of the wild-type and mutant plants (S13B and S13C Fig). Defence gene expression was investigated by comparing the expression of genes previously identified to be differentially expressed in Gifu in response to the pathogen Ralstonia [39]. No clear differences in expression of the defence genes was identified between wild-type and mutant plants (S13D Fig). Our RNA-seq analysis at the whole root level revealed no clear differences in symbiosis and defence-related transcriptional response between wild-type and receptor mutant plants after inoculation with M. loti R7A.

Fig 9. Working model of EPR3 and EPR3a symbiotic signalling.

Fig 9

(A) In RNS, Epr3 expression is specifically induced. Both EPR3 and EPR3a can bind rhizobial EPS and promote IT formation and effective nodule development. (B) In AMS, Epr3a expression is specifically induced. EPR3a alone promotes fungal colonisation, potentially through the binding of a fungal-derived β-1,3/β-1,6-glucan ligand. AMS, arbuscular mycorrhizal symbiosis; EPS, exopolysaccharides; IT, infection thread; RNS, root nodule symbiosis.

Discussion

Here, we report on the identification and characterisation of a glycan receptor, EPR3a, in Lotus. We demonstrate that Epr3a expression is induced during AM symbiosis and that epr3a mutants show reduced arbuscule formation and increased vesicle formation. This involvement in AM symbiosis clearly separates EPR3a receptor activity from EPR3, which does not appear to have a role in AM symbiosis. LysM receptors previously identified in AM symbiosis include chitin receptors (CERK1 homologues) in rice [42,43], tomato [44] and Medicago CERK1 and LYR4 [10,45]. In Lotus, no LysM-RLK has previously been identified as involved in AM symbiosis. The CERK1 homologue CERK6, responsible for immune activation in response to chitin, shows no detectable AM symbiosis phenotype [46]. Expression of Lys11 was found to be localised to cortical cells associated with AM colonisation; however, no reduction in AM symbiosis was observed in lys11 mutants [47].

As further support for the role of EPR3a in AM symbiosis, we show that the EPR3a ectodomain binds a well-defined β-1,3/β-1,6 decasaccharide derived from the EPS of the endophytic fungus S. indica in MST assays and laminarin from E. bicyclis with a high degree of β-1,6 branches in affinity gel electrophoresis assays. EPR3 also binds the β-1,3/β-1,6 decasaccharide in MST assays, while binding of E. bicyclis glucan in affinity gel electrophoresis assays was not detected for the EPR3 ectodomain. We infer that EPR3 receptor abundance, interaction with downstream components, and glucan binding at the ectodomain are insufficient to affect AM colonisation. To our knowledge, neither EPS nor cell wall glucans from AM fungi have been isolated and purified, limiting our ability to perform quantitative binding assays and determine binding constants. We however show that AM fungi produce β-1,6-glucan in abundance, which is present in the outer cell wall and extracellular matrix surrounding spores and hyphae. Future studies of fungal cell wall components and other fungal glycans are needed to determine the ligand affinities and a possible wider ligand repertoire of EPR3a. The binding of the S. indica β-1,3/β-1,6 decasaccharide, the E. bicyclis laminarin, and the rhizobial EPS suggests a preference for specific β-1,3/β-1,6 branched glucan structures rather than linear β-1,6 or β-1,3. The low affinity for linear β-1,3-glucan in both MST and gel assays supports this interpretation. All together, these results suggests that EPR3a high affinity for β-glucans is gained through β-1,6 branches of a β-1,3 backbone.

Epr3a expression remains low in root tissues throughout the rhizobial infection process, yet IT and nodulation are impaired in epr3a mutant alleles. In contrast, EPR3 is strongly induced by compatible rhizobia, initially in epidermal cells and later within cortical and nodule primordia cells associated with the infecting rhizobia. This expression pattern matches the symbiotic phenotypes of epr3 mutants, reduced IT formation, and impaired colonisation of nodule primordia [19,21]. However, the reduction in IT formation is more pronounced in epr3a than epr3 mutants. The alleviated symbiotic impairment following inoculation with M. loti exoU is comparable in epr3 and epr3a single mutants with no significant enhancement of this in the double mutant. This indicates that although both EPR3 and EPR3a participate in the perception of truncated EPS, they are not exclusively responsible for the symbiotic impairment resulting from the production of incompatible EPS. Our interpretation of these results is that EPR3a, even expressed at low levels, is important for modulating rhizobial infection, potentially through stabilising receptor complex signalling.

Ligand-binding assays support the involvement of EPR3a in monitoring rhizobial EPS during infection, with the EPR3a ectodomain having binding affinities for rhizobial EPS comparable to those reported for the EPR3 ectodomain [22]. The similar binding affinities for EPS ligands isolated from symbiotically compatible M. loti R7A and incompatible S. meliloti and R. leguminosarum suggests that perception of EPS by EPR-type receptors acts in surveillance, rather than specifically recognising compatible symbionts.

Interestingly, the epr3a epr3 double mutant appears less affected than the respective single mutant alleles in symbiotic events with M. loti R7A. This suggests that the downstream signalling from these receptors is altered in the presence/absence of one and other. LysM-RLKs are known to form receptor complexes to mediate signalling activity [48,49]. Whether or not EPR3 and EPR3a function as a receptor complex remains to be resolved. Our analysis of EPR3 and EPR3a intracellular kinase domains reveals that both are catalytic active kinases, which may be of importance when considering the possibility that EPR3 and EPR3a form individual receptor complexes with as-yet unknown co-receptors. Identified LysM-RLK co-receptor pairings generally consist of one catalytically active kinase paired with an inactive kinase, e.g., NFR1 and NFR5 [49,50] or LYK3 and NFP [51].

Within the Lotus LysM-RLK family, EPR3a most closely aligns to the EPS receptor EPR3 [19,21]. Structural modelling of EPR3a supports the similarity between the two receptors and, importantly, indicates that EPR3a shares the non-canonical ectodomain structure described for EPR3 [22]. This distinct ectodomain structure presumably explains why these EPR3 and EPR3a LysM-RLKs are able to bind non-GlcNAc containing glycans such as laminarin and rhizobial EPS, instead of traditional GlcNAc containing ligands perceived by LysM-RLKs [46,48,5257].

Our analysis of EPR-type LysM-RLKs using modelling of the LysM ectodomains identified this distinct receptor type in species across the plant kingdom [22]. The presence of multiple copies of EPR3-type receptors is not restricted to legumes, and some legumes apparently encode a single receptor, e.g., Medicago. Given our observation of EPR3a’s role in AM symbiosis, a symbiosis that the majority of plants engage in, it is possible that a similar function is performed by homologous receptors in other plant species. An even broader function for EPR3-type receptors in plants surveillance of glycan signal molecules is suggested by binding of the β-1,3/β-1,6 decasaccharide that could be isolated from both the endophytic Serendipita indica and pathogenic Bipolaris sorokiniana fungi. We propose that the activity of EPR3-type receptors in plants is to monitor surface-exposed glycans produced by microbes during their colonisation, inducing a response different from an immunity response.

Materials and methods

Plants and growth conditions

L. japonicus ecotype Gifu [58] was used as the wild-type plant. The epr3-11 mutant has previously been described [19]. epr3a-1 (30014218) and epr3a-2 (30155999) LORE1 lines in the L. japonicus Gifu accession were obtained through Lotus Base [59] with homozygous mutant plants identified as previously described [29,60]. The epr3/epr3a double mutant was isolated from crosses between epr3-11 and epr3a-2. Seed sterilisation and plant-growth setups for nodulation and IT assays were as previously described [19]. Plants were grown at 21 °C with day and night cycles of 16 and 8 h, respectively. Hairy root transformation was carried out as described previously [61]. Plant growth plate nodulation and IT assays, each containing 10 plants, were inoculated with 750 μl of OD600 = 0.02 bacterial suspension. For pot nodulation assays, pots filled with sterile leca and containing 15 plants were inoculated with 25 ml OD600 = 0.02 bacterial suspension. For AM studies, a sandwich growth system was used, as previously described [47]. Briefly, seedlings were sandwiched between 2 nitrocellulose membranes (MontaMil Membrane Filters—47 mm, 0.22 μM pores, Frisenette MCE047022) with approximately 100 Rhizophagus intraradices spores (Symbiom, CZ) per plant. Sandwiches were planted in sterile quartz (0 to 0.4 mm) in magenta growth containers containing modified Long-Ashton solution (0.75 mM MgSO4, 1 mM NaNO3, 1 mM K2SO4, 2 mM CaCl2, 3.2 μM Na2HPO4, 25 μM FeNa-EDTA, 5 μM MnSO4, 0.25 μM CuSO4, 0.5 μM ZnSO4, 25 μM H3BO3, 0.1 μM Na2MoO4).

Bacterial strains and culturing

Wild-type M. loti R7A [62,63] and R7AexoU [20] were cultured at 28 °C in YMB media. An R7A+pSKDSRED fluorescent reporter strain [64] was used for IT counting. E. coli TOP10 was used for cloning and cultured in LB media at 37 °C. Agrobacterium rhizogenes strain AR1193 [65] was used for hairy root transformation and cultured in LB medium at 28 °C.

Promoter constructs

Epr3 promoter-reporter constructs have previously been described [19,21]. For Epr3a, a 1,979 bp putative promoter region was synthesised based on L. japonicus Gifu v1.2 genomic sequence [23]. Epr3a promoter, GUS coding sequence, and 35s terminator modules were assembled in pIV10 [66] using GoldenGate cloning [67].

Expression and purification of EPR3a ectodomain

The C-terminal boundary of the L. japonicus EPR3a ectodomain was predicted using the transmembrane helix prediction server TMHMM [68]. The native N-terminal secretion peptide was predicted using the SignalP server [69] and replaced with the Autographa californica glycoprotein 67 secretion peptide (MVSAIVLYVLLAAAAHSAFA) [70]. A non-cleavable 6xHis-tag was added to the C-terminal and the EPR3a ectodomain (residues 25–223) fusion construct was codon-optimised for insect cell expression (GenScript, Piscataway, United States of America) and inserted into the transfer vector pOET4 (Oxford Expression Technologies). Recombinant baculovirus was produced in Sf9 cells using the flashBAC GOLD kit (Oxford Expression Technologies) supplemented with lipofectin (Thermo Fisher) for transfection efficiency. Sf9 cells were grown to a density of 106 cells/ml in suspension at 26 °C in HyClone SFX (GE Healthcare), supplemented with 1% v/v Pen/Strep (10,000 U/ml, Life Technologies) and 1% v/v chemically defined lipid concentrate (Gibco) before infection with a passage 3 baculovirus stock obtaining a MOI = 1–3. EPR3a ectodomain was expressed for 6 days before cell medium was cleared by centrifugation and dialysed against 50 mM Tris-HCl pH 8.0, 200 mM NaCl at 4 °C. EPR3a ectodomain was captured from cell medium utilising a HisTrap Excel column (Cytiva) equilibrated in 50 mM Tris-HCl pH 8.0, 200 mM NaCl. Protein was eluted in 50 mM Tris-HCl pH 8.0, 200 mM NaCl, 500 mM imidazole. EPR3a ectodomain was further purified with a second Ni-AC step using a HisTrap HP column (Cytiva) and purification was finalised with a SEC step using a HiLoad Superdex 75 16/600 pg column (Cytiva) in PBS pH 7.4, 500 mM NaCl. The EPR3 and AtCERK1 ectodomains were expressed and purified following an identical protocol. EPR3a ectodomain preparation variation was quality controlled by measuring thermostability on a Tycho NT.6 NanoDSF instrument (NanoTemper Technologies) at 1 mg/ml concentration in PBS pH 7.4, 500 mM NaCl. Intrinsic fluorescence was measured at 330 and 350 nm over a temperature gradient (35 to 95 °C), and the 330/350 nm ratio was used to produce a transition curve from which an inflection temperature (Ti) was calculated. NanoDSF data was analysed with Prism 8 (GraphPad).

Microscale thermophoresis (MST) binding assays

Heterogenous N-glycosylations of the EPR3a and EPR3 ectodomains negatively affected signal/noise during MST assays, and ectodomain preparations were N-glycan trimmed by PNGase F treatment. PNGase F was incubated with ectodomain in a 1:20 w/w ratio overnight at RT and subsequently removed through SEC. Ectodomain preparations were labelled with Monolith Protein Labeling Kit BLUE-NHS (NanoTemper Technologies) following the manufacturer’s instructions. Excess free dye was removed through a Vivaspin 500 centrifugal concentrator (MWCO 10 kDa, Sartorius). A molar labelling ratio of 1–2:1 dye:protein was achieved as estimated by absorbance at 280 and 488 nm using a ND-1000 Nanodrop (Thermo Scientific). MST binding assays were conducted as follows. A 1:1 v/v dilution series of respective ligands was mixed with a final constant concentration of 25 nM labelled protein in PBS pH 7.4, 500 mM NaCl, 0.01% Tween20. Samples were incubated in dark at RT for 30 min to reach steady state. Ligand-ectodomain binding was assayed on a Monolith NT.115 instrument (NanoTemper Technologies) in NT.115 glass capillaries (NanoTemper Technologies) with 20% MST laser power. Data were analysed with MO. Affinity Analysis (NanoTemper Technologies) and normalised data was fitted to a sigmoidal dose-response equation in Prism 8 (Graphpad).

Affinity gel electrophoresis assay

Approximately 0.1% to 0.5% w/v of carbohydrate polymers were solubilised in separation gel solution (Tris-HCl pH 8.8, 12% acrylamide) by vortexing before polymerisation. Shrimp-shell chitin was homogenised in Tris-HCl pH 8.8 using a pestle head mounted on an electrical stirrer for 5 min before being mixed into the separation gel solution. Affinity gels were cast with a Tris-HCl pH 6.8, 5% acrylamide stacking gel, and 5 μg protein sample loaded in each lane. A Tris/glycine pH 8.3 running buffer was used and gels were run in parallel at 4 °C for 5 h with a constant voltage of 150 V.

Characterisation of laminarins

The L. digitata and E. bicyclis laminarins were dissolved in 50 mM ammonium acetate buffer and resolved on GE Healthcare Superose 6, 10/300 GL size exclusion column with 50 mM ammonium acetate buffer used as the eluant, at a 0.5 ml/min flow rate. The eluting fractions were monitored with Agilent Technologies 1260 infinity II RI (refractive index) detector. The molecular size was assigned based on the retention time of the polysaccharide standards (1,740 kDa (Vo), 500 kDa, 167 kDa, 67 kDa, 40 kDa, 10 kDa, 5 kDa, and 1 kDa). In addition, the molecular size of L. digitata was confirmed on GE Healthcare Superdex Peptide 10/300 SEC column with 50 mM ammonium acetate used as eluent at 0.5 ml/min flow and with RI detection. The glycosyl linkage analysis of neutral sugars constituting laminarins was determined using the method based on partially methylated alditol acetates (PMAAs) [71]. GC-MS spectra and raw SEC profiles are provided in S4 Information. For the NMR spectroscopy analysis, the E. bicyclis laminarin (11.4 mg) and L. digitata laminarin (11.3 mg) were dissolved in 90% DMSO (d6-99.96%, Sigma-Aldrich) and 10% D2O (d-99.9%, Sigma-Aldrich) and heated at 70 °C for 5 to 10 min before being transferred to a 5-mm NMR tube (LabScape Stream, Bruker BioSpin AG, Switzerland). No visible aggregates were observed in the samples. The 1D and 2D NMR experiments were recorded as described in the S5 Information.

Carbohydrate ligands

M. loti EPS, S. meliloti EPS, and R. leguminosarum EPS ligands were obtained as described previously [22,72]. Production and purification of the S. indica decasaccharide for binding assay was performed as described in [34]. L. digitata laminarin, maltodextrin, and chitin from shrimp shell were purchased from Sigma-Aldrich. Eisenia bicyclis laminarin, Pustulan, and Scleroglucan were purchased from Carbosynth. Laminarihexaose, laminaripentaose, and chitohexaose were purchased from Megazyme.

Protein modelling

The EPR3a ectodomain structure spanning residues 25–223 was modelled using Alphafold2-Colab with a total of 3 recycles [24,25]. An MSA of approximately 1,800 sequences was assembled using MMseqs2 with Uniref and Environmental databases, and no template was used for modelling. Five models were predicted and all models generated a high overall predicted local distance difference test (pLDDT) score of approximately 90. Only the far N- and C-termini showed a pLDDT score <80. The best model had an overall pLDDT score of 90.4 and was used for further analyses. Alphafold models for MtLYK10 (residues 25–221, Uniprot: G7JZ13), ToEPR (residues 27–221, Uniprot: A0A221I0T5), FvLYK3 (residues 21–211, GenBank: XP_004300916), ZmRLK8 (residues 23–232, Uniprot: A0A1D6NMX9), HvRLK9 (residues 24–216, GenBank: KAE8783007), and AtLYK3 (residues 20–233, Uniprot: F4IB81) were generated similarly as described for EPR3a. Superposition analyses of EPR3-type ectodomains were done using residues spanning the equivalent polypeptide as visualised in the EPR3 crystal structure [22], e.g., residues 28–207 for EPR3a. Structural analyses and figures were prepared using PyMOL Molecular Graphics System, version 2.4 Schrödinger, LCC.

Histochemical staining and microscopy

IT counts were performed using a Zeiss Axioplan 2 fluorescence microscope using the Zeiss Plan-Neofluar 20x/0.5 objective lens with excitation at 561 nm and an emission filter at 580 to 660 nm. Whole roots were mounted on microscope slides and IT counts performed on a per-root basis. Hairy roots expressing promoter-GUS constructs were GUS-stained as previously described [21]. GUS expression at the whole root level was observed using a Zeiss Discovery V8 stereo microscope. For concomitant visualisation of GUS-promoter activity and AM colonisation, GUS-stained roots were cleared in 10% KOH for 10 min and counterstained with 1 μg/ml WGA-Alexa Fluor 488 (Thermo Fisher, W11261). Bright field and fluorescent images were captured using a Zeiss Axioplan 2 fluorescence microscope with overlaying of the images performed using Fiji ImageJ [73]. For quantification of AM colonisation, roots were stained with 5% black ink (Noir de Jais, Shaeffer) according to [74]. Whole roots were mounted on microscope slides, and the frequency of arbuscules, fungal hyphae, and vesicles were counted as previously described [75].

FITC488 labelling and confocal microscopy

Cytological analyses with the confocal laser scanning microscope LEICA SP8 using the chitin-binding WGA and the β-1,6-glucan-binding FGB1 lectins from AM fungi grown in culture with carrot plant material was performed as described in [34], modified from [76].

Gene expression analysis

Analysis of gene expression by qRT-PCR in Lotus during AM symbiosis was performed on a cDNA time series previously generated [47]. qRT-PCR was performed on a LightCycler480 instrument using LightCycler480 SYBR Green I master mix (Roche). ATP and UBC were used as housekeeping reference genes [77]. Quantification of gene levels was calculated using LinRegPCR [78]. Three biological replicates were used, each consisting of 5 to 10 plants, and 2 technical replicates were performed. Primer information is given in S2 Table. For RNA-seq, total RNA was isolated from whole roots minus the root tip, using a NuceloSpin RNA Plant kit (Macherey-Nagel) according to the manufacturer’s instructions. RNA quality was assessed on an Agilent 2100 Bioanalyser and samples were sent to GATC-Biotech (https://gatc-biotech.com) for library preparation and sequencing on an Illumina MiSeq platform. Mapping was performed using Salmon [79] and gene expression analysed using R-package DeSEQ2 [80], as previously described [81]. RNA-seq raw data has been submitted to NCBI under BioProject accession number PRJNA953045.

ROS elicitation assays

Gifu, epr3a-2, epr3-11, and epr3a-2/epr3-11 seeds were surface sterilised and germinated on water agar for 14 to 16 days and subsequently grown on 1/10 PNM medium for 14 to 28 days. Roots were cut into 0.5 mm pieces and placed into a 96-well plate containing 200 μl 2.5 mM MES per well. Three root pieces were used per well. After recovery overnight, buffer was replaced with 100 μl, 2.5 mM MES containing 20 μM HRP and 20 μM LO12. Following 25 min of incubation, 2× concentrated elicitor solutions were added and chemiluminescence was measured with an integration time of 450 msec using a TECAN SPARK 10M microplate reader, and 2.5 mM MES (mock) and 25 μM chitohexaose (CO6) were used as negative and positive controls, respectively. Laminarin from Laminaria digitata and Eisenia bicyclis was used at a final concentration of 1 mg/ml and S. indica β-glucan decasaccharide was used at a final concentration of 0.5 mg/ml. Total accumulation of ROS was normalised against the averaged mock value, and significant differences were tested using Kruskal–Wallis and post hoc Dunn test.

Bioinformatics and statistical analysis

Lotus LysM-RLK protein sequences were obtained from Lotus base [59]. Protein alignment and phylogenetic tree construction were made using CLC Main Workbench 8 (QIAGEN). Protein sequences of EPR-type receptors in diverse plant species were obtained from NCBI. Boxplot generation and statistical analysis were performed in R [82]. Comparison of multiple groups included ANOVA followed by Tukey’s post hoc testing to determine statistical significance.

EPR3a and EPR3 kinase expression, purification, and kinase assays

The EPR3 (residue 259–620) and EPR3a (residue 255–615) intracellular kinase domains were defined as the polypeptide chain C-terminal of the transmembrane helix, as predicted by the TMHMM server [68]. The kinase constructs were expressed in Escherichia coli BL21 Rosetta 2 (DE3) cells from a pH10R7Sumo3C vector, containing a 10× histidine tag, a 7× arginine tag, a small ubiquitin-like modifier (Sumo) domain, and a 3C protease cleavage site to allow fusion-tag removal. Cell pellets were resuspended in lysis buffer, 50 mM Tris-HCl pH 8, 500 mM NaCl, 20 mM imidazole, 1 mM benzamidine, 2.5 mM DTT, and 10% (v/v) glycerol. Cell suspensions were lysed by sonication, and the supernatant was collected after pelleting cell debris by centrifugation at 16,000 g, 4 °C for 30 min. Supernatants were loaded onto Ni-NTA columns (Macherey-Nagel) and protein was eluted in elution buffer, 50 mM Tris-HCl pH 8, 500 mM NaCl, 500 mM imidazole, 2.5 mM DTT, and 5% (v/v) glycerol. Samples were 3C protease digested and λ-phosphatase de-phosphorylated in dialysis bags overnight at 4 °C against dialysis buffer 50 mM Tris-HCl pH 8.0, 200 mM NaCl, 5% glycerol, 1 mM MnCl2, 2.5 mM DTT. Cleaved fusion-tag was removed through a second Ni-AC step and sample purification was finalised by SEC using a Superdex 75 Increase 10/300 (GE Healthcare) column and eluted in 50 mM Tris-HCl pH 8.0, 200 mM NaCl, 2.5 mM DTT. For kinase assays, the dephosphorylated kinases were incubated for 1 h in SEC buffer with and without 10 mM MgCl2 and 20 μM ATP. The samples were loaded onto an SDS-PAGE gel and phosphoproteins were stained using Pro-Q Diamond phosphoprotein gel stain (Invitrogen) according to the manufacturer’s protocol. After imaging, the same gel was stained for total protein using SYPRO Ruby Protein Stain (Invitrogen) according to the manufacturer’s protocol.

Supporting information

S1 Fig. Amino acid alignment of EPR3 and EPR3a.

The “|” indicates perfect alignment, “:” indicates residues of similar properties, “.” indicates residues of dissimilar properties, and “-” indicates no alignment.

(TIF)

S2 Fig. EPR3a contains nonconventional carbohydrate-binding modules as predicted by a high-confidence Alphafold model.

(A) Sequence alignment of the EPR3 and EPR3a M1 domain. Conserved and semi-conserved residues are highlighted in green and light green, respectively. The βαββ secondary structure signature of the EPR3 M1 crystal structure is indicated above the alignment. (B) Zoom of the EPR3 M1 crystal structure as compared to the Alphafold generated model of the EPR3a M1. EPR3a shows a strikingly high similarity to the EPR3 M1 with an identical βαββ structure. (C) The EPR3a ectodomain Alphafold model shown as a spectrum of the predicted local distance difference test (pLDDT) score. Blue colouring indicates a high pLDDT score and a high confidence in the modelled structure, whereas red colouring indicates a low pLDDT score and low confidence. See S1 Information for underlying data.

(TIF)

S3 Fig. EPR3-type RLKs are conserved in plants.

(A) One or more EPR3-type RLKs are present throughout plant species. Pseudogenization or lack of gene identification coincides in some cases with the inability of plant species to establish root nodule symbiosis (RNS) or arbuscular mycorrhizal symbiosis (AMS). (B) A representative selection of EPR3-type ectodomains throughout plants shows a conserved protein architecture as determined by Alphafold modelling. The EPR3-type M1 (βαββ), M2 (βαβ), and LysM3 (βααβ) are highlighted. Ectodomains are shown in a cartoon representation and are spectrum coloured from blue at the N-terminus to red at the C-terminus. The RMSD (in Å) of Cα superpositioning to the EPR3 crystal structure is reported and indicates the degree of structural resemblance. See S1 Information for underlying data.

(TIF)

S4 Fig. Epr3a expression in Lotus tissues and Epr3 and Epr3a promoter activity in response to AM spore inoculation.

(A) Expression data obtained from the Lotus expression atlas (Lotus Base http://lotus.au.dk). Epr3a expression is restricted to root tissues with increased expression in response to arbuscular mycorrhiza (AM_27dpi). (B) Transgenic roots expressing pEpr3a:GUS or pEpr3:GUS were inoculated with AM spores. GUS staining was performed on whole root systems 6 wpi. See S1 Data for underlying data.

(TIF)

S5 Fig. Epr3a gene model.

Epr3a gene model with the position of LORE1 insertions in isolated mutant alleles indicated.

(TIF)

S6 Fig. LysM ectodomain purifications and EPR3a ectodomain NanoDSF quality control.

(A) SEC profile and corresponding SDS-PAGE of the final purification step for the EPR3a ectodomain. Protein elutes as a single peak with an elution volume corresponding to a molecular weight of 32.8 kDa. SDS-PAGE analysis reveals a smeared band between the 25 and 35 kDa marker bands, fitting the weight estimate from SEC and an expected heterogenous N-glycosylated protein preparation. Weight estimates from SEC and SDS-PAGE fit well the theoretical molecular weight of 23.2 kDa for the monomeric protein, plus an additional average of approximately 10 kDa N-glycans. (B) A NanoDSF thermal stability assay was used as a quality control for protein preparations and to determine confidence in comparability between replicates in downstream binding assays. The thermal stability of 4 EPR3a ectodomain biological replicates was assayed with NanoDSF, showing that all 4 preparations had similar Ti. Each biological preparation was assayed in technical triplicates. (C, D) SEC chromatogram and corresponding SDS-PAGE for EPR3 and AtCERK1 ectodomain purifications. Both preparations, like EPR3a, elute as single peaks fitting monomeric N-glycosylated proteins and migrate as smeared bands between marker bands 25 and 35 kDa in SDS-PAGE. (A, C, D) M = molecular weight marker, Inp = input sample of SEC purification. Blue numbering in chromatograms corresponds to different fractions, which are also indicated in the corresponding SDS-PAGE. Blue dashed lines in chromatograms and the horizontal black lines above fraction numbering in SDS-PAGEs indicates the pooled fractions used in biochemical assays. All protein preparations were purified to a high >95% purity as estimated by SDS-PAGE. See S1 Data and S1 Raw Images for underlying data.

(TIF)

S7 Fig. Supplementary β-glucan affinity gel electrophoresis and EPR3a MST binding data.

(A) Affinity gel electrophoresis assays using β-glucans L. digitata laminarin (β-1,3/β-1,6), Scleroglucan (β-1,3/β-1,6), or Pustulan (β-1,6) did not show retention of EPR3a, EPR3, or AtCERK1 ectodomains. M indicates PageRuler Prestained Protein Ladder, 10 to 180 kDa (Thermo Fisher), and BSA indicates bovine serum albumin, both of which were included as markers to gauge retention of LysM ectodomains. (B, C) MST binding data showing EPR3a binds L. digitata laminarin and laminaripentaose with low affininty (Kd >3 mM and ≈ 850 μM, respectively). Fnorm(%) is the measured normalised fluorescence of ectodomains assayed over a ligand concentration series, n denotes the number of biological replicates, Kd is the calculated dissociation constant, and the goodness of fit is given by R2. See S1 Data and S1 Raw Images for underlying data.

(TIF)

S8 Fig. Comparative analysis of the laminarin purified from L. digitata and E.bicyclis.

(A) Determination of glycosyl linkages in L. digitata laminarin (top) and E.bicyclis laminarin (bottom). (B) The relative distribution (in %) of glycosyl linkages in L. digitata and E.bicyclis laminarins. (C) Determination of the molecular weight of the soluble fraction by size exclusion chromatography on a Superose 6 column. The average MW of L. digitata (magenta) is 5,000 Da, and E. bicyclis (blue) is approx. 44,000 Da. See S4 Information for underlying data.

(TIF)

S9 Fig. Residue and linkage composition of E. bicyclis and L. digitata laminarin with NMR spectroscopy.

(A–C) E. bicyclis laminarin contains a 1,3 linked backbone with a complex mix of at least 3 different types of 1,6 branches. (D–F) L. digitata laminarin is a 1,3 linked main chain with 1,6 branched terminal glucose. (A) 1H-13C-HSQC of E. bicyclis laminarin (11.4 mg) in 90% DMSO-d6 and 10% D2O at 50 °C. The signal labelled with a red asterisk belongs to an unknown impurity. (B) Based on 1H peak integration, the ratio between 1,3 and 1,6 linkages is 3:2. (C) Chemical structures found in E. bicyclis laminarin. The degree of branching and the spacing of branches cannot be determined. (D) 1H-13C-HSQC of L. digitata laminarin (11.3 mg) in 90% DMSO-d6 and 10% D2O at 60 °C. Signals labelled with a red asterisk belong to mannitol located on the reducing end of approximately half of the oligomers, which is consistent with previous studies [32,83]. (E) Based on 1H peak integration, 1,3:1,6 linkage ratio is 25:1. (F) Chemical structure found in L. digitata laminarin. The degree and spacing of branching are too ambiguous to determine. See S5 Information for underlying data.

(TIF)

S10 Fig. EPR3 MST binding data.

(A) The EPR3 ectodomain binds E. bicyclis laminarin with atleast 2-fold lower affinity ≈ 670 μM compared to EPR3a (Kd ≈ 250 μM) when assayed with MST. (B–G) EPR3 had similar affinities for other ligands measured as that observed for EPR3a. Binding affinities for (F) M. loti and (G) R. leguminosarum EPS was similar as previously reported [22]. (A–G) Fnorm(%) is the measured normalised fluorescence of ectodomains assayed over a ligand concentration series, and ΔFnorm(‰) is the normalised difference in fluorescence of experiments with a single biological replicate. n denotes the number of biological replicates, Kd is the calculated dissociation constant, and the goodness of fit is given by R2. See S1 Data for underlying data.

(TIF)

S11 Fig. Laminarin elicited ROS is not affected in Lotus mutants epr3a-2, epr3-11, and epr3a-2/epr3-11.

(A) ROS production measured over time in response to mock, chitohexaose (CO6, positive control), and L. digitata laminarin. CO6 elicits a fast and strong ROS response in Lotus Gifu, epr3-11 and epr3a-2. L. digitata laminarin elicits a delayed and relatively weaker ROS response compared to CO6. (B) Boxplot of normalised total ROS production measured over 60 min. L. digitata laminarin (LD lam) ROS elicitation is not significantly affected in epr3-11 or epr3a-2 compared to Gifu. Values represent means ± SEM from 8 wells. Letters represent significant differences based on Kruskal–Wallis and post hoc Dunn test. (C) E. bicyclis laminarin elicits a relatively faster and weaker ROS burst in Gifu and epr3-11/epr3a-2 compared to L. digitata laminarin. A single well/replicate was performed for the S. indica β-glucan decasaccharide in Gifu and epr3-11/epr3a-2 and no ROS elicitation was detected. (D) Boxplot of normalised total ROS production measured over 60 min. E. bicyclis (EB lam) and L. digitata laminarin (LD lam) ROS elicitation is not significantly affected in epr3-11/epr3a-2 compared to Gifu. Values represent means ± SEM from 8 wells. Letters represent significant differences based on Kruskal–Wallis and post hoc Dunn test. See S1 Data for underlying data.

(TIF)

S12 Fig. EPR3a and EPR3 contain catalytically active kinases.

(A) EPR3a and EPR3 intracellular kinase domains purified from E. coli were incubated with or without ATP+MgCl2 and subsequently analysed by SDS-PAGE and Pro-Q Diamond phosphoprotein gel stain. Both EPR3a and EPR3 are able to autophosphorylate, as shown by the enhanced stain intensity in ATP+MgCl2 incubated samples. (B) The same SDS-PAGE as in (A) stained with SYPRO Ruby total protein stain. BSA (non-phosphorylated) and ovalbumin (phosphorylated) were included as markers for phosphorylation. See S1 Raw Images for underlying data.

(TIF)

S13 Fig. Gene expression analysis of epr3 and epr3a mutants inoculated with M. loti R7A.

(A) Principal component analysis of RNA-seq data obtained from roots of wild-type and mutant plants inoculated with M. loti R7A. RNA-seq was performed on root samples harvested 3 and 7 dpi. (B) Expression of known symbiotic genes was comparable in wild-type and receptor mutant plants. (C) qRT-PCR analysis showed the NIN expression profile was comparable in wild-type and receptor mutant plants. (D) The 25 Lotus genes that show the highest transcriptional response to pathogenic Ralstonia were chosen to represent defence-related genes. No significant difference in the expression of the genes was identified between wild-type and mutant plants. See S2 and S3 Information, NCBI BioProject accession: PRJNA953045 for underlying data.

(TIF)

S1 Table. LORE1 exonic insertions in epr3a-1 and epr3a-2 mutant lines.

Only LORE1 inserts in the Epr3a gene are shared between the epr3a-1 and epr3a-2 lines.

(DOCX)

S2 Table. Primers used in qRT-PCR experiments.

(DOCX)

S1 Data. Data.

(XLSX)

S1 Information. Alphafold models.

(ZIP)

S2 Information. qRT-PCR dataset.

(ZIP)

S3 Information. RNA-seq normalised counts.

(ZIP)

S4 Information. Laminarin GC-MS and SEC.

(PDF)

S5 Information. NMR spectroscopy.

(DOCX)

S1 Raw Images. Raw gel images.

(PDF)

Acknowledgments

We thank Finn Pedersen for greenhouse assistance and Andreas Prestel for NMR technical assistance. We thank Knud J. Jensen for helpful discussions.

Abbreviations

AM

arbuscular mycorrhiza

EPS

exopolysaccharides

IT

infection thread

MST

microscale thermophoresis

pLDDT

predicted local distance difference test

PMAA

partially methylated alditol acetate

RNS

root nodule symbiosis

ROS

reactive oxygen species

Data Availability

All relevant data are within the paper, its Supporting information files and the NCBI BioProject accession PRJNA953045 (http://www.ncbi.nlm.nih.gov/bioproject/953045).

Funding Statement

SK, SBH, HR, KG, EM, SW, DR, ZB, MV, MBT, KRA, SR and JS is supported by the research project Engineering Nitrogen Symbiosis for Africa (ENSA), which is funded through a grant to the University of Cambridge by the Bill & Melinda Gates Foundation (OPP11772165). JS acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research programme (grant agreement No. 834221). KRA and HR acknowledge support from the Danish Council for Independent Research (9040-00175B). AM and PA acknowledge support from the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division, under award #DE-SC0015662. AZ, PS and SW acknowledge support from the Cluster of Excellence on Plant Sciences (CEPLAS) funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy–EXC 2048/1–Project ID: 390686111. FLA acknowledge the Research Council of Norway who has contributed though the grant 226244 (Norwegian NMR platform- NNP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  • 1.Rich MK, Vigneron N, Libourel C, Keller J, Xue L, Hajheidari M, et al. Lipid exchanges drove the evolution of mutualism during plant terrestrialization. Science. 2021;372(6544):864–8. doi: 10.1126/science.abg0929 [DOI] [PubMed] [Google Scholar]
  • 2.MacLean AM, Bravo A, Harrison MJ. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell. 2017;29(10):2319–35. doi: 10.1105/tpc.17.00555 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Delaux PM, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M, Volkening JD, et al. Algal ancestor of land plants was preadapted for symbiosis. Proc Natl Acad Sci U S A. 2015;112(43):13390–5. doi: 10.1073/pnas.1515426112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, et al. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell. 2005;17(8):2217–29. doi: 10.1105/tpc.105.032714 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Oldroyd GE. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol. 2013;11(4):252–63. doi: 10.1038/nrmicro2990 [DOI] [PubMed] [Google Scholar]
  • 6.Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, et al. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 2006;4(7):e226. doi: 10.1371/journal.pbio.0040226 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435(7043):824–7. doi: 10.1038/nature03608 [DOI] [PubMed] [Google Scholar]
  • 8.Genre A, Chabaud M, Balzergue C, Puech-Pages V, Novero M, Rey T, et al. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 2013;198(1):190–202. doi: 10.1111/nph.12146 [DOI] [PubMed] [Google Scholar]
  • 9.Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 2011;469(7328):58–63. doi: 10.1038/nature09622 [DOI] [PubMed] [Google Scholar]
  • 10.Feng F, Sun J, Radhakrishnan GV, Lee T, Bozsoki Z, Fort S, et al. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat Commun. 2019;10(1):5047. doi: 10.1038/s41467-019-12999-5 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG, Summers W, et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science. 2015;350(6267):1521–4. doi: 10.1126/science.aac9715 [DOI] [PubMed] [Google Scholar]
  • 12.Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell. 2005;17(12):3489–99. doi: 10.1105/tpc.105.035410 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Gutjahr C, Parniske M. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol. 2013;29:593–617. doi: 10.1146/annurev-cellbio-101512-122413 [DOI] [PubMed] [Google Scholar]
  • 14.Harrison MJ. Cellular programs for arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 2012;15(6):691–8. doi: 10.1016/j.pbi.2012.08.010 [DOI] [PubMed] [Google Scholar]
  • 15.Floss DS, Levy JG, Levesque-Tremblay V, Pumplin N, Harrison MJ. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A. 2013;110(51):E5025–34. doi: 10.1073/pnas.1308973110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, et al. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell. 2008;20(11):2989–3005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, Bohmer MJ, et al. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Curr Biol. 2016;26(8):987–98. doi: 10.1016/j.cub.2016.01.069 [DOI] [PubMed] [Google Scholar]
  • 18.Yano K, Yoshida S, Muller J, Singh S, Banba M, Vickers K, et al. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci U S A. 2008;105(51):20540–5. doi: 10.1073/pnas.0806858105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Kawaharada Y, Kelly S, Nielsen MW, Hjuler CT, Gysel K, Muszynski A, et al. Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature. 2015;523(7560):308–12. doi: 10.1038/nature14611 [DOI] [PubMed] [Google Scholar]
  • 20.Kelly SJ, Muszynski A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, et al. Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Mol Plant Microbe Interact. 2013;26(3):319–29. doi: 10.1094/MPMI-09-12-0227-R [DOI] [PubMed] [Google Scholar]
  • 21.Kawaharada Y, Nielsen MW, Kelly S, James EK, Andersen KR, Rasmussen SR, et al. Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun. 2017;8:14534. doi: 10.1038/ncomms14534 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Wong J, Gysel K, Birkefeldt TG, Vinther M, Muszynski A, Azadi P, et al. Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nat Commun. 2020;11(1):3797. doi: 10.1038/s41467-020-17568-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Kamal N, Mun T, Reid D, Lin JS, Akyol TY, Sandal N, et al. Insights into the evolution of symbiosis gene copy number and distribution from a chromosome-scale Lotus japonicus Gifu genome sequence. DNA Res. 2020;27(3). doi: 10.1093/dnares/dsaa015 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. doi: 10.1038/s41586-021-03819-2 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold—Making protein folding accessible to all. bioRxiv. 2021; doi: 10.1101/2021.08.15.456425 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Dupin S, Klein J, Rutten L, Huisman R, Geurts R. Pseudogenization of the rhizobium-responsive EXOPOLYSACCHARIDE RECEPTOR in Parasponia is a rare event in nodulating plants. BMC Plant Biol. 2022;22(1):225. doi: 10.1186/s12870-022-03606-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Quilbe J, Lamy L, Brottier L, Leleux P, Fardoux J, Rivallan R, et al. Genetics of nodulation in Aeschynomene evenia uncovers mechanisms of the rhizobium-legume symbiosis. Nat Commun. 2021;12(1):829. doi: 10.1038/s41467-021-21094-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Harrison MJ, Dewbre GR, Liu J. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 2002;14(10):2413–29. doi: 10.1105/tpc.004861 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Malolepszy A, Mun T, Sandal N, Gupta V, Dubin M, Urbanski D, et al. The LORE1 insertion mutant resource. Plant J. 2016;88(2):306–17. doi: 10.1111/tpj.13243 [DOI] [PubMed] [Google Scholar]
  • 30.Balestrini R, Romera C, Puigdomenech P, Bonfante P. Location of a cell-wall hydroxyproline-rich glycoprotein, cellulose and β-1,3-glucans in apical and differentiated regions of maize mycorrhizal roots. Planta. 1994;195(2):201–9. [Google Scholar]
  • 31.Wawra S, Fesel P, Widmer H, Timm M, Seibel J, Leson L, et al. The fungal-specific beta-glucan-binding lectin FGB1 alters cell-wall composition and suppresses glucan-triggered immunity in plants. Nat Commun. 2016;7:13188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Read SM, Currie G, Bacic A. Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr Res. 1996;281(2):187–201. doi: 10.1016/0008-6215(95)00350-9 [DOI] [PubMed] [Google Scholar]
  • 33.Menshova RV, Ermakova SP, Anastyuk SD, Isakov VV, Dubrovskaya YV, Kusaykin MI, et al. Structure, enzymatic transformation and anticancer activity of branched high molecular weight laminaran from brown alga Eisenia bicyclis. Carbohydr Polym. 2014;99:101–9. [DOI] [PubMed] [Google Scholar]
  • 34.Chandrasekar B, Wanke A, Wawra S, Saake P, Mahdi L, Charura N, et al. Fungi hijack a ubiquitous plant apoplastic endoglucanase to release a ROS scavenging beta-glucan decasaccharide to subvert immune responses. Plant Cell. 2022;34(7):2765–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Aziz A, Poinssot B, Daire X, Adrian M, Bézier A, Lambert B, et al. Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Mol Plant Microbe Interact. 2003;16(12):1118–28. doi: 10.1094/MPMI.2003.16.12.1118 [DOI] [PubMed] [Google Scholar]
  • 36.Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, et al. Linear β-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 2000;124(3):1027–37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Wanke A, Rovenich H, Schwanke F, Velte S, Becker S, Hehemann JH, et al. Plant species-specific recognition of long and short beta-1,3-linked glucans is mediated by different receptor systems. Plant J. 2020;102(6):1142–56. [DOI] [PubMed] [Google Scholar]
  • 38.Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, et al. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun. 2010;1:10. doi: 10.1038/ncomms1009 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Kelly S, Mun T, Stougaard J, Ben C, Andersen SU. Distinct Lotus japonicus Transcriptomic Responses to a Spectrum of Bacteria Ranging From Symbiotic to Pathogenic. Front Plant Sci. 2018;9:1218. doi: 10.3389/fpls.2018.01218 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Munch D, Gupta V, Bachmann A, Busch W, Kelly S, Mun T, et al. The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression. Plant Physiol. 2018;176(2):1598–609. doi: 10.1104/pp.17.01606 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Lohmann GV, Shimoda Y, Nielsen MW, Jorgensen FG, Grossmann C, Sandal N, et al. Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol Plant Microbe Interact. 2010;23(4):510–21. doi: 10.1094/MPMI-23-4-0510 [DOI] [PubMed] [Google Scholar]
  • 42.Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, et al. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 2014;55(11):1864–72. doi: 10.1093/pcp/pcu129 [DOI] [PubMed] [Google Scholar]
  • 43.Roth R, Chiapello M, Montero H, Gehrig P, Grossmann J, O’Holleran K, et al. A rice Serine/Threonine receptor-like kinase regulates arbuscular mycorrhizal symbiosis at the peri-arbuscular membrane. Nat Commun. 2018;9(1):4677. doi: 10.1038/s41467-018-06865-z [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Liao D, Sun X, Wang N, Song F, Liang Y. Tomato LysM Receptor-Like Kinase SlLYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. Front Plant Sci. 2018;9:1004. doi: 10.3389/fpls.2018.01004 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Gibelin-Viala C, Amblard E, Puech-Pages V, Bonhomme M, Garcia M, Bascaules-Bedin A, et al. The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. New Phytol. 2019;223(3):1516–29. doi: 10.1111/nph.15891 [DOI] [PubMed] [Google Scholar]
  • 46.Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen KR, et al. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci U S A. 2017;114(38):E8118–E27. doi: 10.1073/pnas.1706795114 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Rasmussen SR, Fuchtbauer W, Novero M, Volpe V, Malkov N, Genre A, et al. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor. Sci Rep. 2016;6:29733. doi: 10.1038/srep29733 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, et al. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife. 2014;3(e03766). [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Madsen EB, Antolin-Llovera M, Grossmann C, Ye J, Vieweg S, Broghammer A, et al. Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5. Plant J. 2011;65(3):404–17. doi: 10.1111/j.1365-313X.2010.04431.x [DOI] [PubMed] [Google Scholar]
  • 50.Rübsam H, Krönauer C, Abel NB, Ji H, Lironi D, Hansen SB, et al. Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis. Science. 2023;379(6629):272–7. doi: 10.1126/science.ade9204 [DOI] [PubMed] [Google Scholar]
  • 51.Pietraszewska-Bogiel A, Lefebvre B, Koini MA, Klaus-Heisen D, Takken FL, Geurts R, et al. Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLoS ONE. 2013;8(6):e65055. doi: 10.1371/journal.pone.0065055 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Barbour WM, Hattermann DR, Stacey G. Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl Environ Microbiol. 1991;57(9):2635–9. doi: 10.1128/aem.57.9.2635-2639.1991 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Bozsoki Z, Gysel K, Hansen SB, Lironi D, Kronauer C, Feng F, et al. Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science. 2020;369(6504):663–70. doi: 10.1126/science.abb3377 [DOI] [PubMed] [Google Scholar]
  • 54.Fliegmann J, Canova S, Lachaud C, Uhlenbroich S, Gasciolli V, Pichereaux C, et al. Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula. ACS Chem Biol. 2013;8(9):1900–6. doi: 10.1021/cb400369u [DOI] [PubMed] [Google Scholar]
  • 55.Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J. Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP. Structure. 2016;24(7):1192–200. doi: 10.1016/j.str.2016.04.014 [DOI] [PubMed] [Google Scholar]
  • 56.Gysel K, Laursen M, Thygesen MB, Lironi D, Bozsoki Z, Hjuler CT, et al. Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proc Natl Acad Sci U S A. 2021;118(44). doi: 10.1073/pnas.2111031118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57.Liu T, Liu Z, Song C, Hu Y, Han Z, She J, et al. Chitin-Induced Dimerization Activates a Plant Immune Receptor. Science. 2012;336:1160–4. doi: 10.1126/science.1218867 [DOI] [PubMed] [Google Scholar]
  • 58.Handberg K, Stougaard J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 1992;2:487–96. [Google Scholar]
  • 59.Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU. Lotus Base: An integrated information portal for the model legume Lotus japonicus. Sci Rep. 2016;6:1–18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Urbanski DF, Malolepszy A, Stougaard J, Andersen SU. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus. Plant J. 2012;69(4):731–41. doi: 10.1111/j.1365-313X.2011.04827.x [DOI] [PubMed] [Google Scholar]
  • 61.Hansen J, Jorgensen JE, Stougaard J, Marcker KA. Hairy roots—a short cut to transgenic root nodules. Plant Cell Rep. 1989;8(1):12–5. doi: 10.1007/BF00735768 [DOI] [PubMed] [Google Scholar]
  • 62.Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, et al. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol. 2002;184(11):3086–95. doi: 10.1128/JB.184.11.3086-3095.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Kelly S, Sullivan J, Ronson C, Tian R, Bräu L, Munk C, et al. Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. Stand Genomic Sci. 2014;9(1):1–7. doi: 10.1186/1944-3277-9-6 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Kelly S, Sullivan JT, Kawaharada Y, Radutoiu S, Ronson CW, Stougaard J. Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environ Microbiol. 2018;20(1):97–110. doi: 10.1111/1462-2920.14006 [DOI] [PubMed] [Google Scholar]
  • 65.Stougaard J, Abildsten D, Marcker K. The Agrobacterium rhizogenes pRi TL-DNA segment as a gene vector system for transformation of plants. Mol Gen Genet. 1987;207(2–3):251–5. [Google Scholar]
  • 66.Stougaard J. Agobacterium rhizogenes as a Vector for Transforming Higher Plants. In: Jones H, editor. Plant Gene Transfer and Expression Protocols. Totowa, NJ: Springer New York; 1995. p. 49–61. [Google Scholar]
  • 67.Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS ONE. 2009;4(5):e5553. doi: 10.1371/journal.pone.0005553 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. doi: 10.1006/jmbi.2000.4315 [DOI] [PubMed] [Google Scholar]
  • 69.Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3. doi: 10.1038/s41587-019-0036-z [DOI] [PubMed] [Google Scholar]
  • 70.Chakraborty S, Trihemasava K, Xu G. Modifying Baculovirus Expression Vectors to Produce Secreted Plant Proteins in Insect Cells. J Vis Exp. 2018(138). doi: 10.3791/58283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Black I, Heiss C, Carlson RW, Azadi P. Linkage Analysis of Oligosaccharides and Polysaccharides: A Tutorial. Methods Mol Biol. 2021;2271:249–71. [DOI] [PubMed] [Google Scholar]
  • 72.Muszynski A, Heiss C, Hjuler CT, Sullivan JT, Kelly SJ, Thygesen MB, et al. Structures of Exopolysaccharides Involved in Receptor-mediated Perception of Mesorhizobium loti by Lotus japonicus. J Biol Chem. 2016;291(40):20946–61. doi: 10.1074/jbc.M116.743856 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Vierheilig H, Coughlan AP, Wyss U, Piche Y. Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol. 1998;64(12):5004–7. doi: 10.1128/AEM.64.12.5004-5007.1998 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol. 1990;115(3):495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x [DOI] [PubMed] [Google Scholar]
  • 76.Wawra S, Fesel P, Widmer H, Neumann U, Lahrmann U, Becker S, et al. FGB1 and WSC3 are in planta-induced beta-glucan-binding fungal lectins with different functions. New Phytol. 2019;222(3):1493–506. [DOI] [PubMed] [Google Scholar]
  • 77.Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17. doi: 10.1104/pp.105.063743 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62–6. doi: 10.1016/s0304-3940(02)01423-4 [DOI] [PubMed] [Google Scholar]
  • 79.Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9. doi: 10.1038/nmeth.4197 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Lin J, Roswanjaya YP, Kohlen W, Stougaard J, Reid D. Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus. Nat Commun. 2021;12(1):6544. doi: 10.1038/s41467-021-26820-9 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria; 2017.
  • 83.Kim Y, Kim E, Cheong C, Williams DL, Kim C, Lim S. Structural characterization of b-D-(1–3, 1–6)-linked glucans using NMR spectroscopy. Carbohydr Res. 2000;328(3):331–41. [DOI] [PubMed] [Google Scholar]

Decision Letter 0

Paula Jauregui, PhD

20 Jun 2022

Dear Dr. Stougaard,

Thank you for submitting your manuscript entitled "A Lotus japonicus glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia." for consideration as a Research Article by PLOS Biology.

Your manuscript has now been evaluated by the PLOS Biology editorial staff, as well as by an academic editor with relevant expertise, and I am writing to let you know that we would like to send your submission out for external peer review.

However, before we can send your manuscript to reviewers, we need you to complete your submission by providing the metadata that is required for full assessment. To this end, please login to Editorial Manager where you will find the paper in the 'Submissions Needing Revisions' folder on your homepage. Please click 'Revise Submission' from the Action Links and complete all additional questions in the submission questionnaire.

Once your full submission is complete, your paper will undergo a series of checks in preparation for peer review. After your manuscript has passed the checks it will be sent out for review. To provide the metadata for your submission, please Login to Editorial Manager (https://www.editorialmanager.com/pbiology) within two working days, i.e. by Jun 22 2022 11:59PM.

If your manuscript has been previously peer-reviewed at another journal, PLOS Biology is willing to work with those reviews in order to avoid re-starting the process. Submission of the previous reviews is entirely optional and our ability to use them effectively will depend on the willingness of the previous journal to confirm the content of the reports and share the reviewer identities. Please note that we reserve the right to invite additional reviewers if we consider that additional/independent reviewers are needed, although we aim to avoid this as far as possible. In our experience, working with previous reviews does save time.

If you would like us to consider previous reviewer reports, please edit your cover letter to let us know and include the name of the journal where the work was previously considered and the manuscript ID it was given. In addition, please upload a response to the reviews as a 'Prior Peer Review' file type, which should include the reports in full and a point-by-point reply detailing how you have or plan to address the reviewers' concerns.

During the process of completing your manuscript submission, you will be invited to opt-in to posting your pre-review manuscript as a bioRxiv preprint. Visit http://journals.plos.org/plosbiology/s/preprints for full details. If you consent to posting your current manuscript as a preprint, please upload a single Preprint PDF.

Feel free to email us at plosbiology@plos.org if you have any queries relating to your submission.

Kind regards,

Paula

Paula Jauregui, PhD,

Senior Editor

PLOS Biology

pjaureguionieva@plos.org

Decision Letter 1

Paula Jauregui, PhD

9 Sep 2022

Dear Dr. Stougaard,

Thank you for your patience while your manuscript "A Lotus japonicus glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia." was peer-reviewed at PLOS Biology. Your manuscript has been evaluated by the PLOS Biology editors, an Academic Editor with relevant expertise, and by several independent reviewers.

As you will see in the reviewer reports, which can be found at the end of this email, although the reviewers find the work potentially interesting, they have also raised a substantial number of important concerns. Based on their specific comments and following discussion with the Academic Editor, it is clear that a substantial amount of work would be required to meet the criteria for publication in PLOS Biology. However, given our and the reviewer interest in your study, we would be open to inviting a comprehensive revision of the study that thoroughly addresses all the reviewers' comments. Given the extent of revision that would be needed, we cannot make a decision about publication until we have seen the revised manuscript and your response to the reviewers' comments. Your revised manuscript would need to be seen by the reviewers again, but please note that we would not engage them unless their main concerns have been addressed.

You will see that the reviewers agree that the manuscript is an interesting article and a potentially important contribution to the field, particularly because there are just a few ECD from RLKs that have been described to bind glycans, but consider that the work would need a substantial revision, additional experiments, and probably a relevant reorientation of the conclusion and models, to provide the strength of advance that PLOS Biology strives to publish. At the end of this letter you will find the comments from the academic editor where the most important points to address are highlighted.

We appreciate that these requests represent a great deal of extra work, and we are willing to relax our standard revision time to allow you 6 months to revise your study. Please email us (plosbiology@plos.org) if you have any questions or concerns, or envision needing a (short) extension.

At this stage, your manuscript remains formally under active consideration at our journal; please notify us by email if you do not intend to submit a revision so that we may withdraw it.

**IMPORTANT - SUBMITTING YOUR REVISION**

Your revisions should address the specific points made by each reviewer. Please submit the following files along with your revised manuscript:

1. A 'Response to Reviewers' file - this should detail your responses to the editorial requests, present a point-by-point response to all of the reviewers' comments, and indicate the changes made to the manuscript.

*NOTE: In your point by point response to the reviewers, please provide the full context of each review. Do not selectively quote paragraphs or sentences to reply to. The entire set of reviewer comments should be present in full and each specific point should be responded to individually, point by point.

You should also cite any additional relevant literature that has been published since the original submission and mention any additional citations in your response.

2. In addition to a clean copy of the manuscript, please also upload a 'track-changes' version of your manuscript that specifies the edits made. This should be uploaded as a "Revised Article with Changes Highlighted " file type.

*Resubmission Checklist*

When you are ready to resubmit your revised manuscript, please refer to this resubmission checklist: https://plos.io/Biology_Checklist

To submit a revised version of your manuscript, please go to https://www.editorialmanager.com/pbiology/ and log in as an Author. Click the link labelled 'Submissions Needing Revision' where you will find your submission record.

Please make sure to read the following important policies and guidelines while preparing your revision:

*Published Peer Review*

Please note while forming your response, if your article is accepted, you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out. Please see here for more details:

https://blogs.plos.org/plos/2019/05/plos-journals-now-open-for-published-peer-review/

*PLOS Data Policy*

Please note that as a condition of publication PLOS' data policy (http://journals.plos.org/plosbiology/s/data-availability) requires that you make available all data used to draw the conclusions arrived at in your manuscript. If you have not already done so, you must include any data used in your manuscript either in appropriate repositories, within the body of the manuscript, or as supporting information (N.B. this includes any numerical values that were used to generate graphs, histograms etc.). For an example see here: http://www.plosbiology.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.1001908#s5

*Blot and Gel Data Policy*

We require the original, uncropped and minimally adjusted images supporting all blot and gel results reported in an article's figures or Supporting Information files. We will require these files before a manuscript can be accepted so please prepare them now, if you have not already uploaded them. Please carefully read our guidelines for how to prepare and upload this data: https://journals.plos.org/plosbiology/s/figures#loc-blot-and-gel-reporting-requirements

*Protocols deposition*

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols

Thank you again for your submission to our journal. We hope that our editorial process has been constructive thus far, and we welcome your feedback at any time. Please don't hesitate to contact us if you have any questions or comments.

Sincerely,

Paula

---

Paula Jauregui, PhD,

Senior Editor

PLOS Biology

pjaureguionieva@plos.org

-----------------------------------------

REVIEWS:

Reviewer #1: Rhizobia and Arbuscular Mycorrhizal Symbiosis including receptor signaling

Reviewer #2: Glycan sensing in plants

Reviewer #1: In the manuscript entitled "A Lotus japonicus glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia" Kelly et al. identified a novel LysM-RLK protein EPR3a from L. japonicus. They performed biochemical, molecular, and functional characterization of EPR3a in arbuscular and legume-rhizobia symbioses. In this manuscript, the authors investigated the binding of EPR3a to branched glycans and the perception of rhizobial exopolysaccharide, which is one of the determinants of the specificity of plant-microbe interaction. The authors used LORE1 mutant lines of EPR3a for functional characterization of this protein in arbuscular mycorrhiza association. Finally, the authors used kinase assays to validate in vitro kinase activity of EPR3 and EPR3a. In my opinion, this manuscript suffers from significant flaws.

1- Many essential controls and critical experiments are missing. This story is highly biased towards symbiosis while it seems likely that EPR3 is a general fungal MAMP receptor:

* The authors performed binding assays between EPR3a ectodomain and glycans obtained from algae (E. bicyclis and L. digitata)... and a fungus irrelevant to the biology of L. japonicus. Since they try to make a case for the role of EPR3a protein in AM symbiosis, the authors should have used fungal extracts from AM fungi and possibly pathogenic fungi relevant to L. japonicus. Using biologically relevant fungal cell wall extracts, the authors would have addressed whether the EPR3a activity is conserved across fungi, involving symbiotic and pathogenic interactions and whether symbiotic or pathogenic interaction dominates in virtue of EPR3a activity.

* The authors checked the nodule number and arbuscular formation, the mature stages of root nodule, and AM symbiosis. Since the protein acts downstream of Nod factor perception, they should have checked the change in expression of genes involved in the SYM pathway, such as NIN and nuclear calcium spiking. Do glycans activate calcium spiking in L. japonicus? Do glycans activate or repress defense signaling in L. japonicus?

* Since the binding seems conserved with algal glycans, it seems likely that glycans from pathogenic fungi will bind EPR3a too. The authors should not frame their story so narrowly around symbiosis and test phenotypes of L. japonicus epr3a mutants with pathogenic fungi too.

* Since the authors used LORE1 mutants in this study which possess several insertions in the genome, it is not sure if the phenotype obtained is due to non-functional EPR3 and EPR3a only. It is necessary to perform some complementation assays to determine that the observed phenotypes are due to mutations in EPR3a or EPRw, not mutations in other genes.

* The authors performed an RT-qPCR in the root, nodules, and arbuscular mycorrhizal symbiosis. However, they have not shown any data on the expression of EPR3a in other plant tissues or response to fungal pathogens. While missing the expression analysis in other tissues, the authors neglected its role in different plant tissues or biotic interactions.

2- Inconsistencies between the data presented in figures and text.

* Line 102: "In this study, we report on the identification and characterization of a novel glycan receptor kinase in Lotus that we have designated EPR3a." The authors identified a novel receptor kinase; however, Line 125 says, "A wider search in the genome databases shows that this class of LysM-RLKs is widely conserved in the plant kingdom (22), with either EPR3a or EPR3 or both present in genomes of most plants forming endosymbiosis with mycorrhiza and/or rhizobia (26)." The authors have not presented any data to show the conservation of EPR3a in other plant genomes, and the same is not present in the references cited.

* In the glycans binding assays in Fig. 4, the authors have not used the EPR3 binding ligand. EPR3 binding ligand would have ensured that the EPR3 protein used in the assay was functionally active. Additionally, there are two bands in the EPR3 lanes; can the authors give a plausible reason behind the two bands in the case of EPR3.

* In Supplementary Fig. 6, the authors showed that EPR3 could bind with a low affinity to E. bicyclis glycan; however, the gel in Fig. 4 does not correlate with this statement.

* EPR3a binds with a stronger affinity to S. indica decasaccharide (Kd:~51.2 μM) compared to E. bicyclis glycan (Kd:~247.7 μM), which again indicates that more assays are required to determine the binding affinity of EPR3a with pathogenic or symbiotic signals.

* As per Fig. 5, EPR3a shows higher binding affinity with R. leguminosarum EPS (Kd: ~12.5 μM) compared to M. loti EPS (Kd: ~44.4 μM). This result is contradictory as M. loti is a host for L. japonicus.

3- Some statements are inaccurate:

* Line 135: "In contrast, Epr3 expression did not differ between mock and AM treatments." however, the expression of EPR3 differed between mock and AM treatments at 2 DPI.

* In Line 171 authors state, "Arbuscule development in epr3a mutants appears indistinguishable from arbuscule development in wild-type plants, suggesting a role for EPR3a in fungal entry into cortical cells rather than in arbuscule accommodation." however, in line 182 authors make a statement that, "Localisation of Epr3a expression in arbusculated cells and the reduced frequency of arbuscule development in epr3a-1 and epr3a-2 mutants." These two statements are contradictory; maybe the authors wanted to make a statement about arbuscular structure.

Reviewer #2: The article by Kelly et al., describes the identification and characterization of a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide (EPS) receptor EPR3 previously described. EPR3a seems to bind β-1,3 glucans with different β-1,6 branching patterns, which have been described to be characteristic of surface-exposed fungal glucans. EPR3a plays a function in the colonization of Arbuscular Mycorrhiza (AM), since epr3a mutants are defective in different steps of the colonization process. Since cell walls/surface of AM has been suggested to contain β-1,3/β-1,6 glucan, the authors conclude that EPR3a is involved in the perception of this type of glucans from AM. However, purification of these β-1,3/β-1,6 glucans from AM cell walls has not been either performed previously nor in the current article. The demonstration of β-1,3/β-1,6 glucans binding by the extracellular domains (EC), with LysM structures, of EPR2a and EPR has been demonstrated using two approaches: i) affinity gel electrophoresis assays, that is not a very accurate approach, and ii) MST, that is a more precise technology, though clearly has some limitations in EC-glucan binding assays due to precipitation of glucans at high concentration. Based on MST data, the authors conclude that EPR3a binds different types of β-1,3/β-1,6 glucans, but also rhizobial exopolysaccharide (EPS) that is mainly enriched in β-1,6 glucans. Notably, the affinities of EPR3a for the complex mixtures of glucans tested are comparable to those previously described for EPS-EC-EPR3. Though the article lacks the characterization of the specific β-1,3/β-1,6 glucan structure/s recognized by EPR3a and EPR3, the authors show that their ECs bind β-GD, a well-defined β-1,3/β-1,6 glucan present in different fungi. Based on these findings they propose that the activity of EPR3-type receptors in plants is to monitor glycans produced by microbes during their colonization and to regulate intracellular accommodation of microbes and the adaptative response of AM. The results of the article suggest contrasting expression patterns and the authors suggest divergent ligand affinities of EPR3a and EPR3 that explain their distinct functions in AM colonization and rhizobial infection in Lotus japonicus, though these differences in specificity for some ligands tested are quite low and accordingly some conclusion should be weakened. The article contains very interesting new data, and clearly contributes to increase the number of plants RLKs that have been shown to bind glycans, expanding our knowledge in this field of RLK-ligan (glycan) recognition.

Major Points:

1. Purified glucans from AM fungal cell walls are not available, therefore, the binding capacity of EPR3a ectodomains was tested in native affinity gel electrophoresis and MST using β-glucans that might or not be present in AM cell walls. The laminarins used in the experiments, that are β-1,3 glucans with β-1,6 branched found in fungal cell wall, are quite complexes in their composition. Though the results of MST seem to be clear, the fact that these very complex mixtures of glucans were used for the binding assays do not contribute to clarify the minimal structure that is perceived by these ECs. Though the article shows that β-GD, a well-defined β-1,3/β-1,6 glucan is bound by both EC receptors, it is not clear if this minimal structure is present in AM cell walls. It would be very interesting to test the binding of short structures (Degree of Polymerizayion of 6 to 12) of pure linear β-1,3 and linear β-1,6 glucan in MST assays or ITC . Some of these pure oligosaccharides are commercially available. These analyses will clarify if β-1,6 branching is really required or not for ECs binding of β-glucans. It is hard to understand at the structural level that ECs of EPR3a and EPR could bind laminarin and EPS.

2. The use of glucan preparations (e.g. scleroglucan, pustulan) enriched in some β-glucans as negative controls might not be appropriate since, as the authors indicate, to work with these polymeric preparations is kind of risky because they contained a diversity of unknown structures and some binding/not binding results could be due to changes in solution viscosity (gelation) and precipitation, which is a well-known property of β-glucans at high concentrations. This is clearly a limitation of working with glucans, but some additional experiments (see 1) to further support authors conclusion could be performed.

3. Interestingly, EPR3a ectodomains can also bind rhizobial EPS from M. loti, S. meliloti, and R. leguminosarum with μM affinity, and the affinity for M. loti EPS is comparable to that of S. indica decasaccharide β-glucan. As indicated in 1, this is quite surprising and interesting, but also indicates that the binding specificity for some glucans is low or the glucan structures present in EPS and laminarin which are bound by ECs are more similar than anticipated.

4. Surprisingly, epr3a epr3 double mutants were less severely impaired than epr3a single mutants, forming IT numbers comparable to epr3-11, This result suggests direct interaction between the EPR3a and EPR3 receptors or convergence of downstream signal transduction pathway. Based on these results, the authors suggests that EPR3 in the absence of EPR3a is a negative regulator and EPR3a normally acts to counter this negative regulation. However, this hypothesis has not been validated testing the regulation by EPR3a and EPR3 of downstream components of AM and rhizobia colonization pathways. The characterization of downstream events is in general poor in this article.

Minor Points

1. Legends of Figures with MST data are incomplete. Some concepts like n, different time points, etc. are not well explained in the legend to figures. The values in the Y axe is not explained either.

2. The authors used to ecotypes of Lotus japonica Gifu and Lotus Base (mutants background). Are those genotypes the same? This must be clarified.

3. Reference 27 is incomplete

4. Perception of β-GD, a well-defined β-1,3/β-1,6 glucan present in different fungi was found to be perceived by EPR3 and EPR3a receptors, but it has been described to be released by fungi for ROS scavenging beta-glucan to subvert immune responses. How this function of β-GD match with the binding data and functions of EPR3a and EPR3? Is Ros production altered in EPR3a and EPR3 mutants treated with β-GD?

5. The Figure of the expression of EC proteins is not clear explained in Legends to Figures.

COMMENTS FROM THE ACADEMIC EDITOR:

In particular, I would like to see the following major points addressed:

1) the limitations of using of crude preps from algae rather than relevant fungi or purified glucans was brought up by both reviewers and calls into question the specificity of the receptor. This should be addressed with either commercially available purified molecules or crude preps from AM fungi with relevant controls.

2) I also agree that testing how EPR3a and EPR3 affect downstream regulation of symbiosis signaling is important to put these receptors into the context of the extensive literature.

3) I do agree that the findings are biased towards AM fungi/symbiosis and it is entirely possible that the proteins also play a role in general immunity against fungi. I think addressing this point from reviewer 1 would strengthen the paper. However, I don’t think their fundings or conclusions preclude this idea and so I think this could also be addressed by modifying the conclusions.

4) a point-by-point response to all other concerns brought up by reviewers.

Decision Letter 2

Paula Jauregui, PhD

30 Mar 2023

Dear Dr. Stougaard,

Thank you for your patience while we considered your revised manuscript "A Lotus japonicus glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia." for publication as a Research Article at PLOS Biology. This revised version of your manuscript has been evaluated by the PLOS Biology editors, the Academic Editor and one of the original reviewers.

Based on the reviews and our Academic Editor's assessment of your revision, we are likely to accept this manuscript for publication, provided you satisfactorily address the remaining points raised by the reviewers. You should respond to the reviewer's concerns and we consider that the issues can be addressed by text modifications. Regarding the issue about "pure structures should be tested”, we think you should clarify earlier in the manuscript that “laminarin, which has the beta-1,6 branched beta-1,3 glucans also found in fungal cell walls” is a mix of different beta-1,6 branched beta 1,3 glucans as you resolve later by NMR. Regarding EPR3 having similar binding affinity as EPR3a (page 27, line 238-240), you show that EPR3a uniquely binds to beta-1,6 branched beta-1,3 glucans while both bind to beta-1,3 glucans with similar affinity, and we think that this does not undermine the central conclusions of the manuscript. Regarding the ROS data, we consider that pathogen assays are beyond the scope of the manuscript.

Please also make sure to address the following data and other policy-related requests.

1. DATA POLICY:

You may be aware of the PLOS Data Policy, which requires that all data be made available without restriction: http://journals.plos.org/plosbiology/s/data-availability. For more information, please also see this editorial: http://dx.doi.org/10.1371/journal.pbio.1001797

Note that we do not require all raw data. Rather, we ask that all individual quantitative observations that underlie the data summarized in the figures and results of your paper be made available in one of the following forms:

A) Supplementary files (e.g., excel). Please ensure that all data files are uploaded as 'Supporting Information' and are invariably referred to (in the manuscript, figure legends, and the Description field when uploading your files) using the following format verbatim: S1 Data, S2 Data, etc. Multiple panels of a single or even several figures can be included as multiple sheets in one excel file that is saved using exactly the following convention: S1_Data.xlsx (using an underscore).

B) Deposition in a publicly available repository. Please also provide the accession code or a reviewer link so that we may view your data before publication.

Regardless of the method selected, please ensure that you provide the individual numerical values that underlie the summary data displayed in the following figure panels as they are essential for readers to assess your analysis and to reproduce it: Figures 1A, 2A, 3ABC, 5BCD, 6ABCD, 7A, 8ABC, and Supplementary Figures S4A, S6ABCD, S7BC, S8AC, S9BE, S10ABCDEFG, S11ABCD, S13ABCD.

NOTE: the numerical data provided should include all replicates AND the way in which the plotted mean and errors were derived (it should not present only the mean/average values).

Please also ensure that figure legends in your manuscript include information on where the underlying data can be found, and ensure your supplemental data file/s has a legend.

Please ensure that your Data Statement in the submission system accurately describes where your data can be found.

2. We suggest a change in the title to include that Lotus japonicus is a legume: "A glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia in the legume Lotus japonicus".

As you address these items, please take this last chance to review your reference list to ensure that it is complete and correct. If you have cited papers that have been retracted, please include the rationale for doing so in the manuscript text, or remove these references and replace them with relevant current references. Any changes to the reference list should be mentioned in the cover letter that accompanies your revised manuscript.

We expect to receive your revised manuscript within two weeks.

To submit your revision, please go to https://www.editorialmanager.com/pbiology/ and log in as an Author. Click the link labelled 'Submissions Needing Revision' to find your submission record. Your revised submission must include the following:

- a cover letter that should detail your responses to any editorial requests, if applicable, and whether changes have been made to the reference list

- a Response to Reviewers file that provides a detailed response to the reviewers' comments (if applicable)

- a track-changes file indicating any changes that you have made to the manuscript.

NOTE: If Supporting Information files are included with your article, note that these are not copyedited and will be published as they are submitted. Please ensure that these files are legible and of high quality (at least 300 dpi) in an easily accessible file format. For this reason, please be aware that any references listed in an SI file will not be indexed. For more information, see our Supporting Information guidelines:

https://journals.plos.org/plosbiology/s/supporting-information

*Published Peer Review History*

Please note that you may have the opportunity to make the peer review history publicly available. The record will include editor decision letters (with reviews) and your responses to reviewer comments. If eligible, we will contact you to opt in or out. Please see here for more details:

https://blogs.plos.org/plos/2019/05/plos-journals-now-open-for-published-peer-review/

*Press*

Should you, your institution's press office or the journal office choose to press release your paper, please ensure you have opted out of Early Article Posting on the submission form. We ask that you notify us as soon as possible if you or your institution is planning to press release the article.

*Protocols deposition*

To enhance the reproducibility of your results, we recommend that if applicable you deposit your laboratory protocols in protocols.io, where a protocol can be assigned its own identifier (DOI) such that it can be cited independently in the future. Additionally, PLOS ONE offers an option for publishing peer-reviewed Lab Protocol articles, which describe protocols hosted on protocols.io. Read more information on sharing protocols at https://plos.org/protocols?utm_medium=editorial-email&utm_source=authorletters&utm_campaign=protocols

Please do not hesitate to contact me should you have any questions.

Sincerely,

Paula

---

Paula Jauregui, PhD,

Senior Editor,

pjaureguionieva@plos.org,

PLOS Biology

------------------------------------------------------------------------

Reviewer remarks:

Reviewer #2: This is a clear improved version of the previous submitted article. Authors have clarified the majority of questions addressed, and have completed the majority of the information that was lacking in the previous article. The articles now shows that EPR3a binds β-1,3 glucans (Lam5 and Lam6) though with lower affinity than β-glucans with β-1,6-branches. However, this analysis is incomplete (additional pure structures should be tested) but based on the β-glucans available for comparison we might accept the experiments performed as those that were feasible. Surprisingly, the difference in specificity of EPR and EPR3a for the decasaccharide β-glucan is very low (it is almost identical).

The RNaseq data clarify some of the questions regarding the transcriptional responses activated. It is a shame that the authors did not include in the RNaseq analyses the beta-glucan that they used for binding experiments for comparison since this had been provided cleaner information about the responses triggered by the ligand and not just by the whole microorganism.

Last, the ROS response observed upon treatment with the β-glucan provides important information. However, since the decasaccharide is not triggering ROS, as described previously, it seems that ROS production observed upon L. digitata laminarin treatment, that is not reduced in EPR and EPR3a mutants, should be triggered by other β-glucan structures distinct from the decasaccharide. The interpretation of the authors might not be correct. I agree with reviewer 2 that the infection of mutants with a Lotus pathogen will contribute to clarify some key aspects of the function of the EPR3a receptor, but these experiments could be the matter of a different history.

Decision Letter 3

Paula Jauregui, PhD

18 Apr 2023

Dear Dr. Stougaard,

Thank you for the submission of your revised Research Article "A glycan receptor kinase facilitates intracellular accommodation of arbuscular mycorrhiza and symbiotic rhizobia in the legume Lotus japonicus" for publication in PLOS Biology. On behalf of my colleagues and the Academic Editor, Cara Haney, I am pleased to say that we can in principle accept your manuscript for publication, provided you address any remaining formatting and reporting issues. These will be detailed in an email you should receive within 2-3 business days from our colleagues in the journal operations team; no action is required from you until then. Please note that we will not be able to formally accept your manuscript and schedule it for publication until you have completed any requested changes.

Please take a minute to log into Editorial Manager at http://www.editorialmanager.com/pbiology/, click the "Update My Information" link at the top of the page, and update your user information to ensure an efficient production process.

PRESS

We frequently collaborate with press offices. If your institution or institutions have a press office, please notify them about your upcoming paper at this point, to enable them to help maximise its impact. If the press office is planning to promote your findings, we would be grateful if they could coordinate with biologypress@plos.org. If you have previously opted in to the early version process, we ask that you notify us immediately of any press plans so that we may opt out on your behalf.

We also ask that you take this opportunity to read our Embargo Policy regarding the discussion, promotion and media coverage of work that is yet to be published by PLOS. As your manuscript is not yet published, it is bound by the conditions of our Embargo Policy. Please be aware that this policy is in place both to ensure that any press coverage of your article is fully substantiated and to provide a direct link between such coverage and the published work. For full details of our Embargo Policy, please visit http://www.plos.org/about/media-inquiries/embargo-policy/.

Thank you again for choosing PLOS Biology for publication and supporting Open Access publishing. We look forward to publishing your study. 

Sincerely, 

Paula

---

Paula Jauregui, PhD,

Senior Editor

PLOS Biology

pjaureguionieva@plos.org

Associated Data

    This section collects any data citations, data availability statements, or supplementary materials included in this article.

    Supplementary Materials

    S1 Fig. Amino acid alignment of EPR3 and EPR3a.

    The “|” indicates perfect alignment, “:” indicates residues of similar properties, “.” indicates residues of dissimilar properties, and “-” indicates no alignment.

    (TIF)

    S2 Fig. EPR3a contains nonconventional carbohydrate-binding modules as predicted by a high-confidence Alphafold model.

    (A) Sequence alignment of the EPR3 and EPR3a M1 domain. Conserved and semi-conserved residues are highlighted in green and light green, respectively. The βαββ secondary structure signature of the EPR3 M1 crystal structure is indicated above the alignment. (B) Zoom of the EPR3 M1 crystal structure as compared to the Alphafold generated model of the EPR3a M1. EPR3a shows a strikingly high similarity to the EPR3 M1 with an identical βαββ structure. (C) The EPR3a ectodomain Alphafold model shown as a spectrum of the predicted local distance difference test (pLDDT) score. Blue colouring indicates a high pLDDT score and a high confidence in the modelled structure, whereas red colouring indicates a low pLDDT score and low confidence. See S1 Information for underlying data.

    (TIF)

    S3 Fig. EPR3-type RLKs are conserved in plants.

    (A) One or more EPR3-type RLKs are present throughout plant species. Pseudogenization or lack of gene identification coincides in some cases with the inability of plant species to establish root nodule symbiosis (RNS) or arbuscular mycorrhizal symbiosis (AMS). (B) A representative selection of EPR3-type ectodomains throughout plants shows a conserved protein architecture as determined by Alphafold modelling. The EPR3-type M1 (βαββ), M2 (βαβ), and LysM3 (βααβ) are highlighted. Ectodomains are shown in a cartoon representation and are spectrum coloured from blue at the N-terminus to red at the C-terminus. The RMSD (in Å) of Cα superpositioning to the EPR3 crystal structure is reported and indicates the degree of structural resemblance. See S1 Information for underlying data.

    (TIF)

    S4 Fig. Epr3a expression in Lotus tissues and Epr3 and Epr3a promoter activity in response to AM spore inoculation.

    (A) Expression data obtained from the Lotus expression atlas (Lotus Base http://lotus.au.dk). Epr3a expression is restricted to root tissues with increased expression in response to arbuscular mycorrhiza (AM_27dpi). (B) Transgenic roots expressing pEpr3a:GUS or pEpr3:GUS were inoculated with AM spores. GUS staining was performed on whole root systems 6 wpi. See S1 Data for underlying data.

    (TIF)

    S5 Fig. Epr3a gene model.

    Epr3a gene model with the position of LORE1 insertions in isolated mutant alleles indicated.

    (TIF)

    S6 Fig. LysM ectodomain purifications and EPR3a ectodomain NanoDSF quality control.

    (A) SEC profile and corresponding SDS-PAGE of the final purification step for the EPR3a ectodomain. Protein elutes as a single peak with an elution volume corresponding to a molecular weight of 32.8 kDa. SDS-PAGE analysis reveals a smeared band between the 25 and 35 kDa marker bands, fitting the weight estimate from SEC and an expected heterogenous N-glycosylated protein preparation. Weight estimates from SEC and SDS-PAGE fit well the theoretical molecular weight of 23.2 kDa for the monomeric protein, plus an additional average of approximately 10 kDa N-glycans. (B) A NanoDSF thermal stability assay was used as a quality control for protein preparations and to determine confidence in comparability between replicates in downstream binding assays. The thermal stability of 4 EPR3a ectodomain biological replicates was assayed with NanoDSF, showing that all 4 preparations had similar Ti. Each biological preparation was assayed in technical triplicates. (C, D) SEC chromatogram and corresponding SDS-PAGE for EPR3 and AtCERK1 ectodomain purifications. Both preparations, like EPR3a, elute as single peaks fitting monomeric N-glycosylated proteins and migrate as smeared bands between marker bands 25 and 35 kDa in SDS-PAGE. (A, C, D) M = molecular weight marker, Inp = input sample of SEC purification. Blue numbering in chromatograms corresponds to different fractions, which are also indicated in the corresponding SDS-PAGE. Blue dashed lines in chromatograms and the horizontal black lines above fraction numbering in SDS-PAGEs indicates the pooled fractions used in biochemical assays. All protein preparations were purified to a high >95% purity as estimated by SDS-PAGE. See S1 Data and S1 Raw Images for underlying data.

    (TIF)

    S7 Fig. Supplementary β-glucan affinity gel electrophoresis and EPR3a MST binding data.

    (A) Affinity gel electrophoresis assays using β-glucans L. digitata laminarin (β-1,3/β-1,6), Scleroglucan (β-1,3/β-1,6), or Pustulan (β-1,6) did not show retention of EPR3a, EPR3, or AtCERK1 ectodomains. M indicates PageRuler Prestained Protein Ladder, 10 to 180 kDa (Thermo Fisher), and BSA indicates bovine serum albumin, both of which were included as markers to gauge retention of LysM ectodomains. (B, C) MST binding data showing EPR3a binds L. digitata laminarin and laminaripentaose with low affininty (Kd >3 mM and ≈ 850 μM, respectively). Fnorm(%) is the measured normalised fluorescence of ectodomains assayed over a ligand concentration series, n denotes the number of biological replicates, Kd is the calculated dissociation constant, and the goodness of fit is given by R2. See S1 Data and S1 Raw Images for underlying data.

    (TIF)

    S8 Fig. Comparative analysis of the laminarin purified from L. digitata and E.bicyclis.

    (A) Determination of glycosyl linkages in L. digitata laminarin (top) and E.bicyclis laminarin (bottom). (B) The relative distribution (in %) of glycosyl linkages in L. digitata and E.bicyclis laminarins. (C) Determination of the molecular weight of the soluble fraction by size exclusion chromatography on a Superose 6 column. The average MW of L. digitata (magenta) is 5,000 Da, and E. bicyclis (blue) is approx. 44,000 Da. See S4 Information for underlying data.

    (TIF)

    S9 Fig. Residue and linkage composition of E. bicyclis and L. digitata laminarin with NMR spectroscopy.

    (A–C) E. bicyclis laminarin contains a 1,3 linked backbone with a complex mix of at least 3 different types of 1,6 branches. (D–F) L. digitata laminarin is a 1,3 linked main chain with 1,6 branched terminal glucose. (A) 1H-13C-HSQC of E. bicyclis laminarin (11.4 mg) in 90% DMSO-d6 and 10% D2O at 50 °C. The signal labelled with a red asterisk belongs to an unknown impurity. (B) Based on 1H peak integration, the ratio between 1,3 and 1,6 linkages is 3:2. (C) Chemical structures found in E. bicyclis laminarin. The degree of branching and the spacing of branches cannot be determined. (D) 1H-13C-HSQC of L. digitata laminarin (11.3 mg) in 90% DMSO-d6 and 10% D2O at 60 °C. Signals labelled with a red asterisk belong to mannitol located on the reducing end of approximately half of the oligomers, which is consistent with previous studies [32,83]. (E) Based on 1H peak integration, 1,3:1,6 linkage ratio is 25:1. (F) Chemical structure found in L. digitata laminarin. The degree and spacing of branching are too ambiguous to determine. See S5 Information for underlying data.

    (TIF)

    S10 Fig. EPR3 MST binding data.

    (A) The EPR3 ectodomain binds E. bicyclis laminarin with atleast 2-fold lower affinity ≈ 670 μM compared to EPR3a (Kd ≈ 250 μM) when assayed with MST. (B–G) EPR3 had similar affinities for other ligands measured as that observed for EPR3a. Binding affinities for (F) M. loti and (G) R. leguminosarum EPS was similar as previously reported [22]. (A–G) Fnorm(%) is the measured normalised fluorescence of ectodomains assayed over a ligand concentration series, and ΔFnorm(‰) is the normalised difference in fluorescence of experiments with a single biological replicate. n denotes the number of biological replicates, Kd is the calculated dissociation constant, and the goodness of fit is given by R2. See S1 Data for underlying data.

    (TIF)

    S11 Fig. Laminarin elicited ROS is not affected in Lotus mutants epr3a-2, epr3-11, and epr3a-2/epr3-11.

    (A) ROS production measured over time in response to mock, chitohexaose (CO6, positive control), and L. digitata laminarin. CO6 elicits a fast and strong ROS response in Lotus Gifu, epr3-11 and epr3a-2. L. digitata laminarin elicits a delayed and relatively weaker ROS response compared to CO6. (B) Boxplot of normalised total ROS production measured over 60 min. L. digitata laminarin (LD lam) ROS elicitation is not significantly affected in epr3-11 or epr3a-2 compared to Gifu. Values represent means ± SEM from 8 wells. Letters represent significant differences based on Kruskal–Wallis and post hoc Dunn test. (C) E. bicyclis laminarin elicits a relatively faster and weaker ROS burst in Gifu and epr3-11/epr3a-2 compared to L. digitata laminarin. A single well/replicate was performed for the S. indica β-glucan decasaccharide in Gifu and epr3-11/epr3a-2 and no ROS elicitation was detected. (D) Boxplot of normalised total ROS production measured over 60 min. E. bicyclis (EB lam) and L. digitata laminarin (LD lam) ROS elicitation is not significantly affected in epr3-11/epr3a-2 compared to Gifu. Values represent means ± SEM from 8 wells. Letters represent significant differences based on Kruskal–Wallis and post hoc Dunn test. See S1 Data for underlying data.

    (TIF)

    S12 Fig. EPR3a and EPR3 contain catalytically active kinases.

    (A) EPR3a and EPR3 intracellular kinase domains purified from E. coli were incubated with or without ATP+MgCl2 and subsequently analysed by SDS-PAGE and Pro-Q Diamond phosphoprotein gel stain. Both EPR3a and EPR3 are able to autophosphorylate, as shown by the enhanced stain intensity in ATP+MgCl2 incubated samples. (B) The same SDS-PAGE as in (A) stained with SYPRO Ruby total protein stain. BSA (non-phosphorylated) and ovalbumin (phosphorylated) were included as markers for phosphorylation. See S1 Raw Images for underlying data.

    (TIF)

    S13 Fig. Gene expression analysis of epr3 and epr3a mutants inoculated with M. loti R7A.

    (A) Principal component analysis of RNA-seq data obtained from roots of wild-type and mutant plants inoculated with M. loti R7A. RNA-seq was performed on root samples harvested 3 and 7 dpi. (B) Expression of known symbiotic genes was comparable in wild-type and receptor mutant plants. (C) qRT-PCR analysis showed the NIN expression profile was comparable in wild-type and receptor mutant plants. (D) The 25 Lotus genes that show the highest transcriptional response to pathogenic Ralstonia were chosen to represent defence-related genes. No significant difference in the expression of the genes was identified between wild-type and mutant plants. See S2 and S3 Information, NCBI BioProject accession: PRJNA953045 for underlying data.

    (TIF)

    S1 Table. LORE1 exonic insertions in epr3a-1 and epr3a-2 mutant lines.

    Only LORE1 inserts in the Epr3a gene are shared between the epr3a-1 and epr3a-2 lines.

    (DOCX)

    S2 Table. Primers used in qRT-PCR experiments.

    (DOCX)

    S1 Data. Data.

    (XLSX)

    S1 Information. Alphafold models.

    (ZIP)

    S2 Information. qRT-PCR dataset.

    (ZIP)

    S3 Information. RNA-seq normalised counts.

    (ZIP)

    S4 Information. Laminarin GC-MS and SEC.

    (PDF)

    S5 Information. NMR spectroscopy.

    (DOCX)

    S1 Raw Images. Raw gel images.

    (PDF)

    Attachment

    Submitted filename: Rebuttal letter_13.02.23.pdf

    Attachment

    Submitted filename: Rebuttal letter_07.04.23.pdf

    Data Availability Statement

    All relevant data are within the paper, its Supporting information files and the NCBI BioProject accession PRJNA953045 (http://www.ncbi.nlm.nih.gov/bioproject/953045).


    Articles from PLOS Biology are provided here courtesy of PLOS

    RESOURCES